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Abstract: The effects of compaction on soil shrinkage behavior need to be considered for
engineering long-term durable mineral liners of landfill capping systems. For this purpose, a
new three-dimensional laser scanning device was coupled with a mathematical-empirical model to
simultaneously determine the shrinkage behavior of a boulder marl (bm) and a marsh clay (mc).
Therefore, both materials were precompacted in 200 soil cores (100 cm3) on the basis of the Proctor test
results with five different degrees of compaction (bm1-bm5; mc1-mc5). Thus, the shrinkage behavior,
intensity, and tendency were determined during a standardized drying experiment. The volume
shrinkage index was used to describe the pore size dependent shrinkage tendency and was classified
as high to very high (11.3–17.7%) for the marsh clay and medium (5.3–9.2%) for the boulder marl.
Additionally, only the boulder marl (bm2), compacted up to 88% of Proctor density, could be installed
as landfill bottom liner in drier locations if the local matric potentials did not exceed the previously
highest observed drying range (i.e. values below −300 hPa), to avoid crack formation and generation.

Keywords: landfill capping systems; mineral liner; shrinkage intensity and tendency

1. Introduction

Currently, landfills still represent the major option for global waste disposal in most areas of the
world [1]. In Germany, the qualitative criteria of landfills are legally fixed [2]; they define the technical
standards for engineered barriers [3].

The major aim of a landfill capping system is to restrain gas migration (e.g., carbon dioxide and
methane), to minimize leachate generation in order to protect groundwater (precipitation contaminated
with heavy metals or polycyclic hydrocarbons) by (a) high water storage capacity for the recultivated
layer and (b) low hydraulic conductivity and negligible small shrinkage-crack formation potential
for top and bottom liners [4,5]. Therefore, the plant-available water capacity and saturated hydraulic
conductivity are considered essential properties of mineral sealing substrates (i.e., boulder marl and
clay) according to a past paper [2]. These substrates are often used as landfill liners in combination
with geosynthetics and geotextiles to ensure long-term hydraulic stability of the landfill capping
systems [5,6].

They can also substitute geosynthetics and geotextiles, and enable the sustainable use of locally
available resources. The materials selected must be suitable, and must have appropriate water content,
before being installed [7]. The primary function of the bottom liner is not guaranteed if the actual,
critical matric potentials within the mineral substrates are more negative than the pre-shrinkage
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strength [8]. Thus, water and solutes can bypass through the newly formed shrinkage cracks in the
mineral liners [9].

This case study presents laboratory measurements regarding the shrinkage behavior of boulder
marl and marsh clay. The objective is the application of a new three-dimensional measurement device
to better understand shrinkage-crack formation during drying cycles as a function of the matric
potential coupled with a mathematical-empirical model.

The authors hypothesized that (a) the degree of compaction and corresponding water content
strongly affects the shrinkage-induced volume change of both tested materials and (b) that the marsh
clay is a more appropriate liner material than the boulder marl due to its soil hydraulic characteristics
with respect to the statutory requirements for landfill liner.

Therefore, the shrinkage behavior of the marsh clay and boulder marl was analyzed in
detail using the concept of critical matric potentials on the basis of the soil water retention
characteristics, respectively.

2. Materials and Methods

2.1. Standard Proctor Compaction Tests

The boulder marl is derived from a pit located in the young moraine landscape (Rastorf: lat.
54◦16′ N, long. 10◦19′ E) and the clay is from decalcified marshland (Barlt: lat. 54◦28′ N, long. 9◦18′ E)
in the state of Schleswig-Holstein in Northern Germany. Disturbed boulder marl and clay samples
were used for four standard Proctor compaction tests (American Society for Testing and Materials
D-698), respectively, and the degree of Proctor density DPr was calculated as follows [10],

DPr =
ρt
ρPr

(1)

where ρt denotes the dry bulk density (g cm−3) and ρPr is the proctor density (g cm−3).
The clay and boulder marl samples were compacted to estimate the optimum water content

(wopt) and the maximum dry density (ρtopt) for a Proctor compaction curve. Based on these results,
homogenized marsh clay and boulder marl samples were moistened and compacted according to
two different stages at the dry side (bm1, bm2, mc1, mc2) and wet side (bm4, bm5, mc4, mc5) of the
moisture optimum (bm3, mc3), respectively. In total, 20 soil cores (diameter: 5.5 cm, height: 4 cm) per
Proctor stage and the materials were prepared with a standard method by a load frame through a
stamp (diameter: 5.5 cm) with a static load of 50 kN (Instron, Norwood, Mass, USA) for each selected
stage of the Proctor curve (mc1-5, bm1-5).

2.2. Laboratory Analysis

Disturbed soil material was used to measure the organic carbon content at 1200 ◦C; soil texture was
analyzed by the combined sieve (>63 µm) and pipette method, the soil pH value required preparation of
a 0.01 M CaCl2 solution (1:2 soil/suspension) (n = 40 for each undisturbed soil core); the particle density
was determined by the pycnometer method and the dry bulk density (ρ t) by the core method [11].
The saturated hydraulic conductivity (Ks) by the falling head method [12] with 10 undisturbed
soil cores of clay and boulder marl, for each Proctor stage, respectively. The total porosity was
calculated from the ratio between the dry bulk density and the particle density (bm: 2.63–2.64 g/cm3,
c: 2.67–2.68 g/cm3). The water retention parameters were measured from undisturbed soil cores
(n = 10 per Proctor stage) by a combined pressure plate (saturated, −30, −60, −150, −300, −500, and
−1000 hPa) and −15,000 hPa ceramic vacuum outflow method, as well as being oven-dried for 16 h
at 105 ◦C, respectively [11]. Simultaneous, the soil volume change at the different drying stages was
estimated with the laser triangulation method as detailed described in Section 2.3.
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The total porosity (TP) was calculated as ratio of dry bulk density and particle density
(2.65 g/cm3); air capacity (AC); and the plant available water capacity (AWC) are of major interest due
to the statutory requirements for landfill capping systems and were calculated as follows:

AC = θs − θFC (2)

AWC = θFC − θWP (3)

where θs is the saturated water content (cm3/cm3), h is pressure head (hPa), and the subscripted
symbols FC (field capacity) and WP (wilting point) indicate the water content at −60 hPa and
−15,000 hPa, respectively.

2.3. Shrinkage Behavior and Volume Shrinkage Index

There are several noninvasive methods to evaluate the shrinkage behavior of soil cores including
the manual combination of using a caliper and 2D photography to predict the shrinkage crack
volume [13]. By contrast, the Soil-LT 100 (Umwelt-Geräte-Technik GmbH, Müncheberg, Germany)
operates by the laser triangulation (LT) principle. The used line laser CMS 106 (Control Micro Systems,
Orlando, FL, USA) illuminates a soil sample along a line on the soil sample cylinders surface. Its
wavelength is around 0.66 µm, the laser class is designated as 1M. The laser line is projected from a
point source and is aligned above the rotation center at the z-axis of the sample mount, depending
on the region of interest, which defines the scan area (Figure 1). The laser line represents a cutting
plane in x- and z-dimension of the instrument coordinate system, initially the retrieved coordinates
of the 3D-scan featuring only x and z components. During the rotation, a charge coupled digital
camera captures a predefined number of profiles while the camera is equipped with a band-pass filter
to separate the laser signal (highlighted profile) in the captured image from the background [14,15].
Furthermore, shrinkage cracks can be very complex, but they can be indirectly recognized in regions
of no data, because there is no surface to reflect the laser. For the standard volume calculation, the
measurement point on the sample surface will be meshed to a surface and the crack will be closed,
thus, Soil-LT software version 2.0 (Umwelt-Geräte-Technik GmbH, Müncheberg, Germany) features a
tool to semi-automate the defining of crack areas. Additionally, the resulting soil volume relies on the
calibration that provides a zero-level height [14,15].
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Figure 1. Soil-LT scanning operation with an undisturbed soil core (100 cm3) rotating along the x-z
plane (mm) while a coupled device camera (CCD) and a CMS 106 line laser (Control Micro Systems,
Orlando, FL) detect and record the soil core surface (sample left) to create a 3D structure (samples right)
using a software package (Umwelt-Geräte-Technik GmbH, Müncheberg, Germany).
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The relation between the void ratio (e) and the moisture ratio (ϑ) defines the shrinkage curve
according to a past paper [16],

e =
Vf
Vs

(4)

ϑ =
Vw

Vs
(5)

where Vw, Vf, and Vs are the volumes of water, pores, and soils (cm3/cm3), respectively.
Considering the wide range of shrinkage models [17,18], the model of a past paper [16] was chosen

due to its high validation standard for a wide range of soils as mentioned in several studies [19,20],
even for compacted soils. Therefore, the modified van Genuchten equation (1980) was applied to
adjust the shrinkage curve [16],

e(ϑ) =


er ϑ = 0s

er +
es−er

[1+(χϑ)−p]
q 0 ≤ ϑ ≤ ϑs; n > 0

es ϑ = ϑs

 (6)

where χ, p, and q are dimensionless fitting parameters, es and er are the saturated and residual void
ratios that can be estimated by measurements. Additionally, the model of a past paper [16] fulfills the
following boundary conditions:

ϑ→ 0;
ϑ

es − θ
→ 0; e→ es (7)

ϑ→ ϑs;
ϑ

es − ϑ
→ o o∞; e→ es (8)

The four phases of a typical shrinkage curve, known as (a) structural shrinkage, (b) proportional
shrinkage, (c) residual shrinkage, and (d) zero shrinkage were determined mathematically using
Equation (6) [16,21]. The sigmoidal shrinkage curve usually has two extreme curvatures at the wet side
(ϑshw and eshw) and at the dry side (ϑshd and eshd) following the definition of a previous paper [16].
The maximum of the curve at the wet side (ϑshw and eshw) is determined as the transition point
between the structural and the proportional shrinkage phase, as determined previously [21,22]. In this
study, we called this transition point the critical matric potential value (ψmcrit) for the boulder marl
and marsh clay in the mineral sealing liner [23].

The volume shrinkage index (VSI) for the pore size dependent shrinkage tendency was defined
as follows [15], wCP (wide coarse pores, >50 µm, 0 to −60 hPa), nCP (narrow coarse pores, 50–10 µm,
−60 to −300 hPa), medium pores (MP, 10–2 µm, −300 to −15,000 hPa), and fine pores (<2 µm,
<−15,000 hPa). The textural porosity is defined as pore space between the primary particles or
micropores, while the structural porosity is characterized as the pore space between aggregates and
contains macropores (i.e., biopores and shrinkage cracks) as previously described [24],

VSIi =
∆Vti

∆Vpi
− 1 (9)

where ∆Vt is the soil volume in relation to the drained water-filled pore volume (∆Vp) and i corresponds
to the pore size (coarse, medium, and fine pores) of the respective drying stage.

The tendency of shrinkage (VSI) can be ranked into four classes: low (<5%), moderate (5–10%),
high (10–15%), and very high (>15%) according to a past paper [25]. The coefficient of activity (IA)
describes the swelling and shrinkage potential of soil material and can be determined as follows [25].

IA =
IP

% clay
(10)
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Where IP is the plasticity index due to the Atterberg limit test [26]. The coefficient of activity (IA) can
be ranked into three classes: IA < 0.75 (inactive material), 0.75 < IA < 1.25 (normal active material),
and >1.25 (active material). The clay mineralogy was determined with X-ray diffraction analysis (D8
Discover, Bruker AXS, Billerica, MA, USA).

2.4. Statistical Analysis

The mean values and standard deviations for each sampling depth were calculated. An analysis of
variance (ANOVA) with p < 0.05 verified the effect of pore size distribution and degree of compaction
on the pore functions and the volume shrinkage index (VSI). Differences of means were assessed by
Tukey’s HSD test (p < 0.05) as described previously [27]. The correlation coefficient (r2) is an index of
goodness of fit.

3. Results

3.1. Basic Soil Characteristics

The sandy loam (SL) textured boulder marl (bm) and a silty clay loam (SiL) textured marsh clay
(c) are characterized by a clay content of 11% and 26%, a moderately acidic (pH 5.6) or slightly alkaline
character (pH 7.6) with an organic carbon content of 0.25% and 0.05%, respectively (Table 1).

Table 1. Basic soil characteristics of the landfill capping system for marsh clay (mc) and boulder marl
(bm), n = 4 repeated measurements for organic carbon (OC), pH value, texture, and particle density
(ρs). The symbol ± corresponds to the standard deviation. SL = CL = * [28].

Material OC
[%]

pH
[CaCl2]

Sand
[%]

Silt
[%]

Clay
[%]

ρt
[g/cm3] Texture *

bm 0.05 ± 0.02 7.6 ± 0.3 68 ± 1 21 ± 2 11 ± 2 2.65 ± 0.2 SL
mc 0.25 ± 0.03 5.6 ± 0.2 18 ± 1 56 ± 2 26 ± 3 2.67 ± 0.3 CL

The boulder marl and the marsh clay are characterized by coefficients of activity of 0.18 ± 0.1 and
0.69 ± 0.4, respectively that corresponds to an inactive material (Table 2). Thus, the ability for swelling
and shrinkage is restricted for both materials, especially for the kaolinite dominated marsh clay.

The boulder marl mainly consists of quartz (85–88%) and calcite (3–4%), smectite (2–11%), and
vermiculite (1–4%). In contrast, the marsh clay mainly consists of quartz (21–25%), kaolinite (34–36%),
illite (22–24%), and montmorillonite (14–16%).

Table 2. Coefficients of activity (IA) and clay mineralogy of marsh clay (mc) and boulder marl (bm)
with n = 3 per material. The symbol ± corresponds to the standard deviation.

Material IA Quarz Calcite Kaolinite Smectite Vermiculite Illite Mont-Morillonite
[-] [%] [%] [%] [%] [%] [%] [%]

bm 0.18 ± 0.1 85–88 3–4 - 3–11 3–4 - -
mc 0.69 ± 0.4 21–25 0.5–1 34–36 - - 22–24 14–16

The marsh clay has very small ρt values (1.08 g/cm3 to 1.11 g/cm3) and was compacted to
a Proctor density of DPr 80% to 82%. The intermediate to firm ρt values between 1.66 g/cm3 and
1.94 g/cm3 of the boulder marl were comparatively higher with DPr values between 78% and 92%
(Figure 2).

The Ks values of the marsh clay varied between 1.2 × 10−7 m/s and 7.4 × 10−7 m/s and of the
boulder marl between 3.8 × 10−7 m/s and 1.2 × 10−7 m/s (Table 3). The TP values of the marsh clay
decreased with increasing moisture content while the Proctor optimum (bm3) showed the lowest TP
value for the boulder marl. Additionally, the sealing layer thickness should vary between 1.2 m (mc3)
and 7.4 m (mc1) for the marsh clay and between 3.8 m (bm3) and 12.0 m (bm5) for the boulder marl,



Geosciences 2018, 8, 356 6 of 15

they reach the same permeation rate, like a 0.5 m thick layer with a Ks value of 5 × 10−9 m/s, while
the Ks values of both tested materials were 2- or 3-orders in magnitude higher.
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Table 3. Soil physical properties of the investigated clay (mc1-mc5) and boulder marl (bm1-bm5)
considering the shrinkage-dependent volume changes for the average total porosity (TP), air capacity
(AC), the plant available water capacity (AWC), moisture content (w), proctor density (ρPr), and
degree of proctor density (DPr), n = 10 soil cores per Proctor stage. The symbol ± corresponds to the
standard deviation.

ProctorStage TP
[cm3/cm3]

AC
[cm3/cm3]

AWC
[cm3/cm3]

ρt
[g/cm3]

W
[%]

ρPr
[g/cm3]

DPr
[%]

Ks
[m/s]

mc1 0.657 0.115 0.256 1.10 20 1.09 80 7.4 ± 2.3 × 10−7

mc2 0.648 0.096 0.253 1.09 25 1.25 81 3.2 ± 1.6 × 10−7

mc3 0.637 0.582 0.244 1.11 33 1.35 82 1.2 ± 0.8 × 10−7

mc4 0.604 0.043 0.255 1.09 41 1.23 80 3.8 ± 1.4 × 10−7

mc5 0.592 0.033 0.271 1.08 45 1.10 80 6.8 ± 3.2 × 10−7

bm1 0.426 0.051 0.081 1.66 5.0 1.67 78 1.6 ± 1.3 × 10−6

bm2 0.401 0.054 0.076 1.85 7.5 1.98 88 1.8 ± 1.2 × 10−6

bm3 0.302 0.026 0.059 1.94 10.1 2.07 92 1.2 ± 0.5 × 10−6

bm4 0.329 0.049 0.069 1.85 12.5 2.03 87 7.8 ± 2.1 × 10−7

bm5 0.352 0.056 0.067 1.78 15.0 1.95 84 3.8 ± 1.6 × 10−7

The air capacity (AC) of the marsh clays vary between 0.033 cm3/cm3 (mc5) and 0.115 cm3/cm3

(mc1) and the AC values of the boulder marl ranged from 0.026 cm3/cm3 (bm3) to 0.056 cm3/cm3

(bm5). Furthermore, marsh clay was characterized by plant available water capacities (AWC) of
0.244 cm3/cm3 (mc3) and 0.271 cm3/cm3 (mc5) and the boulder marl by AWC values between
0.033 cm3/cm3 and 0.081 cm3/cm3. Thus, the TP and AWC values of the marsh clay are significantly
higher than the TP and AWC values of the boulder marl (Table 3).

Additionally, the study results show that the required recultivation layer thickness to achieve
0.14 cm3/cm3 per meter varies between 1.73 m (bm1) and 2.38 m (bm3) for the boulder marl, and
between 0.55 m (mc1) and 0.58 m (mc3) for the marsh clay.

3.2. Shrinkage Behavior and Volume Shrinkage Index

In total, two different stages at the dry side (mc1, mc2, bm1, bm2) and wet side (mc4, mc5, bm4,
bm5) of the moisture optimum (mc3, bm3) were chosen for further investigations. The void and
moisture ratios (es = ϑs) of the marsh clay varied between 1.78 cm3/cm3 and 1.91 cm3/cm3 in the
following order, mc1 > mc2 > mc3 < mc4 < mc5, so, the moisture optimum (mc3) is described by the
lowest void ratio and moisture ratio (Table 4). For the boulder marl, the void and moisture ratios
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(es = ϑs) varied between 0.42 cm3/cm3 and 0.70 cm3/cm3 in the following order, bm1 > bm2 > bm3 <
bm4 < bm5, so, the moisture optimum (bm3) is described by the lowest void and moisture ratio.

Table 4. Parameters derived from shrinkage curves of the Proctor stages of marsh clay (mc1-mc5) and
boulder marl (bm1-bm5) according to a previous model [16]: saturated void and moisture ratio (es and
ϑs), the transition point between the structural and the proportional shrinkage phase (eshw and ϑshw),
the change of void ratio (e) and moisture ratio (ϑ) during the structural shrinkage phase (es-eshw and
ϑs-ϑshw), and the proportional shrinkage phase (eshw-eshd and ϑshw-ϑshd). The symbol ± corresponds
to the standard deviation.

Proctor Stage χ p q r2 eshw, ϑshw es-eshw, ϑs-ϑshw eshw-eshd, ϑshw-ϑshd
[-] [-] [-] [-] [cm3/cm3] [cm3/cm3] [cm3/cm3]

mc1 0.539 61.85 0.014 0.99 ϑ 1.85 0.001 ± 0.001 1.75 ± 0.01
e 1.75 0.015 ± 0.001 1.15 ± 0.02

mc2 0.525 72.54 0.014 0.98 ϑ 1.79 0.001 ± 0.001 1.68 ± 0.03
e 1.77 0.02 ± 0.001 1.34 ± 0.01

mc3 0.716 11.62 0.120 0.99 ϑ 1.39 0.02 ± 0.003 1.29 ± 0.02
e 1.66 0.001 ± 0.001 1.30 ± 0.02

mc4 0.563 87.47 0.014 0.99 ϑ 1.77 0 ± 0.001 1.68 ± 0.01
e 1.77 0 ± 0.001 1.33 ± 0.02

mc5 0.504 275.1 0.002 0.99 ϑ 1.91 0 ± 0.001 1.71 ± 0.02
e 1.91 0 ± 0.001 1.42 ± 0.03

bm1 1.356 236.5 0.003 0.98 ϑ 0.70 0.001 ± 0.001 0.60 ± 0.06
e 0.692 0.001 ± 0.001 0.09 ± 0.003

bm2 10.2 6.269 1129 0.98 ϑ 0.35 0.15 ± 0.02 0.24 ± 0.04
e 0.48 0.02 ± 0.001 0.07 ± 0.01

bm3 2.40 0.014 4.116 0.97 ϑ 0.417 0.001 ± 0.001 0.32 ± 0.7
e 0.42 0.001 ± 0.001 0.06 ± 0.002

bm4 2.001 132.5 0.014 0.96 ϑ 0.50 0 ± 0.001 0.40 ± 0.05
e 0.510 0 ± 0.001 0.06 ± 0.002

bm5 1.81 64.19 0.014 0.99 ϑ 0.522 0.023 ± 0.001 0.44 ± 0.06
e 0.555 0 ± 0.0001 0.06 ± 0.003

The proportional shrinkage phase was the major shrinkage phase of the Proctor stages starting
between 0 hPa and −30 hPa under continuous drying, with the exception of mc3 that reached
the proportional shrinkage phase between −30 and −60 hPa (eshw: 1.666 cm3/cm3 and ϑshw:
1.386 cm3/cm3). Nearly identical results were indicated for the boulder marl, with the exception
of bm2 that reached the proportional shrinkage phase at about −300 hPa (eshw: 0.472 cm3/cm3 and
ϑshw: 0.342 cm3/cm3). For the boulder marl, the volume loss during the proportional shrinkage
phase (eshw-eshd and ϑshw-ϑshd) was indicated by changes in the void ratios between 0.06 cm3/cm3

and 0.09 cm3/cm3, and changes in the moisture ratios between 0.24 cm3/cm3 and 0.60 cm3/cm3

(Figures 3 and 4). On the other hand, the proportional shrinkage phase of the clay was characterized
by changes in the moisture ratios between 1.29 cm3/cm3 and 1.75 cm3/cm3 and void ratios between
1.15 cm3/cm3 and 1.42 cm3/cm3.

Geosciences 2018, 8, x FOR PEER REVIEW  7 of 15 

 

= ϑs) varied between 0.42 cm3/cm3 and 0.70 cm3/cm3 in the following order, bm1 > bm2 > bm3 < bm4 
< bm5, so, the moisture optimum (bm3) is described by the lowest void and moisture ratio.  

Table 4. Parameters derived from shrinkage curves of the Proctor stages of marsh clay (mc1-mc5) and 
boulder marl (bm1-bm5) according to a previous model [16]: saturated void and moisture ratio (es 
and ϑs), the transition point between the structural and the proportional shrinkage phase (eshw and 
ϑshw), the change of void ratio (e) and moisture ratio (ϑ) during the structural shrinkage phase (es-eshw 
and ϑs-ϑshw), and the proportional shrinkage phase (eshw-eshd and ϑshw-ϑshd). The symbol ± corresponds 
to the standard deviation. 

Proctor Stage χ p q r2  eshw, ϑshw es-eshw, ϑs-ϑshw eshw-eshd, ϑshw-ϑshd 

 [-] [-] [-] [-]  [cm3/cm3] [cm3/cm3] [cm3/cm3] 
mc1 0.539 61.85 0.014 0.99 ϑ 1.85 0.001 ± 0.001 1.75 ± 0.01 

     e 1.75 0.015 ± 0.001 1.15 ± 0.02 
mc2 0.525 72.54 0.014 0.98 ϑ 1.79 0.001 ± 0.001 1.68 ± 0.03 

     e 1.77 0.02 ± 0.001 1.34 ± 0.01 
mc3 0.716 11.62 0.120 0.99 ϑ 1.39 0.02 ± 0.003 1.29 ± 0.02 

     e 1.66 0.001 ± 0.001 1.30 ± 0.02 
mc4 0.563 87.47 0.014 0.99 ϑ 1.77 0 ± 0.001 1.68 ± 0.01 

     e 1.77 0 ± 0.001 1.33 ± 0.02 
mc5 0.504 275.1 0.002 0.99 ϑ 1.91 0 ± 0.001 1.71 ± 0.02 

     e 1.91 0 ± 0.001 1.42 ± 0.03 
bm1 1.356 236.5 0.003 0.98 ϑ 0.70 0.001 ± 0.001 0.60 ± 0.06 

     e 0.692 0.001 ± 0.001 0.09 ± 0.003 
bm2 10.2 6.269 1129 0.98 ϑ 0.35 0.15 ± 0.02 0.24 ± 0.04 

     e 0.48 0.02 ± 0.001 0.07 ± 0.01 
bm3 2.40 0.014 4.116 0.97 ϑ 0.417 0.001 ± 0.001 0.32 ± 0.7 

     e 0.42 0.001 ± 0.001 0.06 ± 0.002 
bm4 2.001 132.5 0.014 0.96 ϑ 0.50 0 ± 0.001 0.40 ± 0.05 

     e 0.510 0 ± 0.001 0.06 ± 0.002 
bm5 1.81 64.19 0.014 0.99 ϑ 0.522 0.023 ± 0.001 0.44 ± 0.06 

     e 0.555 0 ± 0.0001 0.06 ± 0.003 

The proportional shrinkage phase was the major shrinkage phase of the Proctor stages starting 
between 0 hPa and −30 hPa under continuous drying, with the exception of mc3 that reached the 
proportional shrinkage phase between −30 and −60 hPa (eshw: 1.666 cm3/cm3 and ϑshw: 1.386 cm3/cm3). 
Nearly identical results were indicated for the boulder marl, with the exception of bm2 that reached 
the proportional shrinkage phase at about −300 hPa (eshw: 0.472 cm3/cm3 and ϑshw: 0.342 cm3/cm3). 
For the boulder marl, the volume loss during the proportional shrinkage phase (eshw-eshd and ϑshw-
ϑshd) was indicated by changes in the void ratios between 0.06 cm3/cm3 and 0.09 cm3/cm3, and changes 
in the moisture ratios between 0.24 cm3/cm3 and 0.60 cm3/cm3 (Figs. 3 and 4). On the other hand, the 
proportional shrinkage phase of the clay was characterized by changes in the moisture ratios between 
1.29 cm3/cm3 and 1.75 cm3/cm3 and void ratios between 1.15 cm3/cm3 and 1.42 cm3/cm3.  

 
(a) 

Figure 3. Cont.



Geosciences 2018, 8, 356 8 of 15
Geosciences 2018, 8, x FOR PEER REVIEW  8 of 15 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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pores (nCP), medium (MP), and fine pores (FP) of the five different Proctor stages: (a) bm1, (b) bm2, 
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Figure 3. Shrinkage curves and volume shrinkage index of the wide coarse (wCP), narrow coarse pores
(nCP), medium (MP), and fine pores (FP) of the five different Proctor stages: (a) bm1, (b) bm2, (c) bm3,
(d) bm4, (e) bm5. Different letters indicate statistically significant differences (p < 0.05) of the volume
shrinkage index in comparison to the pore size. The transition point between the structural and the
proportional shrinkage phase is marked with dashed lines (eshw and ϑshw).



Geosciences 2018, 8, 356 9 of 15

Geosciences 2018, 8, x FOR PEER REVIEW  9 of 15 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Shrinkage curves and volume shrinkage index of the wide coarse (wCP), narrow coarse pores
(nCP), medium (MP), and fine pores (FP) of the five different Proctor stages: (a): mc1, (b): mc2, (c): mc3,
(d): mc4, (e): mc5. Different letters indicate statistically significant differences (p < 0.05) of the volume
shrinkage index in comparison to the pore size. The transition point between the structural and the
proportional shrinkage phase is marked with dashed lines (eshw and ϑshw).
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The structural shrinkage phase (mc1-mc5) was less pronounced with changes in the void and
moisture ratios (es-eshw and ϑs-ϑshw) of between 0 cm3/cm3 and 0.02 cm3/cm3 and a residual
shrinkage phase that could not be clearly determined (Figures 3 and 4). Nearly identical results
were indicated for the boulder marl, whereby the only exception, bm2, showed a volume loss during
the structural shrinkage phase described by changes of void ratio of 0.02 cm3/cm3 and moisture ratio
of 0.15 cm3/cm3.

The exceedance of the pre-shrinkage stress (ψmcrit) also resulted in a more distinctive volume
change (eshw-eshd) during the proportional shrinkage phase than in the structural shrinkage phase.
The shrinkage model simulated the results of void ratio (e) and moisture ratio (ϑ) very well with
coefficient relations of r2 ≥ 0.96 (Table 4).

The volume shrinkage index (VSI) of the clay and the boulder marl, summed up from the wide
and narrow coarse pores as well as medium and fine pores, could be classified as high to very high
for the marsh clay with 12.8% for mc3 and 17.9% for c5, and as medium shrinkage tendency for the
boulder marl with 5.4% for bm2 and 9.3% for bm1 (Figures 3 and 4). The volume shrinkage indices of
the marsh clay and the boulder marl were positively correlated with the fine pore content (r2: 0.38,
boulder marl r2: 0.40), and the void ratios decreased with increasing dry bulk density (r2: 0.60, r2: 0.85),
respectively (Figure 5).
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Figure 5. Volume shrinkage indices as a function of the fine pores (FP) and the void ratio, as a function
of the dry bulk density (ρt), of marsh clay (mc, n = 40) and boulder marl (bm, n = 40) with regard to the
regression function, respectively. The r2 indicates the coefficient of determination. The dashed lines
indicate the confidence limits for a confidence level of 95%.

4. Discussion

4.1. Statutory Requirements of the German Landfill Directive

The German Landfill Directive, which was enacted in 2009, includes the essential statutory
requirements to achieve the securing of closed landfills: (a) available water capacity of the recultivation,
or rather, topsoil layer of at minimum 0.14 cm3/cm3 per meter, (b) Ks values of at least 5 × 10−9 m/s
equal to 0.5 m thickness and a hydraulic gradient of I = 0.3 m, and (c) AC values of at minimum
0.08 cm3/cm3.

Therefore, the marsh clay would be a more appropriate recultivation material to reach the statutory
requirements excluding the shrinkage crack formation properties of the clay [29]. The comparatively
lower AWC values of the boulder marl can be explained, and are related to the smaller number of
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nCP and MP as mentioned previously [30], thus, an increasing AWC could be realized with compost
addition [31] or with increasing compaction, as previously [32] pointed out. As result of this, a
higher transpiration rate and water storage capacity could reduce the amount of infiltrating water, as
described previously [33]. Considering the Ks values, neither the boulder marl nor the marsh clay are
suitable materials for the sealing layer according to the authors of a past paper [2].

The natural permeability may be reduced by additional compaction [34], but it is well-known
that a reduced number of coarse pores accompany soil compaction, along with smaller Ks values,
especially in the top and bottom liner, when compared with uncompacted, natural soils [33]. Thus,
even if these values cannot be reached, the consideration of shrinkage processes and anthropogenic
anisotropic flow properties (Ks horizontal > vertical) of the liner can help make the top and bottom
liners impermeable for the long-term. The Ks values could be lowered by the addition of three-layer
clayey minerals (i.e., montmorillonite), but due to the high-water absorption capacity of these minerals,
the shrinkage-crack initiation moisture content could potentially increase [35,36].

Additionally, the required threshold value for the air capacity of ≥ 0.08 cm3/cm3 could only be
reached by the marsh clay (mc1, mc2) on the dry side of the Proctor curve, so, the installation of marsh
clay and boulder marl as a top liner cannot guarantee optimal plant growth, thus resulting in restricted
transpiration potential [3].

4.2. Shrinkage Behavior of Marsh Clay and Boulder Marl

The long-term hydraulic stability of landfill liners is of major interest for the environmental
police and thus, the statutory requirements, and therefore this study, are focused on the soil physical
properties of mineral liners including (a) shrinkage behavior, (b) shrinkage intensity, and (c) shrinkage
tendency as cumulative factor. In this context, several studies [29,37] mentioned that the shrinkage
behavior of natural soils strongly depends on the soil texture, soil structure, and compaction, while
the mechanical and hydraulic pre-stress are mostly ignored. In contrast, the authors of a previous
paper [38] stated that (a) shrinkage behavior is a result of the rearrangement of soil particles and
pores by mechanical and hydraulic stresses resulting in soil compaction with different effects on the
changes of pore diameter and continuity and (b) that the intensity depends primarily on the existence
of swelling clay. Thus, the clay content and type of clay are only one part that should be added by
organic carbon content as confirmed previously [9].

In general, soil shrinkage is mainly due to textural pores rather than to structural pores [24].
In this case, artificial soil compaction (including Proctor test experiments) may reduce the volume
of structural pores considerably, while most of the textural pores remain unaffected, according to
previous investigations [13,18,39]. So, the higher number of medium and fine pores in the marsh clay
could also be a reason for the more pronounced proportional shrinkage [19,40], inversely proportional
to the fitting parameter χ, as previously mentioned [20]. This coincides with the effect of a complete
initial homogenization prior to the laboratory experiments. It is to be expected that those moistened
soil samples undergo a more intense cracking, down to very negative matric potential values compared
to those of structured or rather aggregated soils, as shown previously [38].

The explanation of the shrinkage intensity requires some knowledge about the clay mineral
fraction of the liner material. In general, the shrinkage intensity is more pronounced the higher the
amount of three-layer clayey minerals (i.e., smectite/vermiculite/montmorillonite), as compared to the
two-layer and also to the four-layer minerals they have a better shrinkage and swelling capacity [41,42].
Thus, the more pronounced volume shrinkage tendency of the marsh clay could be attributed to
the presence of illite and montmorillonite [41] while the percentage of non-swelling and shrinking
kaolinite does not alter the shrink swell patterns.

The new phenomenon in this context is the fact that the application of hydraulic or mechanical
stresses alters the soil pore system differently. Therefore, the marsh clay, with its lower ρt values,
reacts more strongly to than the boulder marl due to the more pronounced volume shrinkage tendency,
which agrees with past investigations [29,30]. During the Proctor test, the amount of removed water
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for complete shrinkage increases, and consequently, the volume shrinkage tendency also increases [23].
As a result, this increases the volume shrinkage index on the wet side of the Proctor curve (c4-c5,
bm4-bm5), especially for the marsh clay, which agrees with past findings [5]. The combination of
compaction (dynamic) and added water affects the matric potential status resulting in complete water
saturated systems under the influence of cyclic loading and unloading. Under those conditions, the
pore water pressure of the added water continuously pushes soil particles apart while decreasing
the friction between them [11], thus, the arrangement of particles has a pronounced effect on the
shrinkage-induced volume change [23,37], and therefore, the shrinkage intensity as a cumulative effect.

4.3. Suitability of Marsh Clay and Boulder Marl as Mineral Liner

Summing up all influential factors, the suitability of mineral liner is superficially limited by
shrinkage-crack formation, frost impact, or root penetration in conjunction with increasing Ks values
of approximately three orders of magnitude [43], resulting in higher infiltration and leachate rates
by a factor of 3 to 4 [44] due to preferential macropore flow, especially during intensive precipitation
events [24].

On that note, the proposed concept of critical matric potentials is very useful to describe suitability
of both materials as mineral liner. The boulder marl, in form of the bm2 with aψmcrit value of−300 hPa,
would be an effective bottom liner, if (a) it is installed on the dry side of the Proctor curve near the
Proctor optimum, (b) the Ks values closely correspond to the statutory requirements, and (c) no
desiccation effects more negative than the mentioned one can be expected in the bottom liner, even
in drier periods. On the other side, the marsh clay should not be used for top liners and despite its
low permeability [4], the shrinkage-crack potential, even for less negative matric potentials, is very
pronounced and endangers the hydraulic stability of landfill capping systems. The use as bottom liner,
even though the c3 with a ψ mcrit value of −30 to −60 hPa, would be more effective for more humid
locations, where no desiccation effects more negative than −60 hPa can be expected in the bottom liner.

The results suggest that several conflicts of interest exist (i.e., shrinkage intensity versus Ks
values) and both materials are not usable as bottom liner with an exclusive purchase on the soil
physical properties, respectively. Thus, the boulder marl is a more useful top liner material with its less
pronounced shrinkage potential and can also be installed as bottom liner in combination with clayey
substrates or geosynthetics and geotextiles, decreasing its comparatively higher permeability due to
subsequent compaction during installation [33]. Alternatively, temporary capping systems mostly
consist of semipermeable mineral liner to slowly shout down the so called ‘bioreactor’ and therefore,
the investigated boulder marl with its permeability characteristics should be the material of choice as
mentioned by [31].

Therefore, the pretreatment of the material, such as repeated desiccation and/or in combination
with previous compaction, can even in humid climates, affect the long-term impermeability and safety
of such landfill capping systems. This is true, because exceeding the previously highest drying or
compaction range inevitably results in the next crack formation and generation [45]. Thus, if the
matric potential can be more negative than the critical matric potential (pre-shrinkage stress) due to
higher hydraulic stress of the menisci forces in the micropores [13,38], then proportional shrinkage can
irreversible cause further shrinkage-crack formation [39].

This circumstance limits the suitability of the marsh clay, especially for drier locations, where the
matric potentials in the bottom liner regularly exceed the critical matric potential range, as mentioned
before. If this advice is ignored, documented studies, i.e., at the “Georgswerder landfill” (Hamburg,)
have shown irreversible shrinkage-cracks in mineral liners [44] after exceeding the pre-shrinkage
stress, thus, the presence of shrinkage cracks can be recognized as a key factor for mineral liner
degradation [35,43].

This fact depends on the thickness of the top liner, the climate conditions, and the initial moisture
content during the installation, even with a more pronounced swelling potential, but if cracked, the
healing potential is very limited, even if the proportional shrinkage phase is reached [43]. This finding
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is summed up in a past paper [11], such healing would require dynamic processes like shearing or
kneading, which are not possible in the bottom liner [33], even for both tested materials that were
indexed as inactive with a restricted swelling and shrinkage ability. Additionally, roots can restrict
crack formation due to the larger shear strength of rooted systems, but they also can hinder the
self-healing of cracks during the wetting process [43].

5. Conclusions

The results allow us to conclude that the soil water retention characteristics and shrinkage
behavior, tendency, and intensity of both tested materials are affected by (a) the degree of compaction
and (b) the corresponding water content. Considering the statutory requirements for landfill liner,
neither the boulder marl, nor the marsh clay completely fulfill the required soil hydraulic characteristics
for a long-term functional mineral landfill liner.

The results also show that the volume change during the drying phase is less pronounced for
the soil material that was installed on the dry side of the Proctor curve below the optimum for
Proctor compaction, thus, the initial moisture content during the installation of mineral liners is of
major interest. Additionally, processes such as wetting and drying, root growth and penetration,
and freeze-thaw cycles could potentially reduce the hydraulic stability for both tested materials
(e.g., increase the permeability and the pore continuity) of the top and bottom liner even in a short
time after installation of the liners in a landfill capping system.

Thus, it should be kept in mind that the hydraulic stability or rather the shrinkage-crack formation
resistance of top or bottom liners consisting of marsh clay or boulder marl could be ensured by (a) a
high pre-shrinkage stress (ψmfield >ψmcrit), (b) a water content as low as possible during the installation
phase (θfield > θinstallation), (c) shallow-rooting plants, and (d) a less pronounced shrinkage intensity
and shrinkage tendency.
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