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Abstract: After the Tohoku earthquake in 2011, we observed that aftershocks tended to occur in a wide
region after such a large earthquake. These aftershocks resulted in secondary damage or delayed
rescue and recovery activities. In addition, it has been reported that there are regions where the
intensity of the vibrations owing to the aftershocks was much stronger than those associated with the
main shock. Therefore, it is necessary to consider the seismic risk associated with aftershocks. We used
the data regarding aftershocks that was obtained from the Tohoku earthquake and various other
historically large earthquakes. We investigated the spatial and temporal distribution of the aftershocks
using the Gutenberg–Richter law and the modified Omori law. Subsequently, we previously proposed
a probabilistic aftershock occurrence model that is expected to be useful to develop plans for recovery
activities after future large earthquakes. In this study, the probabilistic aftershock hazard analysis
is used to create aftershock hazard maps. We propose a hazard map focusing on the probability of
aftershocks on the scale of the main shock for use with a recovery activity plan. Following the lessons
learned from the 2011 Tohoku earthquake, we focus on the simultaneous occurrence of tsunamis and
aftershocks just after a great subduction earthquake. The probabilistic aftershock hazard analysis
is used to derive load combination equations of the load and resistance factor design. This design
is intended to simultaneously consider tsunamis and aftershocks for tsunami-resistant designs of
tsunami evacuation buildings.

Keywords: probabilistic; aftershock; seismic hazard; subduction earthquake; recovery activity plan;
load combination; tsunami

1. Introduction

An earthquake with a moment magnitude of 9.0 struck Tohoku by the coast near the Pacific
Ocean on 11 March 2011. Subsequently, thousands of aftershocks occurred and the distribution of
their hypocenters ranged from the Iwate Sea to the Ibaraki Sea. Therefore, it is clear that it is necessary
for emergency workers to consider the occurrence of aftershocks so as to be prepared to face such
a scenario in the future.

The importance of including recovery activities in contingency plans has increasingly been
recognized. The reports of damages due to the aftershocks caused by the 2011 Tohoku
earthquake included collapses of buildings that were damaged by the main shock, delays in
recovery activities owing to water cutoffs or no-passing zones, and delays in rescue activities.
However, the Central Disaster Management Council of Japan [1] does not consider the effect of
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aftershocks. Probabilistic methods to evaluate the hazards of aftershocks have been deemed to
be particularly effective in improving decision-making and planning due to various uncertainties that
are associated with earthquakes in terms of the location, scale, and frequency of aftershocks [2,3].

Multiple studies of aftershock hazard analyses were conducted after the Niigata Chuetsu
earthquake in 2004 [4–7]. Standard analysis methods were proposed by the Headquarters
for Earthquake Research Promotion to design probabilistic aftershock occurrence models [8].
However, aftershocks with a magnitude greater than 7.0 after the occurrence of a main shock
with a magnitude of 9.0 were not reviewed. Previously, aftershock risk analyses were conducted
immediately after the occurrence of a main shock [9]. However, it is difficult to evaluate the hazards
of an aftershock before the main shock due to various uncertainties. For possible great earthquakes,
we must make decisions based on such uncertainties, and it is important to quantify the various
uncertainties. Therefore, a probabilistic model that takes into account the various uncertainties is
necessary to review the safety measures before the occurrence of an earthquake. We previously
proposed a probabilistic aftershock hazard analysis method for trench-type mega-earthquakes [10].

In this paper, engineering applications of the proposed approach for probabilistic aftershock
hazard analysis are shown for demonstration purposes. One application is to use aftershock hazard
maps to plan recovery activities. Another application is to derive load combination equations of the
load and resistance factor design (LRFD) considering the simultaneous occurrence of tsunamis and
aftershocks for the tsunami-resistant design of tsunami evacuation buildings.

2. Probabilistic Aftershock Hazard Analysis Model

2.1. Aftershock Definition

The classification of aftershocks [11] used in our study is illustrated in Figure 1. In general,
many earthquakes subsequently occur near the hypocenter of a large earthquake after its occurrence.
If the subsequent earthquakes are smaller in magnitude than the initial earthquake, the initial
one is classified as the main shock and the subsequent ones are classified as aftershocks.
Conversely, if a subsequent earthquake is larger in magnitude than the initial earthquake, the initial
earthquake is classified as a foreshock and the largest subsequent earthquake is classified as the main
shock. Typically, subduction earthquakes stronger than a Richter magnitude of 7.0 are assumed to be
main shocks because the majority of such earthquakes are historically observed to be main shocks.

The area where the aftershocks occur is the aftershock region, which contains the fault plane as
well as the expanded fault plane. The distribution of aftershocks resulting from the Tohoku earthquake
as per the Japan Meteorological Agency [12] is depicted in Figure 2. Aftershocks that occur at a large
distance from the fault plane, i.e., induced earthquakes (e.g., on 12 March 2011, or 15 March 2011),
are not included in this study.
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2.2. Probabilistic Aftershock Occurrence Model

2.2.1. Reasenberg and Jones Model

In this study, we assume that the relationship between the magnitude and frequency of aftershocks
can be expressed using the Gutenberg–Richter (GR) law [13]. Further, we observe that the relationship
between the time elapsed after the main shock and the occurrence of the aftershocks agree with the
modified Omori’s (MO) law [14–16]. Consequently, Reasenberg and Jones proposed a model that can
describe the rate of occurrence of aftershocks with a magnitude greater than or equal to M at a time t
immediately after a main shock of magnitude Mm, and this can be expressed as follows [17]:

λ(t, M, Mm) =
10a+b(Mm − M)

(t + c)p , (1)

where a is proportional to the occurrence of earthquakes, b describes the magnitude distribution of the
earthquakes, p is the decay rate of the aftershocks, and c is the time-offset parameter, which is assumed
to be a constant of 0.1 in this study.

The total number of aftershocks is calculated by integrating Equation (1):

N(T1, M, Mm) =
∫ T1

0 λ(t, M, Mm)dt

= 10a+b(Mm−M) (T1+c)1−p−c1−p

1−p (p 6= 1),
(2)

where T1 is the elapsed time from the main shock. In Equation (2), the relationship between a and the
magnitude of the main shock Mm is not specified. However, it is constant regardless of the elapsed
time from the main shock. Therefore, the change in the value of b owing to the elapsed time is
not considered.
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2.2.2. Proposed Probabilistic Aftershock Occurrence Model

We previously proposed Equation (3) [10], which contains a parameter a as a function of the
magnitude of the main shock and a parameter b as a function of the elapsed time from the main shock
T1. In addition, the minimum magnitude of the aftershocks (Mmin) is set to 4.0 [10].

N(T1, Mmin, Mm) = 10a(Mm)+b(T1)(Mm−Mmin)
(T1 + c)1−p − c1−p

1− p
(p 6= 1) (3)

Further, when the probability distribution of the earthquake scale is designed using the GR law,
the probability that the aftershock magnitude M becomes mi at T1 is

P(mi|T1) = P(mi − ∆m/2 ≤ M < mi + ∆m/2|T1)

= N(T1, mi−∆m/2, Mm)−N(T1, mi+∆m/2, Mm)
N(T1, Mmin−∆m/2, Mm)−N(T1, Mm+∆m/2, Mm)

,
(4)

where ∆m is assumed to be 0.1. In Equation (3), it is assumed that the maximum aftershock magnitude
(Mmax) is equal to the main shock magnitude (Mm). However, we propose the following Equation (5)
according to previous studies [18,19]. Hereafter, Mm is represented in terms of Mmax using Equation (5):

Mm = Mmax + D1. (5)

2.3. Model Parameters

Historically large earthquakes including the Tohoku earthquake of 2011, the Tokachi–Oki
earthquake of 2003, and other such major earthquakes were compiled to construct an aftershock
occurrence model for large earthquakes that may occur in the future. We define aftershocks as
earthquakes that occur within 90 days [20] in the area ruptured by the main shock with a focal
depth shallower than 100 km and a magnitude (MJ) larger than or equal to 4.0. The hypocenter data
(time, location, and magnitude) obtained from the Japan Meteorological Agency were used [21,22].
The spatial distribution of the aftershocks is illustrated in Figure 3.
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2.3.1. Target Aftershocks

For the 2011 Tohoku earthquake, we used the fault model of the Geospatial Information Authority
of Japan [23] to estimate the expanded fault plane, which acts as the aftershock area. For the 2003
Tokachi–Oki earthquake, the Yagi fault model [24] was used to estimate the expanded fault plane.
The aftershock areas of other major earthquakes are assumed to be circular regions centered on the
hypocenter of the main shock. The aftershock area A (km2) is calculated as follows [20]:

log10 A = Mm − 3.2 (6)

2.3.2. Relationships between Parameters

The parameters of the GR and MO models obtained from the previous aftershock data are depicted
in Table 1, which includes the parameters used in previous studies [25,26]. Figure 4 illustrates the
relationship between Mm and each declared parameter. The number of aftershocks (N) increases with
increasing Mm. However, we cannot confirm the relationships between the other parameters. We use
regression to propose the following equations (average and standard deviation) as the aftershock
occurrence model parameters.

log10 Aa f ter = 0.778Mm − 1.60 (7)

log10N(90, 4.0, Mm) = 0.88Mm − 4.51, σlog10N = 0.36 (8)

b(90) = 0.83, σb(90) = 0.12 (9)

p = 1.05, σp = 0.17 (10)

D1 = 1.0, σD1 = 0.5. (11)

Table 1. Aftershock occurrence parameters for past earthquakes.

Main Shock Aftershock Parameters
Reference

Mm GMT Longitude Latitude N b(90) p D1

9.0 20110311 142.9 38.1 3123 0.99 0.86 1.3
7.0 20080507 141.6 36.2 27 0.91 0.84 1.2
8.0 20030925 144.1 41.8 212 0.84 1.02 0.9
7.3 19951203 150.1 44.6 329 0.89 0.97 0.3
7.2 19950106 142.3 40.2 26 0.7 0.76 1.0
7.6 19941228 143.7 40.4 191 0.8 0.93 1.1
6.9 19920718 143.4 39.4 100 0.8 1.09 0.5
7.1 19891101 143.1 39.9 34 0.74 0.94 0.8
6.7 19870206 141.9 36.9 NA 0.88 0.91 1.1 [25]
7.1 19840806 132.2 32.4 NA 1.03 1.00 2.3 [25]
7.0 19820723 142.0 36.2 49 0.83 0.98 0.8
7.4 19780612 142.2 38.2 30 0.69 0.86 1.1
7.9 19680516 143.6 40.7 NA 0.90 1.00 0.4 [26]
7.5 19640616 139.2 38.4 NA 1.00 1.40 1.4 [26]
7.0 19610226 131.9 31.6 NA 0.75 1.00 1.7 [26]
6.8 19610112 142.3 36.0 NA 0.80 1.30 0.2 [26]
7.5 19600320 143.5 39.8 NA 0.85 1.30 0.8 [26]
8.1 19520304 143.9 42.2 NA 0.80 1.10 1.1 [26]
8.1 19461220 135.6 33.0 NA 0.70 1.00 0.9 [26]
8.0 19441207 136.2 33.7 NA 0.70 1.10 1.3 [26]
7.7 19381105 141.6 37.1 NA 0.65 1.20 0.1 [26]
7.1 19380523 141.4 36.7 NA 0.80 1.10 1.2 [26]
8.3 19330302 144.7 39.1 NA 1.10 1.40 1.6 [26]
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In addition, Figure 5a depicts the GR model at various elapsed times (T1) of the Tohoku earthquake.
The b-value (the slope of the GR equation) increases with increasing elapsed time. Figure 5b illustrates
the relationship between elapsed time (T1) and b(T1) for major earthquakes in the past. As depicted in
Figure 5b, b(T1) is given by the following equation:

b(T1) = 0.068log10(T1) + 0.70, σb(T1)
= 0.12 (12)
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where N is the number of aftershocks that occurred in the aftershock region within a period of 90 days
having a magnitude greater than 4.0 (the results of Guo and Ogata [25] and Utsu [26] were excluded
due to their having different conditions than the ones required), b(90) is the b-value of the GR equation
90 days after the occurrence of the main shock, p is the decay rate of the MO law, and D1 is the
magnitude difference between the main shock and the largest aftershock.Geosciences 2018, 8, 1  7 of 22 
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3. Aftershock Hazard Analysis Method

3.1. Aftershock Hazard Analysis Equation

Seismic hazard analyses are used to assess the relationship between the expected earthquake
ground motion at a certain period of time and the probability or frequency of exceedance. In this study,
we concentrate on aftershocks due to large subduction earthquakes. The average number of aftershock
occurrences for T1 days with a ground motion intensity (Ysurf) greater than y is [24]

N
(

Ysur f > y
∣∣∣T1, Mm

)
= N(T1, Mmin, Mm)∑

i
∑

j
P
(

Ysur f > y
∣∣∣mi, rj

)
P(mi|T1)P

(
rj
∣∣mi
)
, (13)

where N(T1, Mmin, Mm) is the average number of aftershocks having magnitudes greater than 4.0
within the aftershock region, P

(
Ysur f > y

∣∣∣mi, rj

)
is the conditional probability of a ground motion

intensity (Ysur f ) that is greater than y when the aftershock magnitude is mi and the distance is rj,
P(mi|T1) is the probability function of the aftershock magnitude in the aftershock region at an elapsed
time T1, and P

(
rj
∣∣mi
)

is the probability function of the distance at an aftershock magnitude mi.
We assume a uniform probability distribution in the aftershock region. In addition, we use the
following attenuation relation [27] to calculate the peak ground velocity (PGV) as the aftershock hazard,
which can more stably estimate the structural damage than the peak ground acceleration (PGA):

log10 Ybed = b̂− log10(X + ĉ)− 0.002X,

b̂ = 0.58M + 0.0038D− 0.31 + ε,

ĉ = 0.0028× 100.50M,

(14)

where Ybed is the PGV (cm/s) on the engineering bedrock, M is the aftershock magnitude, D is the
focal depth (km), X is the shortest source distance (km), and ε is the deviation between the observed
and predicted values with a logarithm standard deviation of 0.23. X is the distance from a spherical
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surface of radius 1/2L around the hypocenter and is calculated using Equation (15) in accordance with
the study by Utsu [28]. In addition, we set X to 3 km when the distance is shorter than 1/2L.

log10 L = 0.5M− 1.85 (15)

Site effects are calculated using the following equations:

Ysur f = Ybed × R, (16)

log10 R = 1.83− 0.66 log10 AVS30, (17)

where Ysur f is the PGV (cm/s) on the surface, R is the site amplification, and AVS30 (m/s) is the
average S-wave velocity down to 30 m.

The aftershock region is assumed to be the expanded fault plane, which is an extension of the
fault plane in accordance with Equation (7). We divide the expanded fault plane into a 10 km × 10 km
mesh, as shown in Figure 6. The aftershock hazard at each site is calculated by integrating the results
of each mesh.
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3.2. Verification of the Proposed Method

We calculated the PGV hazard curve for the aftershocks of the Tohoku earthquake to validate
the proposed model using the proposed aftershock hazard analysis method. The site location and
aftershock region of the model are exhibited in Figure 7 and the site-specific parameters are listed in
Table 2.
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Table 2. Aftershock occurrence parameters.

Site (K-NET) Longitude Latitude AVS30 (m/s)

MYG010 141.28 38.43 262
MYG004 141.02 38.73 430
FKS010 141.00 37.23 409
IBR013 140.49 36.16 265

3.2.1. Comparison of the Aftershock Hazard Analysis and Observations

We compared the actual observations to the results of the aftershock hazard analysis to validate
the proposed model. The aftershock hazard analysis for a period of 90 days after the major shock
is calculated by considering the average as well as the average ± one standard deviation of each
parameter, and the actual aftershock observation records at each site obtained within 90 days after
the main shock are depicted in Figure 8. To compare the aftershock hazard and the main shock
PGV, the PGV observations for the main shock are depicted by the dashed line, the points where
the aftershock hazard curves and main shock PGVs intersect are checked, and the frequency of
exceedance is confirmed. For example, in MYG010, the observations and aftershock hazard analysis
are in good agreement. The PGV of the main shock is 56 cm/s. Therefore, the maximum expected
aftershock occurrence number within 90 days of the main shock is approximately 0.1 times the average
parameter values and approximately 0.5 times the average + one standard deviation. At other sites
(MYG004, FKS010, and IBR013), the observations and the aftershock hazard analysis match well at
relatively small PGVs but not so well with increasing PGVs. The PGVs of the main shock are 110,
62, and 69 cm/s, whereas the maximum expected aftershocks within 90 days of the main shock are
approximately 0.07, 0.4, and 0.4 times the results of the average + one standard deviation, respectively.
Therefore, the aftershock hazard analysis matches the observations well using the proposed parameters.
However, there are deviations between the expected and observed values. Therefore, we need to
evaluate the hazards considering the variations in the parameters.
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3.2.2. Sensitivity Analysis

As previously mentioned, the parameters used to calculate the aftershock hazards
(log10N(90, 4.0, 9.0), b(90), D1, and p) have prediction errors. We performed a sensitivity analysis
of these parameters to evaluate the effect of the variations on the accuracy of the analysis. We consider
the MYG010 site, using the proposed parameters of Equations (7)–(12), and calculate the aftershock
hazards for the average and the average ± one standard deviation of each parameter for 90 days after
the earthquake (Figure 9).

The aftershock hazard increases with increasing N-values as well as with decreasing b(90), D1,
and p-values. The contribution of each parameter to the aftershock hazard varies.
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3.2.3. Short-Term Versus Mid-Term

We compared the short-term (0–3 days) and mid-term (3–30 days) aftershock hazards at MYG010
(Figure 10) to evaluate the differences in the aftershock hazards owing to the elapsed time from the
main shock. The mid-term aftershock hazard is calculated by the following equation:

N
(

Ysur f > y
∣∣∣3 ≤ t < 30, Mm

)
= N

(
Ysur f > y

∣∣∣30, Mm

)
− N

(
Ysur f > y

∣∣∣3, Mm

)
. (18)

We can observe from the mean µ in Figure 10a that the PGVs of the aftershocks that are expected
to occur more than once are approximately 18 cm/s in the short-term and approximately 2 cm/s
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in the mid-term. Figure 10b shows that the maximum expected aftershock occurrence number for
µ + σ is 0.6 times in the short-term and nearly 0 times in the mid-term. Therefore, the mid-term
hazard is smaller than the short-term hazard; this could be used to estimate the starting time for
recovery activities.
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4. Engineering Applications

4.1. Aftershock Hazard Map for Recovery Activities

The strong aftershocks that occur after a large subduction earthquake will adversely affect
recovery activities [29–31]. For example, the gas, water, and electricity supply were disconnected
over a wide area owing to an aftershock with a magnitude of 7.2 on 7 April 2011, nearly a month
after the Tohoku earthquake. Further, railway facilities and highways were damaged by the strong
aftershocks, affecting the train schedules and resulting in a closure of the highways. In addition, it is
crucial to decide whether or not to discontinue operations at nuclear facilities. If large aftershocks
occur during rescue and lifeline recovery activities after the main shock, there is a further possibility
of secondary damages. As explained above, we need to make decisions as per prescribed priorities
and implementation plans regarding rescue activities, lifeline recovery activities, and evacuation
plans quickly owing to the subsequent aftershocks following a great earthquake. In such a scenario,
a framework that can reasonably predict the aftershock activity after a great earthquake is necessary to
make such decisions in a timely manner.

4.1.1. The 1923 Kanto Earthquake

We assume the aftershock hazards for a large earthquake that may occur in the future in the Tokyo
metropolitan area [32]. Subsequently, we propose a hazard map using the results of the aftershock
hazard analysis for the recovery activities.

Initially, we evaluated the aftershock hazards by applying the proposed model to the Kanto
earthquake. The aftershock region is assumed to be the expanded fault plane and the main shock
magnitude is in the fault plane [33] (Equation (6)). The main shock magnitude (Mm) is 7.9, the assumed
site is KNG005 on K-NET, and the AVS30 of KNG005 is 443 m/s. The site and expanded fault plane
are depicted in Figure 11.
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Figure 12 illustrates the short-term aftershock hazards and the main shock PGV. The predicted
main shock PGV is 48 cm/s, and the maximum aftershock frequency of three days is approximately
0.1 for µ + σ and approximately 0.02 for µ.Geosciences 2018, 8, 1  12 of 22 
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4.1.2. Aftershock Hazard Map

We propose a hazard map to efficiently use the aftershock hazard analysis for recovery activities.
We focused on the short-term aftershock hazards and calculated the expected aftershock frequency
at 113 sites (Figure 13). Figure 13a illustrates the results for µ + σ, whereas Figure 13b illustrates
the results for µ. Figure 13 illustrates that the aftershock frequencies of the main shock PGV are
considerably larger at sites that are closer to the southwestern area where the depth of the expanded
fault plane is shallow. The maximum value is 0.52 for µ + σ and 0.20 for µ. The aftershock hazards
increase near the fault plane. However, the increase in the PGV of the main shock is more significant,
whereas the aftershock frequencies of the main shock PGV are negligible. In addition, the aftershock
hazards, main shock PGV, and the aftershock frequencies are considerably smaller at sites located
on the northeast side with the deep expanded fault plane. Conversely, the aftershock hazards are
significant at sites located near the southwest side with the shallow expanded fault plane because the
main shock PGV is small due to the small distance from the fault plane. As a result, the aftershock
frequencies of the main shock PGV in this area are large.
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The hazard map can be used to plan evacuation and infrastructure recovery after
a large earthquake.Geosciences 2018, 8, 1  13 of 22 
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4.1.3. Use of the Aftershock Hazard Map

In this study, we propose a hazard map of the aftershock frequencies beyond the main shock
PGV immediately following a large earthquake. However, if the aftershock frequencies following the
main shock PGV are sufficiently small after a certain elapsed time after the main shock, it is possible
to use hazard maps based on various indices. An example would be the standard seismic intensity,
which is adopted by specific applications and can be applied to various decision-making situations,
including rescue activities, evacuations, lifeline recoveries, nuclear facility operations, and traffic stops
by setting the evaluation period to suit the intended use.

4.2. Load Combination of Aftershock and Tsunami for Tsunami-Resistant Designs

Immediately after the main shock of the 2011 Tohoku earthquake, many structures along the
coast of the Tohoku region collapsed due to the simultaneous effect of the tsunami and the strong
ground motions of the aftershocks. Even though the primary cause of the collapses of the structures
was considered to be the tsunami load, the influence of the strong ground motions of the main shock
and aftershocks cannot be ignored. In particular, critical structures, such as tsunami refuge buildings,
seawalls, and nuclear power plants, which are located on the seashore, must be designed to withstand
tsunamis and strong ground motions. It is necessary to quantitatively evaluate and consider the effects
of load combinations of aftershock and tsunami. Even if the seismic design and tsunami-resistant
design are appropriate, they may not account for the simultaneous occurrence of both aftershocks and
tsunamis. In tsunami-resistant designs, we need to expect tsunamis to arrive at any time after the main
shock ranging from a few minutes to a few hours based on the experience of the Tohoku earthquake.
Therefore, both aftershocks and tsunamis should be considered simultaneously to design critical
facilities located at the seashore. A practical assessment of the combined load of aftershocks and
tsunamis is needed if both aftershocks and tsunamis occur simultaneously.

4.2.1. Load Combination Framework

The concept of the simultaneous occurrence of aftershocks and tsunamis [34] is depicted in
Figure 14. Initially, the maximum tsunami arrival time at the evaluation site is expressed as the elapsed
time ta and the tsunami completion time is expressed as te from the time of occurrence of the main
shock. Therefore, the tsunami duration is represented as te − ta. According to the analysis of the
Tohoku earthquake, ta was short and te − ta was a few minutes. Conversely, the load effects of the
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aftershocks occur immediately after the main shock and simultaneous effects of the aftershocks and
the tsunami on structures occur within te − ta. Therefore, we propose the use of load and resistance
combination factors in tsunami-resistant designs. The maximum height of the tsunami will arrive at
the specified site at time ta after the main shock, and the maximum value is continuous within the
tsunami duration and will be combined with the maximum value of the aftershock loads during the
tsunami duration.
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4.2.2. Analytical Model and Conditions

To evaluate the load combination factors of aftershocks and tsunamis in the Tohoku region,
we assumed the main shocks to be the 2011 Tohoku earthquake (Mm = 9.0), the 1933 Sanriku earthquake
(Mm = 8.1), and the 1896 Sanriku earthquake (Mm = 8.5). The evaluation sites are the K-NET locations
of AOM012, IWT001, IWT002, IWT003, IWT005, and IWT007. The aftershock area is the expanded
fault plane, which is enlarged due to the relationship between the main shock magnitude and the
aftershock area [35]. The evaluation sites and aftershock area are depicted in Figure 15.
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The target structure is a ten-story reinforced concrete structure, with a width of 40 m, a depth of
20 m, and a height of 40 m. Based on the experience of the Tohoku earthquake [36], ta is set to 0 min,
30 min, and 60 min after the main shock and the tsunami duration is set to 30 min. The inundation
height is assumed to remain constant during the entire duration of the tsunami. The limiting state is
that in which the horizontal load of the aftershocks and the tsunami exceed the lateral resistance of
the structure.

The design equation for the limiting state function [37] is

ϕRn > γAQAn + γTQTn = γA(rQMn) + γTQTn = γMQMn + γTQTn, (19)

where QAn is the conditional representative value of the aftershock load during the tsunami duration
under the specified occurrence of the main shock, which we assume is a mean value based on the
aftershock hazard analysis; QTn is the conditional representative value of the tsunami load under the
specified occurrence of the main shock, which we assume is the mean value estimated based on the
Abe law [38]; QMn is the conditional representative value of the main shock load under the specified
occurrence of the main shock, which we assume is the median value estimated from the attenuation
relation [27]; Rn is the nominal value of the lateral resistance; γA is the load factor for the aftershocks;
γT is the load factor for the tsunami; γM is the load factor for the aftershocks; ϕ is the resistance factor;
and r = QAn/QMn is the ratio of the nominal value of the load effect owing to aftershocks during the
tsunami duration to the nominal value of the load effect owing to the main shock.

• Aftershock load

First, we design the load effect of the aftershocks. We focus on the horizontal base shear force of
n-story structures. According to the Recommendations for Loads on Buildings [39], the seismic base
shear force QA is approximately 2 times that of the ground seismic response:

QA ≈
2PGA

g

n

∑
k=1

wk, (20)

where wk is the weight of the floor k (kN), g is the gravitational acceleration [m/s2], n is the number
of stories of the target building, and PGA is the peak ground acceleration owing to the aftershocks
[m/s2], which is a random variable determined using Equation (13). Note that PGA is used instead of
PGV. Therefore, we use the following attenuation relations (Equation (21)) for the calculation of PGA
as an aftershock hazard and the site amplification R is assumed to be 1.4.

log10 Ybed = b̂− log10(X + ĉ)− 0.003X

b̂ = 0.50M + 0.0043D + 0.62 + ε

ĉ = 0.0055× 100.50M

(21)

We use σ to model the error of the earthquakes. The mean (µ) and µ + σ of the aftershock PGA at
each evaluation site are summarized in Table 3. In addition, the PGA distribution type is assumed to
be lognormal.
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Table 3. Summary of the input values in the reliability analysis.

Sites Variable
2011 Tohoku 1896 Sanriku 1933 Sanriku

Type Note
Mean COV Mean COV Mean COV

AOM012

PGA0–30 (cm/s2)
83 1.61 68.2 1.37 11.7 1.13 Lognormal µ
185 1.35 140 1.25 22.2 1.05 Lognormal µ + σ

PGA30–60 (cm/s2)
62 1.73 53.5 1.46 9.5 1.20 Lognormal µ
135 1.50 107 1.35 17.8 1.11 Lognormal µ + σ

PGA60–90 (cm/s2)
53 1.81 46.3 1.52 8.4 1.25 Lognormal µ
113 1.59 91.8 1.41 15.5 1.16 Lognormal µ + σ

PGAmain (cm/s2) 176 - 238 - 93 - - Median
h (m) 9.6 0.42 3.7 0.42 1.2 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

IWT001

PGA0–30 (cm/s2)
106 1.58 81.3 1.36 14.8 1.12 Lognormal µ
234 1.28 166 1.22 28.2 1.05 Lognormal µ + σ

PGA30–60 (cm/s2)
79 1.71 63.8 1.45 12.1 1.19 Lognormal µ
171 1.43 128 1.31 22.5 1.11 Lognormal µ + σ

PGA60–90 (cm/s2)
67 1.79 55.1 1.51 10.6 1.25 Lognormal µ
143 1.52 109 1.38 19.7 1.16 Lognormal µ + σ

PGAmain (cm/s2) 215 - 283 - 118 - - Median
h (m) 10.3 0.42 4.1 0.42 1.3 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

IWT002

PGA0–30 (cm/s2)
125 1.52 76.7 1.34 16.6 1.11 Lognormal µ
274 1.21 157 1.21 31.6 1.03 Lognormal µ + σ

PGA30–60 (cm/s2)
94 1.65 60.2 1.42 13.5 1.18 Lognormal µ
201 1.35 120 1.31 25.3 1.10 Lognormal µ + σ

PGA60–90 (cm/s2)
79 1.73 52.1 1.48 11.9 1.23 Lognormal µ
168 1.44 103 1.37 22 1.14 Lognormal µ + σ

PGAmain (cm/s2) 270 - 262 - 126 - - Median
h (m) 11.3 0.42 4.3 0.42 1.4 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

IWT003

PGA0–30 (cm/s2)
146 1.52 78.8 1.33 19.3 1.09 Lognormal µ
322 1.20 161 1.21 36.6 1.02 Lognormal µ + σ

PGA30–60 (cm/s2)
108 1.65 61.9 1.42 15.7 1.16 Lognormal µ
235 1.35 123 1.30 29.3 1.08 Lognormal µ + σ

PGA60–90 (cm/s2)
92 1.74 53.5 1.48 13.8 1.21 Lognormal µ
197 1.44 106 1.36 25.6 1.13 Lognormal µ + σ

PGAmain (cm/s2) 336 - 268 - 141 - - Median
h (m) 12.4 0.42 4.7 0.42 1.5 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

IWT005

PGA0–30 (cm/s2)
167 1.38 69.8 1.31 21.5 1.07 Lognormal µ
358 1.07 142.2 1.21 40.7 0.99 Lognormal µ + σ

PGA30–60 (cm/s2)
125 1.51 54.9 1.40 17.5 1.14 Lognormal µ
265 1.21 109.3 1.30 32.6 1.06 Lognormal µ + σ

PGA60–90 (cm/s2)
106 1.59 47.5 1.46 15.4 1.19 Lognormal µ
223 1.30 93.7 1.36 28.5 1.11 Lognormal µ + σ

PGAmain (cm/s2) 469 - 234 - 148 - - Median
h (m) 15.0 0.42 5.0 0.42 1.6 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

IWT007

PGA0–30 (cm/s2)
174 1.35 52.7 1.27 20 1.06 Lognormal µ
373 1.05 107 1.20 37.9 0.99 Lognormal µ + σ

PGA30–60 (cm/s2)
130 1.49 41.5 1.36 16.3 1.13 Lognormal µ
276 1.18 82.5 1.29 30.4 1.05 Lognormal µ + σ

PGA60–90 (cm/s2)
111 1.54 35.9 1.42 14.3 1.18 Lognormal µ
232 1.27 70.8 1.35 26.5 1.10 Lognormal µ + σ

PGAmain (cm/s2) 533 - 179 - 134 - - Median
h (m) 18.1 0.42 4.8 0.42 1.5 0.42 Lognormal

R (kN) - 0.2 - 0.2 - 0.2 Lognormal

• Tsunami load

Next, according to the tsunami-resistant design [40], the tsunami load QT is

QT = γB
∫ z2

z1

(3h− z)dz =
1
2

γB
{(

6hz2 − z2
2
)
−
(

6hz1 − z1
2
)}

, (22)
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where B is the width of the target structure [m], γ is the specific weight of water (kN/m3), z1 is the
minimum height of the tsunami pressure-receiving surface (0 ≤ z1 ≤ z2) (m), z2 is the maximum
height of the tsunami pressure-receiving surface (z1 ≤ z2 ≤ 3h) (m), and h is the design tsunami
inundation depth (m).

The mean value of the design tsunami inundation depth is calculated by assuming a lognormal
distribution for h and a standard deviation equal to 0.42 [38,41]:

log10 h = Mm − log10 ∆− 5.55 + C, (23)

where h is the mean value of the design tsunami inundation depth [m], Mm is the main shock
magnitude, ∆ is the shortest tsunami propagation distance from the hypocenter to the observation
point [km], and C is a correction term that is 0 toward the Pacific Ocean and 0.2 toward the Japan Sea.

• Load-resistance capacity

The mean load-resistance capacity, Rn is estimated using a target reliability index. Its coefficient
of variation (COV) is assumed to be 0.2, and its distribution is assumed to be lognormal.

4.2.3. Analytical Method

The advanced first-order second moment (AFOSM) [42] is used as the method for the analysis.
In this study, βT is the conditional target reliability index under the specified main shock occurrence.
Therefore, it is necessary to determine βT by considering the occurrence frequency of the main shock.
According to the Headquarters for Earthquake Research Promotion [43], the return period of the
Tohoku earthquake is 600 years and that of the Sanriku earthquake is 97 years. Therefore, we set the
conditional target reliability index βT to take values from 0.0 to 1.0 and calculated the design value of
the aftershock and tsunami load combination. In addition, the load combination factor was estimated
from the ratio of the representative and design values.

4.3. Results

4.3.1. Analytical Results

Figure 16 illustrates the aftershock and tsunami load combination factor at IWT007, whereas
Figure 17 depicts the results at all the evaluation sites.

According to Figure 16, regardless of the main shock, the tsunami load factor increases with
increasing target reliability index. However, the aftershock load factor remains nearly constant, and the
resistance factor decreases. The aftershock load factor tends to decrease with increasing elapsed time
from the main shock. The difference between 30–60 min and 60–90 min is smaller than that between
0–30 min and 30–60 min because the occurrence rate of the aftershocks decreases with increasing
elapsed time. However, the effect of the elapsed time on the tsunami load factor and the resistance
factor is negligible.

Figure 16a,c,e are compared to Figure 16b,d,f to confirm the effect of variations in the aftershock
hazard analysis. The variation is significant in the aftershock load factor, which was approximately
three times the variation. Simultaneously, we compared the 2011 Tohoku earthquake (Mm = 9.0),
the 1896 Sanriku earthquake (Mm = 8.5), and the 1933 Sanriku earthquake (Mm = 8.1) to confirm the
effect of the magnitude of the main shock. It is difficult to make a direct comparison because the
shortest distance from an evaluation site to the fault plane is different at different sites. The aftershock
load factor and tsunami load factor of the 1933 Sanriku earthquake were affected negligibly compared
to the factors for the 2011 Tohoku and 1896 Sanriku earthquakes. In addition, the aftershock load factor
decreases and the tsunami load factor increases with increasing elapsed time after the main shock.
The variation in the tsunami load factor for the 1933 Sanriku earthquake is remarkable. The main shock
magnitude of the 1933 Sanriku earthquake is the smallest of the target earthquakes. Therefore, the load
effect of the tsunami is considerably smaller than the load effect of the aftershocks.
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(b) 2011 Tohoku (µ + σ); (c) 1896 Sanriku (µ); (d) 1896 Sanriku (µ + σ); (e) 1933 Sanriku (µ); and (f) 1933
Sanriku (µ + σ) earthquakes.
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Figure 17. Relationship between the fault distance and the load combination factors: (a) aftershock
load factor (βT = 0.0); (b) aftershock load factor (βT = 0.5); (c) tsunami load factor (βT = 0.0); (d) tsunami
load factor (βT = 0.5); (e) resistance factor (βT = 0.0); and (f) resistance load factor (βT = 0.5).

Here, we summarize the results at all the evaluation sites. The relationship between the fault
distance and the load combination factor for the target reliability index is illustrated in Figure 17.
The aftershock load factor and the tsunami load factor for each target reliability index are set high and
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the resistance factor is set low to evaluate the most conservative load combination factor, including the
effects of elapsed time. Figure 16 indicates that the load combination factors are nearly constant
regardless of the fault distance. However, the aftershock load factor for the 1933 Sanriku earthquake
is the smallest of the three earthquakes. This is because the aftershock occurrence rate is related to
the main shock magnitude. Conversely, the resistance factor is nearly constant regardless of the main
shock magnitude. Moreover, the aftershock load factor increases when the aftershock hazard increases
owing to the variation. However, there is little change in the tsunami load factor owing to the variation
in the aftershock hazard for the 2011 Tohoku earthquake and the tsunami load factor decreases with
increasing aftershock hazard for the 1896 and 1933 Sanriku earthquakes. Presumably, this is because
the tsunami to aftershock load ratios in the 1896 and 1933 Sanriku earthquakes are smaller than that of
the 2011 Tohoku earthquake.

4.3.2. Load Combination Factor for Tsunami-resistant Designs

We consider the very rare condition that large subduction earthquakes (Tohoku and Sanriku
earthquakes) occur. Therefore, the conditional target reliability index is set to 0 and 0.5. The LRFD
format for the tsunami-resistant design of the conditional target reliability index is shown in Table 4.

Table 4. Summary of the load and resistance factor design factor.

Magnitude of
Main Shock (Mm)

Conditional Target Reliability

NoteIndex = 0 Index = 0.5

ϕ γM γT ϕ γM γT

9.0
0.98 0.14 0.88 0.95 0.15 1.26 µ
0.98 0.41 0.88 0.95 0.49 1.25 µ + σ

8.5
0.98 0.11 0.86 0.95 0.15 1.25 µ
0.98 0.25 0.86 0.95 0.47 1.24 µ + σ

8.1
0.98 0.06 0.87 0.95 0.10 1.19 µ
0.98 0.11 0.87 0.95 0.24 1.08 µ + σ

5. Conclusions

In this study, we introduced a probabilistic aftershock hazard analysis that is expected to be useful
to develop plans for recovery activities after any large earthquake in the future. The probabilistic
aftershock hazard analysis depends on the elapsed time after the main shock using model parameters
based on compiled statistics of historical aftershock data. The proposed model was validated by
comparing the results with observed aftershock ground motions during the 2011 Tohoku earthquake.
In addition, we conducted a sensitivity analysis and confirmed the effects of variations in each
parameter. Then, two engineering applications of the proposed approach for probabilistic aftershock
hazard analysis were shown for demonstration purposes. It was proposed that aftershock hazard
maps be used for the effective planning of the recovery activity for future large earthquakes that may
occur in Japan. It was also proposed that aftershock hazard analysis be used for the development
of load combination equations of LRFD considering the simultaneous occurrence of tsunamis and
aftershocks, which is considered to be useful for the design of tsunami evacuation buildings.

In the future, we will consider the effects of aftershocks for safety evaluations of nuclear facilities
to contribute to the advancement of probabilistic seismic risk analyses of nuclear facilities.
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