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Abstract: Looting of archaeological sites is illegal and considered a major anthropogenic threat for 
cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape 
disturbance, heritage destruction, and adverse social impact. In recent years, the employment of 
remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing 
with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in  
war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest 
with limited surveillance. The damage performed by illegal activities, as well as the scarcity of 
reliable information are some of the major concerns that local stakeholders are facing today. This 
study discusses the potential use of remote sensing technologies based on the results obtained for 
the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. 
In this area, more than ten looted tombs have been recorded in the last decade, indicating  
small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, 
automatic extraction after object-oriented classification, etc., was based on high-resolution 
WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. 
Google Earth© images were also used to map and diachronically observe the site. The current 
research also discusses the potential for wider application of the presented methodology, acting as 
an early warning system, in an effort to establish a systematic monitoring tool for archaeological 
areas in Cyprus facing similar threats.  

Keywords: looting; remote sensing archaeology; image analysis; satellite data; Cyprus 
 

1. Introduction 

Looting is considered as a major anthropogenic threat for cultural heritage due to the irreversible 
damage that is caused to the archaeological context and the findings themselves, often diverted into 
the illicit market [1,2]. Several reports can be found from all over the world indicating the size and 
extent of this problem [3–6]. Recent examples from the war-conflicted areas in the Middle East 
showcase a part of this problem [7–9].  

Due to the complexity of the problem, the scientific community and local stakeholders are 
seeking ways to minimize the degree and the extent of looting by the exploitation of innovative 
technologies [10]. In this concept, Earth observation and aerial sensors are considered as important 
aspects of a holistic approach to eventually constraining the problem. Recent examples from both 
optical and passive remote sensing technologies can be found in the literature, indicating the 
advantages and the accuracy of the results for mapping archaeological areas that are under threat 
[11–14]. In some cases, Earth observation proved to be the only means of documenting the destruction 
made by the looters due to war conflicts [3]. In other cases, ground geophysical prospecting has also 
been applied, as in the case of [5] in Peru. 
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Even though these technologies are not capable of preventing looters, the image analysis results 
can be used by the local stakeholders to take all the necessary measurements for future restrictions, 
as well as to warn the scientific community of illegal excavations. 

It should be stated that existing literature is mainly focused on the exploitation of remote sensing 
technologies for extended looted areas, where hundreds of looted signs are visible from space and 
air [3,5,6]. On the contrary, this paper aims to present small-scale looting attempts which seem to 
have been made in recent years in Cyprus. In addition, no scheduled flight or satellite overpass was 
performed to monitor the site under investigation. Therefore, the use of existing datasets captured by 
various sources and sensors was the only means of mapping the looting imprints. It is evident that 
the specific case study is limited in terms of the size of the threat, but is also bounded by the 
availability of existing images rarely captured from space and air. This restricted context provides a 
realistic case study which is appropriate to discuss the potential use of non-contact remote sensing 
technologies to map small-scale systematic attempts made by looters in recent years. 

2. Methodology  

Existing archive aerial images and satellite datasets have been exploited to meet the aims of this 
study. A complete list of the all of the data used is provided in Table 1. The temporal resolution of 
the analysis was carried out covering the last nine years (i.e., from 2008 to 2017). Aerial images 
included the sub-meter-resolution red-green-blue (RGB) orthophoto color composite produced in 
2008 (with a spatial resolution of 0.50 m), and the latest RGB orthophoto of 2014 (with a spatial 
resolution of 0.20 m). Both archives were produced by the Department of Land and Surveys of 
Cyprus. A greyscale aerial orthophoto with a spatial resolution of 1 m taken in 1993 (and therefore 
prior to any looting phenomena) was used as reference. In addition, a very-high-resolution 
WorldView-2 multispectral satellite image taken on 20 of June 2011 was also consulted. The 
WorldView-2 sensor provides a high-resolution panchromatic band with a ground sampling distance 
(GSD) of 0.46 m (at nadir view) and eight multispectral bands with 1.84 m GSD at nadir view. The 
latest bands include the conventional red, green, blue, and near-infrared wavelengths, amongst other 
parts of the spectrum, which cover the coastal, yellow, red edge, and near-infrared wavelengths.  

To use all possible available sources to examine looted imprints of the area, Google Earth© 
images have also been extracted and analyzed. The Google Earth© 3D digital globe systematically 
releases satellite images at high spatial resolution, which can be used for various remote sensing 
applications (see [15–17]). The platform provides very high-resolution natural-color (i.e., RGB) 
images based on existing commercial space borne sensors, such as IKONOS, QuickBird, WorldView, 
etc. Despite the various limitations of Google Earth© images for scientific purposes, such as the 
compression of the original satellite images, the loss of image quality, as well as limitations in the 
spectral resolution (i.e., no near-infrared band is provided), recent research demonstrated the great 
potential of such platforms supportive to research and providing updated information [18]. Indeed, 
Google Earth© images have already been used for investigation of looting phenomena in the area of 
Palmyra [3,19] and the ancient city of Apamea, in Syria [20]. 

In the case study of Politiko, looted tombs were difficult to detect directly from the aerial and 
satellite datasets. This is due not only to the small scale and the depth of the looted tombs (i.e., more 
than 3 m), but also due to the spatial resolution and the view geometry (i.e., the nadir view) of the 
aerial and satellite datasets. Therefore, tombs’ shadows could not be used as an interpretation key as 
in the case of [3]. In this case, soil disturbance due to these legal activities was considered as a proxy 
for the looted tombs. The excavated soil was placed very close to the looted tombs, providing a 
homogenous spectral characteristic target compared to the surrounding non-excavated area.  

The methodology followed in this study is presented in Figure 1. Nine RGB images from the 
Google Earth© platform between 2008 and 2017 have been extracted and interpreted in a 
geographical information system (GIS). To improve the photo-interpretation of these images, various 
histogram enhancements were applied. These included brightness and contrast adjustments for each 
image to enhance the looting soil disturbance against the surrounding area, which was intact and 
partially vegetated (see examples in Figure 3). In addition, other linear (linear percent stretch) or non-
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linear histogram stretches (histogram equalization) were applied for enhancement of the spectral 
properties of the soil disturbance, which was considered as a proxy for the looted tombs.  

For the enhancement of the archive aerial orthorectified images, similar histogram adjustments 
have also been applied. The WorldView-2 multispectral image was also spatially improved using 
both Gram–Schmidt and NNDiffuse pan-sharpening algorithms. The image was then processed into 
various levels, including vegetation indices, vegetation suppression, orthogonal equations for the 
detection of crop marks [21,22], principal component analysis (PCA), and color transformations such 
as HSL (hue, saturation, and lightness) and HSV (hue, saturation, and value). The latest are 
considered as transformations of the Cartesian (cube) RGB representation. Finally, the WorldView-2 
image was classified using object-oriented segmentation adjusting edge and full lambda parameters, 
also considering texture metrics. All of the above-mentioned image processing techniques were 
implemented in ENVI 5.3 (Environment for Visualizing Images, Harris Geospatial Solutions). 

In addition, an in situ inspection of the site was carried out, during which the looting imprints 
detected through the image processing were mapped using a double differencing Global Navigation 
Satellite System (GNSS) and a real-time kinematic positioning technique. The vertical/horizontal 
combined accuracy of the in situ GNSS campaign was set to be less than 3 cm. Finally, the overall 
satellite and aerial image processing outputs were evaluated and cross-compared with the ground 
truthing investigation of the site. 

 

Figure 1. Overall methodology and resources used for the current study. 

Table 1. Datasets used for the current study. GSD: ground sampling distance; RGB: red-green-blue. 

No Image Date of Acquisitions Type
1 Aerial image 1993 Greyscale (1 m pixel resolution) 
2 Aerial image 2008 RGB orthophoto (50 cm pixel resolution) 
3 Aerial image 2014 RGB orthophoto (20 cm pixel resolution) 
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4 WorldView-2 20 June 2011 
Multi-spectral (1.84 m GSD for multispectral and 
0.46 m at nadir view for the panchromatic image 

5 Google Earth 9 June 2008 RGB 
6 Google Earth 13 July 2010 RGB 
7 Google Earth 20 June 2011 RGB 
8 Google Earth 29 July 2012 RGB 
9 Google Earth 10 November 2013 RGB 

10 Google Earth 13 July 2014 RGB 
11 Google Earth 16 February 2015 RGB 
12 Google Earth 5 April 2015 RGB 
13 Google Earth 27 April 2016 RGB 

3. Case Study Area 

The area under investigation is in the southwestern part of the modern village of Politiko, in 
Nicosia District (Figure 2). In this area, looted tombs have been identified in the past, as well as in 
more recent years. The tombs are hewn out of the natural bedrock. Undisturbed tombs are not easily 
detected through aerial and/or satellite datasets since they are underground at an approximate depth 
of 3 m below the surface. In contrast, signs of looted tombs are more likely to be observed and 
identified in this manner (Figures 2 and 3). 

 

Figure 2. Map indicating the case study area in the southwestern part of the modern village of 
Politiko, Nicosia District. Red dots indicate looted tombs which have been detected during the in situ 
investigation and mapped with GNSS (February 2016).  

The wider area of Politiko village consists of an intense archaeological territory which is very 
important for the history of Cyprus, linked to the ancient city-kingdom of Tamassos. While several 
archaeological missions excavated in the past or are still excavating in the area of Politiko (Politiko-
Kokkinorotsos 2007: La Trobe University, Melbourne under Dr. David Frankel and Dr. Jenny Webb; 
Politiko–Troullia 2016: University of West Carolina Charlotte, USA under Dr. Steven Falconer and 
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Dr. Patricia Fall, see for example [23,24]), the necropolis under investigation here has never been 
studied. Even though this area has been declared as an ancient monument (Scheduled B’ monument) 
and is protected by law, the looting has not only continued but, as will be seen later, it has been 
augmented throughout the years.  

 

Figure 3. Looted tombs (February 2016). 

4. Results 

4.1. Aerial Orthophotos and Google Earth© Images 

The investigation of the site initially started from the visual inspection of the Google Earth© 
images. Brightness and contrast adjustments were applied in an attempt to support the visual 
interpretation. Historical records from high spatial resolution images over the area of interest were 
examined, as shown in Figure 4. The images were imported and sorted in chronological order in a 
GIS environment. More specifically, the following images were extracted from the Google Earth© 
platform: 9 July 2008, 13 July 2010, 20 June 2011, 29 July 2012, 10 November 2013, 13 July 2014, 16 
February 2015, 5 April 2015, and 27 of April 2016. Even though the looted tombs were not visible in 
the images, as mentioned earlier, looted areas were spotted based on the looting soil disturbance (in 
some instances achieved by using mechanical means). Recently disturbed terrain was clearly visible 
in the Google Earth© images.  

Looted imprints are shown in Figure 4, in the yellow square. It is interesting to note the size, as 
well the systematic attempts made by the looters. The first looting activity is recorded to have taken 
place between 9 July 2008 and 13 July 2010 (Figure 4a,b), affecting three different areas, including 
more than one tomb each. In less than a year (20 June 2011; Figure 4c), a new attempt was made a few 
meters to the west of the previously affected northern area. The old looted areas shown in Figure 4b 
are partially visible now (i.e., Figure 4c) due to the vegetation growth of the area. New looting activity 
was captured between 29 July 2012 and 10 November 2013 (see Figure 4d,e) further to the east. Terrain 
disturbance was visually detected due to the characteristic white tone of the excavated soil, in contrast 
to the dark tone recorded by the vegetated area. The old looted areas are now difficult to spot, 
especially in Figure 4e. Most probably, vegetation was grown around and on top of the excavated 
soil, hiding the white tone of the excavated soil. It seems that the same areas were re-visited after a 
very short time (13 of July 2014), since a much larger disturbance has been documented at the same 
spots (Figure 4f). No new looting attempt was evidenced for some time (Figure 4g,h), until 2016 
where a new looted imprint became visible in an image taken on the 27 April 2016 (Figure 4e).  

Apart from one looted tomb in the western part of the area presented in Figure 4i, the rest of the 
looting marks detected in the aerial and satellite analysis have been successfully identified during the 
in situ investigation carried out in February 2016. In the case of the in situ documentation, the looted 
areas were accurately mapped. The small scale of the individual looting areas (i.e., clusters of one to 
three tombs each time), as well as the small size of the excavation made (approximately 1.5 m square 
or circle like shape trench), the detection of the looting marks is extremely difficult in case of no a 
priori knowledge of the area. The automatic detection of looting marks, is further hampered by the 
topography of the area with scattered vegetation and nude bedrock. This will be further discussed in 
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the following section using segmentation and object-oriented analysis in the multi-spectral 
WorldView-2 images. 

 

Figure 4. RGB Google Earth© images over the area of interest between the years 2008 and 2016 as 
follows (a) 9 July 2008, (b) 13 July 2010, (c) 20 June 2011, (d) 29 July 2012, (e) 10 November 2013, (f) 13 
July 2014, (g) 16 February 2015, (h) 5 April 2015, and (i) 27 of April 2016. Looted tombs are indicated 
by the yellow squares.  

Following a similar approach, photo-interpretation was carried out using the two aerial images 
taken in 2008 and 2014. These images were also improved using the linear percent stretch (5%) 
histogram enhancement technique. The earliest aerial image confirmed the results obtained from the 
satellite products of Google Earth©, indicating no looting attempts in the wider area of Politiko 
(Figure 5, bottom). Instead, at least four looting marks were spotted in the aerial image of 2014 (Figure 
5, top). Looting traces indicated as b–d in Figure 5 were also recorded in the Google Earth© image 
(see 13 July 2014 in Figure 4f) and confirmed by the in situ inspection in February 2016. Apart from 
the verification of the results of the previously-elaborated images, the aerial datasets revealed a new 
looted tomb (see Figure 5 top,a) at the northern part of the site and approximately 100 m from other 
looted areas, not seen before. The interpretation of the aerial images was more efficient mainly due 
to the improved quality of the archive aerial datasets and the better spatial resolution. In all four 
cases, it was possible to identify the soil extracted from the tombs, but not the looted tombs 
themselves. 
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Figure 5. Aerial RGB orthophotos taken in 2008 (bottom) and 2014 (top). Looted imprints (a–d) are 
traceable only in the latest aerial image. 

To proceed beyond photo-interpretation (hence, to try to detect possible changes in the funerary 
landscape of Politiko in a semi-automatic way), the aerial orthophotos of 1993 (single band, 1 m 
resolution), 2008 (RGB bands, 0.5 m resolution), and 2017 (RGB bands, 0.2 m resolution), were merged 
into a seven-band pseudo-color composite. In this multi-temporal image, a PCA analysis was then 
applied. PCA is a well-established approach to detect any significant changes. PCA analysis is a 
statistical tool to decompose multiple variables—as in this case study the seven-band pseudo-color 
composite—into principal components having orthogonality, while these components are being 
ranked with respect to their contribution to explaining the variances of the total seven-band image. 
Therefore, PCA transforms and converts high-dimensional data into linearly-uncorrelated variables 
(i.e., principal components).  

The first two principal components (PC1 and PC2) are shown in Figure 6a,b, while a pseudo-
color composite of the first three principal components (PC1–PC3) is shown in Figure 6c. The latest 
image (i.e., Figure 6c) was generated by displaying PC1, PC2, and PC3 into red, green, and blue bands 
(RGB). Looted tombs are visible in the pseudo-color composite (see the arrows in Figure 6c) because 
of landscape alterations.  
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Figure 6. Principal component analysis results of the seven-band multi-temporal aerial datasets of 
1993, 2008, and 2014: (a) Principal Component 1 (PC1); (b) Principal Component 2 (PC2); and  
(c) the pseudo-color composite of the first three principal components (PC1–PC3). Looted marks are 
indicated with arrows. 

4.2. Satellite Image Processing 

PCA analysis was also applied in the multi-spectral satellite image WorldView-2. The result is 
shown in Figure 7 (right), where a three-band pseudo-color composite is created by the first three 
PCs. Again, in this case, the three-band pseudo-color composite was created by displaying PC1, PC2, 
and PC3 into red, green, and blue bands (RGB). The looted tomb—indicated by the yellow square in 
this figure—was detectable after interpretation. However, it should be stressed that the identification 
of looting imprints in this pseudo-color composite was not a straight-forward procedure. This should 
be linked mainly to the spatial resolution of the multi-spectral bands (i.e., 1.84 m at nadir view). In 
addition, a vegetation suppression algorithm was applied in the image. The algorithm was employed, 
modeling the amount of vegetation per pixel, while an extended Crippen and Blom’s algorithm was 
applied for vegetation transformation, as proposed by [25,26] based on a forced invariance approach.  

The model follows five steps to de-vegetate the bands of the satellite image. At first an 
atmospheric correction is applied (digital number (DN) subtraction), then a vegetation index is 
calculated as the simple ratio index. Following this, statistics between the DN and the vegetation 
index for each band are gathered and then a smooth best-fit curve to the plot is estimated. Finally, for 
each vegetation index level, all pixels are multiplied at that vegetation level using the smooth best-fit 
curves. 

The model calculates the relationship of each input band with vegetation, then it decorrelates 
the vegetative component of the total signal on a pixel-by-pixel basis for each band. The result of the 
application of the vegetation suppression is shown in Figure 7 (middle). It seems that the visibility of 
the looted area was enhanced by this transformation compared to the initial WorldView image 
(Figure 7, left), since the mark is mostly surrounded by bushes and low vegetation. In addition, the 
specific algorithm seems to be very promising in looted areas which are fully cultivated and 
vegetated.  

HSV and HSL color transformations results are shown in Figure 8. The color transformations 
were applied in the pan-sharpen WorldView-2 image after the implementation of the Gram–Schmidt 
and NNDiffuse pan-sharpening algorithms. Both color transformations were performed in ENVI 5.3. 
These two-color transformations are widely common cylindrical-coordinate representations points 
in an RGB color model. In this way, the intimal red, green, and blue values of this color model are 
transformed into new color components. In the HSV model, hue (H) defines pure color in terms of 
“green”, “red”, or “magenta”, while saturation (S) defines a range from pure color (100%) to gray 
(0%) at a constant lightness level. Finally, value (V) refers to the brightness of the color. Similarly, 
HSL color transformation refers to the hue, saturation, and lightness (L) of the color.  



Geosciences 2017, 7, 98  9 of 18 

 

Higher hue values make it easier to distinguish the looted tomb from the surrounding area, even 
though the overall results are not encouraging. In contrast, both pan-sharpen algorithms applied in 
the multi-spectral image improved the overall quality of the satellite image and the spatial resolution. 
The looted area became more visible, even from simple photo-interpretation.  

 
(a) (b) (c) 

Figure 7. WorldView-2 image 5-3-2 pseudo-color composite (a); vegetation suppression result applied 
at the WorldView-2 image (b); and pseudo-color composite of the first three principal components 
(PC1–PC3) of the WorldView-2 image (c). The looted tomb is identified by the yellow square.  

 
Figure 8. HSV (hue, saturation, and value) and HSL (hue, saturation, and lightness) color 
transformations of the WorldView-2 image after applying the Gram–Schmidt and NNDiffuse pan-
sharpening algorithms. Yellow squares show the looting imprint.  
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More sophisticated algorithms have also been tested and evaluated using the WorldView-2 
multispectral image. At first almost 40 different indices (mostly vegetation indices) were applied and 
interpreted. Table 2 provides the list of the indices applied, while the corresponding result is shown 
in Figure 9. 

Table 2. Indices applied for the detection of looted marks in the WorldView-2 image. Promising 
indices are highlighted.  

No. Index Equation Result in 
Figure 9 

Reference

1 
Anthocyanin Reflectance 

Index 1 
ଵܫܴܣ = ହହ଴݌1 −  ଻଴଴ c-I [27]݌1

2 
Anthocyanin Reflectance 

Index 2 
ଶܫܴܣ = ]଴଴଼݌ ଵ௣ఱఱబ − ଵ௣ళబబ] d-I [27] 

3 
Atmospherically Resistant 

Vegetation Index 
ܫܸܴܣ = ܴܫܰ − [ܴ݁݀ − ݁ݑ݈ܤ)ߛ − ܴܫܰ[(ܴ݀݁ + [ܴ݁݀ − ݁ݑ݈ܤ)ߛ − ܴ݁݀)] e-I [28] 

4 Burn Area Index ܫܣܤ = 1(0.1 − ܴ݁݀)ଶ + (0.06 −  ଶ a-II [29](ܴܫܰ

5 Difference Vegetation Index ܫܸܦ = ܴܫܰ − ܴ݁݀ b-II [30] 

6 Enhanced Vegetation Index ܫܸܧ = 2.5 × ܴܫܰ) − ܴܫܰ)(ܴ݀݁ + 6 × ܴ݁݀ − 7.5 × ݁ݑ݈ܤ + 1) c-II [31] 

7 
Global Environmental 

Monitoring Index 

ܫܯܧܩ = 1)ܽݐ݁ − 0.25 × (ܽݐ݁ − ோ௘ௗି଴.ଵଶହଵିோ௘ௗ ܽݐ݁   = ଶܴܫܰ)2 − ܴ݁݀ଶ) + 1.5 × ܴܫܰ + 0.5 × ܴܫܴܰ݀݁ + ܴ݁݀ + 0.5  
d-II [32] 

8 
Green Atmospherically-

Resistant Index 
ܫܴܣܩ = ܴܫܰ − ݊݁݁ݎܩ] − ܴܫܰ[(0ܴ݁݀݁ݑ݈ܤ)ߛ + ݊݁݁ݎܩ] −  e-II [33] [(0ܴ݁݀݁ݑ݈ܤ)ߛ

9 
Green Difference 
Vegetation Index 

ܫܸܦܩ = ܴܫܰ −  a-III [34] ݊݁݁ݎܩ

10 
Green Normalized 

Difference Vegetation Index 
ܫܸܦܰܩ = ܴܫܰ) − ܴܫܰ)(݊݁݁ݎܩ +  b-III [35] (݊݁݁ݎܩ

11 
Green Ratio  

Vegetation Index ܫܸܴܩ =  c-III [34] ݊݁݁ݎܩܴܫܰ

12 
Infrared Percentage 

Vegetation Index ܫܸܲܫ = ܴܫܴܰܫܰ + ܴ݁݀ d-III [36] 

13 Iron Oxide ݊݋ݎܫ ݁݀݅ݔܱ ݋݅ݐܴܽ =  e-III [37] ݁ݑ݈ܤܴ݀݁

14 Leaf Area Index ܫܣܮ = (3.618 × ܫܸܧ − 0.118) a-IV [38] 

15 
Modified Chlorophyll 

Absorption Ratio Index 
ܫܴܣܥܯ = ଻଴଴݌)] − (଺଻଴݌ − ଻଴଴݌)0.2 − [(ହହ଴݌ ×  b-IV [39] (଺଻଴݌଻଴଴݌)

16 
Modified Chlorophyll 

Absorption Ratio  
Index-Improved 

=2ܫܴܣܥܯ 1.5 ଴଴଼݌)2.5] − (଺଻଴݌ − ଴଴଼݌)1.3 − ହହ଴)ට(2݌ × ଴଴଼݌ + 1)ଶ − (6 × ଴଴଼݌ − 5 × ඥ݌଺଻଴) − 0.5 c-IV [40] 

17 Modified Non-Linear Index ܫܮܰܯ = ଶܴܫܰ) − ܴ݁݀) × (1 + ଶܴܫܰ(ܮ + ܴ݁݀ + ܮ  d-IV [41] 

18 Modified Simple Ratio ܴܵܯ = ቀܴܴܰ݀݁ܫቁ − 1(ටܴܴܰ݀݁ܫ) + 1 e-IV [42] 

19 
Modified Triangular 

Vegetation Index 
ܫܸܶܯ = 1.2 ଴଴଼݌)1.2] − (ହହ଴݌ − ଺଻଴݌)2.5 −  ହହ଴) a-V [38]݌

20 
Modified Triangular 

Vegetation Index-Improved 

=2ܫܸܶܯ 1.5 ଴଴଼݌)1.2] − (ହହ଴݌ − ଺଻଴݌)2.5 − ହହ଴)ට(2݌ × ଴଴଼݌ + 1)ଶ − (6 × ଴଴଼݌ − 5 × ඥ݌଺଻଴) − 0.5 b-V [40] 

21 Non-Linear Index ܰܫܮ = ଶܴܫܰ − ଶܴܫܴܰ݀݁ + ܴ݁݀ c-V [43] 

22 
Normalized Difference 

Mud Index 
ܫܯܦܰ = ଻ଽହ݌) − ଻ଽହ݌)(ଽଽ଴݌ +  ଽଽ଴) d-V [44]݌
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23 
Normalized Difference 

Snow Index 
ܫܵܦܰ = ݊݁݁ݎܩ) − ݊݁݁ݎܩ)(1ܴܫܹܵ +  e-V [45] (1ܴܫܹܵ

24 
Normalized Difference 

Vegetation Index 
ܫܸܦܰ = ܴܫܰ) − ܴܫܰ)(ܴ݀݁ + ܴ݁݀) a-VI [46] 

25 
Optimized Soil Adjusted 

Vegetation Index 
ܫܸܣܱܵ = 1.5 × ܴܫܰ) − ܴܫܰ)(ܴ݀݁ + ܴ݁݀ + 0.16) b-VI [47] 

26 Red Edge Position Index 
Maximum derivative of reflectance in the 

vegetation red edge region of the spectrum in 
microns from 690 nm to 740 nm 

c-VI [48] 

27 
Renormalized Difference 

Vegetation Index 
ܫܸܦܴ = ܴܫܰ) − ܴ݁݀)ඥ(ܴܰܫ + ܴ݁݀) d-VI [49] 

28 Simple Ratio ܴܵ =  e-VI [50] ܴܴ݀݁ܫܰ

29 
Soil Adjusted  

Vegetation Index 
ܫܸܣܵ = 1.5 × ܴܫܰ) − ܴܫܰ)(ܴ݀݁ + ܴ݁݀ + 0.5) a-VII [51] 

30 Sum Green Index 
Mean of reflectance across the 500 nm to 600 nm 

portion of the spectrum 
b-VII [52] 

31 
Transformed Chlorophyll 

Absorption  
Reflectance Index 

ܫܴܣܥܶ = ଻଴଴݌)]3 − (଺଻଴݌ − ଻଴଴݌)0.2 − (ହହ଴݌ ൬݌଻଴଴݌଺଻଴൰] c-VII [53] 

32 
Transformed Difference 

Vegetation Index ܶܫܸܦ = ඨ0.5 + ܴܫܰ) − ܴܫܰ)(ܴ݀݁ + ܴ݁݀) d-VII [54] 

33 
Visible Atmospherically 

Resistant Index ܸܫܴܣ = ݊݁݁ݎܩ − ݊݁݁ݎܩܴ݀݁ + ܴ݁݀ −  e-VII [55] ݁ݑ݈ܤ

34 WorldView Built-Up Index ܹܸ − ܫܤ = ݈ܽݐݏܽ݋ܥ) − ܴ݁݀ ݈ܽݐݏܽ݋ܥ)(݁݃݀ܧ + ܴ݁݀  a-VIII [56] (݁݃݀ܧ

35 
WorldView Improved 

Vegetative Index 
ܹܸ − ܫܸ = 2ܴܫܰ) − 2ܴܫܰ)(ܴ݀݁ + ܴ݁݀) b-VIII [56] 

36 
WorldView New  

Iron Index 
ܹܸ − ܫܫ = ݊݁݁ݎܩ) × ݁ݑ݈ܤ)(ݓ݋݈݈ܻ݁ × 1000)  c-VIII [56] 

37 
WorldView Non-

Homogeneous  
Feature Difference 

ܹܸ − ܦܨܪܰ = (ܴ݁݀ ݁݃݀ܧ − ܴ݀݁)(݈ܽݐݏܽ݋ܥ ݁݃݀ܧ +  d-VIII [56] (݈ܽݐݏܽ݋ܥ

38 WorldView Soil Index ܹܸ − ܫܵ = ݊݁݁ݎܩ) − ݊݁݁ݎܩ)(ݓ݋݈݈ܻ݁ +  e-VIII [56] (ݓ݋݈݈ܻ݁

The four most promising indices are the Sum Green Index (Figure 9, b-VII), the Transformed 
Chlorophyll Absorption Reflectance Index (Figure 9, c-VII), the WorldView Built-Up Index (Figure 
9, a-VIII), and the WorldView New Iron Index (Figure 9, c-VIII). From these indices, the WorldView 
Built-Up Index seems to be the most promising, as far as the looted marks interpretation is concerned. 
The specific index is based on the spectral properties of the objects as recorded in the coastal and red-
edge part of the spectrum (i.e., bands 1 and 6, respectively). The index could improve soil areas, as in 
the case of the looted tomb, and the earthen road in the western part of the area under investigation. 
The use of “non-ordinary” indices for archaeological purposes, such as the WorldView Built-Up 
Index, which was initially used to distinguish built-up areas, has also been reported in previous 
studies [57].  

Other indices, including the traditional widely-applied indices, such as the Normalized 
Difference Vegetation Index (NDVI), performed less encouraging results as shown in Figure 9, a-VI. 
Some of them were demonstrated to be inappropriate as far as detecting looting imprints is concerned 
(i.e., the Enhanced Vegetation Index in Figure 9, c-II and the Leaf Area Index in Figure 9, a-IV). It 
should be mentioned that similar histogram enhancements have been equally applied in all indices. 
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Figure 9. RGB pseudo-color composite 5-3-2 and NIR-R-G pseudo-color composite 6-5-3 are 
demonstrated in a-I and b-I. The rest sub-figures (c-I; d-I; …. d-VIII and e-VIII) correspond to the 
greyscale indices (see Table 2; total 38 indices) results applied in the WorldView-2 image. The looted 
area is shown in the yellow square. Images with a red outline show promising vegetation indices (i.e., 
b-VII; c-VII; a-VIII; and c-VIII).  
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Based upon the results from the various indices shown in Figure 9, a recent re-projection of the 
WorldView-2 spectral space has been implemented. This reprojection was initially developed to 
enhance buried archaeological remains through crop marks [21]. The WorldView-2 bands were re-
projected into a new 3D orthogonal spectral space with three new axes—namely the soil component, 
the vegetation component, and the crop mark component, as shown in the following equations: ݌݋ݎܥ	݇ݎܽ݉ௐ௢௥௟ௗ௏௜௘௪ିଶ = 	−0.38 ௕௟௨௘ߩ − 0.71 ௚௥௘௘௡ߩ + 0.20 ௥௘ௗߩ − ௐ௢௥௟ௗ௏௜௘௪ିଶ݇ݎܽ݉	݌݋ݎܥ  ,	ேூோߩ	0.56 = 	−0.38 ௕௟௨௘ߩ − 0.71 ௚௥௘௘௡ߩ + 0.20 ௥௘ௗߩ − ௐ௢௥௟ௗ௏௜௘௪ିଶ݈݅݋ܵ  ,	ேூோߩ	0.56 = 	0.09 ௕௟௨௘ߩ + 0.27 ௚௥௘௘௡ߩ − 0.71 ௥௘ௗߩ − 0.65   ,	ேூோߩ

The results of this application are shown in Figure 10 (a-c), as well as the RGB pseudo-color 
composite (Figure 10d). The soil component (Figure 10a) enabled the enhancement of one of the 
looted tombs, while the vegetation component (Figure 10b) shows the three looting marks of the area. 
The crop mark component (Figure 10c) was less efficient, while the overall RGB pseudo-color 
composite (Figure 10d) improved the interpretation of the looted areas. Looted tombs in the 
vegetation component are detectable due to the small values (i.e., black tones of gray in Figure 10b, 
vegetation component) compared to the enhanced vegetated areas (i.e., white tones of gray in Figure 
10b, vegetation component). 

 
Figure 10. WorldView-2 spectral reprojection in a new 3D space: (a) soil component, (b) vegetation 
component, and (c) the crop mark component are shown in greyscale. The RGB pseudo-composite 
(d) of these three components is also shown in the lower right (soil component, vegetation component, 
and crop mark component reflect the red, green, and blue bands, respectively). 

Furthermore, object-oriented classification was applied in the WorldView-2 images. An 
“optimum” segmentation of the image was achieved after several iterations and changes of the scale 
level and merge algorithms. Finally, the scale level was set to a value of 65.0, while the merge level 
was applied after the full lambda algorithm was set to 90.0 using the following equation (see more 
details in the ENVI Handbook):  
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௜,௝ݐ = 	 | ௜ܱ|. ห ௝ܱห| ௜ܱ| + ห ௝ܱห	 . ฮݑ௜ − ൫߲)ݐฮଶ݈݁݊݃ℎ	௝ݑ ௜ܱ, ௝ܱ൯)  

where: | ௜ܱ| is region i of the image, ห ௝ܱห  is the area of region i, ݑ௜ is the average value in region i, ݑ௝ is the average value in region j, ฮݑ௜ − ൫߲)ݐฮଶ is the Euclidean distance between the spectral values of regions i and j,  ݈݁݊݃ℎ	௝ݑ ௜ܱ, ௝ܱ൯) is the length of the common boundary of | ௜ܱ| and ห ௝ܱห. 
Full lambda algorithm was applied to merge small segments within larger ones based on a 

combination of spectral and spatial information, while the scale level is based on the normalized 
cumulative distribution function (CDF) of the pixel values in the image (see more in [58,59]). The 
units refer to greyscale tones. In addition, a 3 × 3 texture kernel was employed. The texture kernel 
refers to the spatial variation of image greyscale levels (tone) for a moving window of 3 × 3 pixels. 
After the segmentation of the image, rules were set for its classification. These rules included spatial 
attributes (areas less than 25.0), spectral properties (thresholds in coastal and red edge bands—like 
the WorldView Built-Up Index), and roundness parameters. The results of the object segmentation 
and classification are shown in Figure 11. Distinguished segments that are characterized as objects—
like those presently recognized as looting marks—are shown in red, while the confirmed looted tomb 
is shown as a yellow square. Through this analysis, new risk-sensitive areas have been spotted in the 
wider area of Politiko village, while the already-known looted tomb (Figure 11, within the yellow 
square) was successfully detected. The false positives that were observed in the rest of the area should 
be linked to the similar spectral characteristics of the soil, as well as to other cultivation practices and 
land use properties. It is therefore evident that the automatic object-oriented approach for the 
extraction of looted areas is only valid to some degree in small, specific archaeological zones, and not 
beyond these areas. Therefore, a priori knowledge of the area under investigation is essential. 

 
Figure 11. Object-oriented segmentation and classification of the WorldView-2 satellite image. The 
white rectangle shows the area of the necropolis under examination, while the yellow square shows 
the looting mark.  
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5. Conclusions 

The paper aims to demonstrate the potential use of various remote sensing datasets for the 
detection of looting signs. Though the use of such datasets has been presented in the past by other 
researchers, in this example the looting signs were of a small scale (i.e., 1–3 looting attempts per year) 
and no schedule image was provided. Therefore, the question here was to investigate if existing 
datasets can be used to support local stakeholders for monitoring these threats.  

Various image processing techniques have been applied to investigate the detection of small-
scale looting attempts (i.e., 1–3 per year) in the wider area of Politiko village. Both archive and satellite 
images have been used to detect these systematic and organized events. The image analysis included 
archival data from the Department of Land and Surveys of Cyprus, Google Earth© images, and a 
very high-resolution WorldView-2 image. It should be stressed that no scheduled satellite overpass 
was programmed, and hence the analysis was based upon existing and available data. 

The overall results demonstrated that Earth observation datasets and aerial imagery can be 
sufficiently used to detect looting marks in wider areas, and track the illegal excavations with high 
precision. The RGB-compressed images of Google Earth© are considered as a very good starting 
point for the interpretation of the area. These images have undergone some image histogram 
enhancement, namely changes in brightness and contrast, and other linear histogram enhancements. 
Image processing such as the vegetation indices indicated in Table 2, and spectral transformations 
such as PCA, orthogonal equations, HSV, etc., in multi-spectral images can further improve the final 
results. Automatic extraction based on object-oriented classification was also attempted in this case 
study, providing some interesting results. The overall interpretation of the results from the image 
analyses is that it is highly important to be verified with in situ inspections and ground truthing. 
Quantitative assessment of the overall results was not carried out due to the temporal changes of the 
phenomenon, as well as to the different datasets (with different spectral and spatial characteristics) 
used in this case study. 

Areas with archaeological interest which are endangered by looting, such as the case study of 
Ayios Mnason-Politiko village, can be systematically controlled by space and aerial sensors. The 
establishment of such a reliable monitoring tool for local stakeholders could further act as an 
inhibiting factor for preventing looters.  
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