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Abstract: Volcanic ash is a volcanic product with a wide distribution that can be used as a geological
marker. In volcanic regions such as Indonesia, the identification of the sources of volcanic ash and
tuff layers from different volcanoes or eruptive events is a challenging task. In this study, samples
of volcanic ash from the 2010 eruption of Bromo—a relatively young and active tuff cone volcano
within the Sandsea caldera in the Tengger volcanic complex in East Java, Indonesia—along with two
older tuff layers from the same caldera (Widodaren tuff: 1.8 kyr and Segarawedi tuff: 33 kyr) were
subjected to magnetic measurements, geochemical analyses, and petrographic analyses. The aim is to
attempt to use magnetic characters as a fingerprint for volcanic ash and tuff layers. The results show
that the samples had variations in grain size and magnetic domain as indicated by the hysteresis
parameters. These magnetic characters correlated with the results of geochemical and petrographic
analyses, suggesting that magnetic properties may potentially be used as fingerprints to identify
volcanic ashes and tuff layers.

Keywords: 2010 Bromo ash; volcanic ash; magnetic characteristics; geochemistry; Tengger

1. Introduction

According to the PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi—Indonesian Center
for Volcanology and Mitigation of Geological Hazards), the Bromo volcano (latitude 7.942◦ S; longitude
112.95◦ E) is one of the most active volcanoes amongst Indonesia’s 129 active volcanoes [1]. Since 1995,
Bromo has erupted every five years with a duration of approximately one year [1]. Bromo is located in
the Sandsea caldera of the Tengger Volcanic Complex in East Java, which houses other older and extinct
volcanoes, namely Widodaren, Segarawedi Lor, Segarawedi, and Kursi-Watangan (Figure 1). Next to
Bromo is the young and yet inactive Batok volcano. Tuff layers from Widodaren and Segarawedi have
been dated to 1.8 kyr and 33 kyr, respectively [2]. Based on the stages of evolution for the Tengger
Volcanic Complex, the Sandsea caldera is actually the youngest (late Pleistocene to early Holocene)
caldera [3]; the two older ones are the Agrowulan and Ngadisari calderas [2]. The Bromo activity is
considered to have been initiated sometime prior to ~1800 years BP.

Geosciences 2017, 7, 63; doi:10.3390/geosciences7030063 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
https://orcid.org/0000-0001-6374-4128
https://orcid.org/0000-0002-5179-1960
http://dx.doi.org/10.3390/geosciences7030063
http://www.mdpi.com/journal/geosciences


Geosciences 2017, 7, 63 2 of 12
Geosciences 2017, 7, 63  2 of 13 

 

 

Figure 1. Distribution of volcanoes in Indonesia and the location of the Sandsea caldera. 

Due to its activity and impact on the local populations, Bromo has been the subject of many 
different studies. For instance, Gottschämer and Surono [4] determined the locations of the tremor 
sources and shock signals based on seismic signals recorded during a phase of high eruptive activity 
in 1995. Abidin et al. [5] used GPS surveys to detect the deformation of Bromo. Later, Kumalasari 
and Srigutomo [6] used an inversion scheme to estimate the magma chamber location and volume 
change contributing to the surface deformation. Apart from physical studies, there have also been 
chemical studies on Bromo. Bani et al. [7] studied sulfur dioxide emissions from Bromo and 
Papandayan, the other active volcano in West Java. Later, using in situ Multi-Gas analysis and 
remote spectroscopic measurements, Aiuppa et al. [8] measured the composition and fluxes of 
volcanic gases released by Bromo. The social aspect of Bromo and its inhabitants has also been 
studied, where Bachri et al. [9] investigated the reasons why people chose to live near Bromo despite 
the exposure to volcanic hazards and found that the interaction between humans and the volcanic 
environment at Bromo was multifaceted and complex. 

Despite its abundant volume, volcanic ash (such as that from the 2010 Bromo eruption) has 
never been studied, especially with regard to rock magnetic aspects. Only a few studies exist that 
combine rock magnetic methods with the more common methods of petrographic and geochemical 
analyses studies are available in the literature. Cicchino et al. [10] measured the geochemistry, as 
well as the magnetic remanence and AMS (anisotropy of magnetic susceptibility), of two islands in 
the Aeolian Islands to improve the stratigraphic correlation between the deposits cropping out on 
these two islands. Oda et al. [11] carried out rock magnetic and geochemical analyses on volcanic ash 
particles extracted from tephra-bearing ice samples collected from the Nansen Ice Field south of the 
Sør Rondane Mountains (Antarctica) and found that the magnetic mineral in the volcanic particles 
was titanomagnetite with an ulvöspinel content of 0.2–0.35 (in 0 to 1 scale). Oda et al. [11] also 
compared the geochemistry of the volcanic ash with that of three tephra layers from three different 
locations in Antarctica and found that these samples had a high geochemical similarity. The source 
of the tephra layers was suspected to be South Sandwich Island, located 2800 km from the Sør 
Rondane Mountains. Additionally, working with volcanic ash from several volcanoes, Pawse et al. 
[12] found that hysteresis measurements and electron spin resonance (ESR) spectroscopy may be 
used to identify and correlate distal volcanic ash. 

The identification of volcanic ash could be very important as geological markers in volcanic 
regions such as Indonesia. Volcanic ash has usually been used for stratigraphic correlation and age 
measurements [13–15]. In Indonesia, volcanic ash and tuff layers from different volcanoes or 
different eruptive events of the same volcano may be deposited at a particular location as 
overlapping layers [16,17]. This study aimed to obtain an overview of the magnetic characteristics of 
the Bromo volcanic ash in a maiden attempt to use magnetic characters as fingerprints for volcanic 
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Due to its activity and impact on the local populations, Bromo has been the subject of many
different studies. For instance, Gottschämer and Surono [4] determined the locations of the tremor
sources and shock signals based on seismic signals recorded during a phase of high eruptive activity
in 1995. Abidin et al. [5] used GPS surveys to detect the deformation of Bromo. Later, Kumalasari and
Srigutomo [6] used an inversion scheme to estimate the magma chamber location and volume change
contributing to the surface deformation. Apart from physical studies, there have also been chemical
studies on Bromo. Bani et al. [7] studied sulfur dioxide emissions from Bromo and Papandayan, the
other active volcano in West Java. Later, using in situ Multi-Gas analysis and remote spectroscopic
measurements, Aiuppa et al. [8] measured the composition and fluxes of volcanic gases released by
Bromo. The social aspect of Bromo and its inhabitants has also been studied, where Bachri et al. [9]
investigated the reasons why people chose to live near Bromo despite the exposure to volcanic
hazards and found that the interaction between humans and the volcanic environment at Bromo was
multifaceted and complex.

Despite its abundant volume, volcanic ash (such as that from the 2010 Bromo eruption) has
never been studied, especially with regard to rock magnetic aspects. Only a few studies exist that
combine rock magnetic methods with the more common methods of petrographic and geochemical
analyses studies are available in the literature. Cicchino et al. [10] measured the geochemistry, as
well as the magnetic remanence and AMS (anisotropy of magnetic susceptibility), of two islands in
the Aeolian Islands to improve the stratigraphic correlation between the deposits cropping out on
these two islands. Oda et al. [11] carried out rock magnetic and geochemical analyses on volcanic ash
particles extracted from tephra-bearing ice samples collected from the Nansen Ice Field south of the
Sør Rondane Mountains (Antarctica) and found that the magnetic mineral in the volcanic particles was
titanomagnetite with an ulvöspinel content of 0.2–0.35 (in 0 to 1 scale). Oda et al. [11] also compared
the geochemistry of the volcanic ash with that of three tephra layers from three different locations in
Antarctica and found that these samples had a high geochemical similarity. The source of the tephra
layers was suspected to be South Sandwich Island, located 2800 km from the Sør Rondane Mountains.
Additionally, working with volcanic ash from several volcanoes, Pawse et al. [12] found that hysteresis
measurements and electron spin resonance (ESR) spectroscopy may be used to identify and correlate
distal volcanic ash.

The identification of volcanic ash could be very important as geological markers in volcanic
regions such as Indonesia. Volcanic ash has usually been used for stratigraphic correlation and
age measurements [13–15]. In Indonesia, volcanic ash and tuff layers from different volcanoes or
different eruptive events of the same volcano may be deposited at a particular location as overlapping
layers [16,17]. This study aimed to obtain an overview of the magnetic characteristics of the Bromo
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volcanic ash in a maiden attempt to use magnetic characters as fingerprints for volcanic ash. Magnetic
characterization focused on the volcanic ash from the 2010 eruption due to its extended eruption period
and its enormous volume. As a comparison, tuff layers from earlier eruptions from the same caldera
were also measured. To complement the magnetic methods, petrographic and X-ray Fluorescence
(XRF) was also conducted on the same set of samples.

2. Materials and Methods

Samples of 2010 Bromo volcanic ash were obtained from the Indonesian Geological Survey Bromo
Volcano Observational Post whose personnel collected ash during the 2010–2011 Bromo eruption.
The tuff layers of Segarawedi and Widodaren were collected from an outcrop (Figure 2) in the vicinity
of the aforementioned observational post. The observation post is located in the rim of the Sandsea
caldera (Figure 1) at an elevation of 2275 m a.s.l. It administratively belongs to the Ngadisari Village,
Sukapura District, Probolinggo Regency, East Java Province (latitude 7.942◦ S, longitude 112.950◦ E).
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microscope (Nikon, Tokyo, Japan) in the Petrographic Laboratory, Institut Teknologi Bandung. 
Later, each event was represented by a single sample for geochemical analysis using XRF (ARLX 
OPTX-2050, Thermo Fisher Scientific, Reinach, Switzerland) with a maximum current of 10 mA, 
maximum voltage of 50 kV, and maximum power of 200 W at the Nanotech Laboratory in Serpong. 
Mass-specific magnetic susceptibility was measured using a Bartington MS2B magnetic 
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Hz and 4700 Hz) at the Laboratory of Rock Magnetism at the Institut Teknologi Bandung. 
Mass-specific magnetic susceptibility at low frequency was termed χLF, while that at high frequency 
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The dry powder samples were brought to the Institut Teknologi Bandung (Bandung) where
they were prepared for petrographic, geochemical, and magnetic susceptibility measurements.
For simplicity, in this paper, the 2010 Bromo ash, Widodaren dan Segarawedi tuffs will be referred
to as separate events (i.e., 2010 Bromo event, Widodaren event and Segarawedi event). Each event
was represented by a single sample for petrographic analysis and analyzed with a Ci-POL polarizing
microscope (Nikon, Tokyo, Japan) in the Petrographic Laboratory, Institut Teknologi Bandung. Later,
each event was represented by a single sample for geochemical analysis using XRF (ARLX OPTX-2050,
Thermo Fisher Scientific, Reinach, Switzerland) with a maximum current of 10 mA, maximum voltage
of 50 kV, and maximum power of 200 W at the Nanotech Laboratory in Serpong. Mass-specific
magnetic susceptibility was measured using a Bartington MS2B magnetic susceptibility system
(Bartington Instrument Ltd., Witney, UK) with a dual-frequency sensor (470 Hz and 4700 Hz) at the
Laboratory of Rock Magnetism at the Institut Teknologi Bandung. Mass-specific magnetic susceptibility
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at low frequency was termed χLF, while that at high frequency was termed χHF. Parameter
frequency-dependent magnetic susceptibility χFD (%) was calculated as 100% × (χLF − χHF)/χLF.
The total number of samples for magnetic susceptibility measurements were 15, where each
event was represented by five samples. The samples were then subjected to ARM (anhysteretic
remanent magnetization) analyses, where ARM was induced inside a Molspin AF (alternating field)
demagnetizer (Molspin Ltd., Witney, UK) in a steady field of 0.05 mT imposed on a peak alternating
magnetic field of 70 mT. Next, the ARM intensity was measured using a Minispin magnetometer
(Molspin Ltd.). The ARM was then demagnetized using the AF demagnetizer in steps of 5 mT until
it reached 70 mT, where the remaining ARM was less than 10% of its original value. After each
demagnetizing step, the ARM intensity was remeasured using a Minispin magnetometer.

Three samples for each event were then analyzed for trace elements using atomic absorption
spectroscopy (AAS; Agilent FS 280, Agilent Technologies, Santa Clara, CA, USA) for Cr, and inductively
coupled plasma optical emission spectrometry (ICP OES Agilent Series 700) for Y, La, Zr, Ce, and V.
These measurements were carried out in a laboratory at the Coal and Geothermal Mineral Resources
Center at the Ministry of Energy and Mineral Resources in Bandung. Later, the samples were
transported to the Rock Magnetic Laboratory in the Center of Advanced Marine Core Research,
Kochi University, Japan where they were prepared for further magnetic analysis that included
isothermal remanent magnetization (IRM), thermomagnetic, and magnetic hysteresis parameters.
The measurement of magnetic hysteresis parameters and IRM were conducted using a vibrating
sample magnetometer (VSM) (MicroMag 3900, Princeton Measurement Co., Princeton, NJ, USA) on
dry powder samples. Five samples from each event (2010 Bromo ash, Widodaren tuff and Segarawedi
tuff) were measured for the hysteresis parameters, while three samples from each event were measured
for IRM. Magnetic hysteresis parameters were produced a with maximum applied field of 1 T and
applied field increments of 2 mT. IRM saturation curves were produced by applying successive
magnetic fields of 0 mT to a maximum field of 1 T with field increments of 2 mT. Each event was
represented by a single sample for thermomagnetic analyses using a Magnetic Balance (NMB-89,
Natsuhara Giken, Osaka, Japan) equipped with a furnace and special power supply. Magnetization of
the sample was measured during heating in a vacuum from 50 to 700 ◦C, then subsequently during
cooling back to room temperature.

3. Results and Discussion

Table 1 shows the results of the XRF analyses for the 2010 Bromo ash, Widodaren tuff, and
Segarawedi tuff. Data from the Merapi ash [18] and Toba tuff [19] were also listed for comparison.
The Merapi ash came from the 2010 eruption [18], the same year as the Bromo ash. Although they
belong to different volcanic systems, Bromo and Merapi are only approximately 280 km apart. Toba
tuff was used only as a reference. Data from Table 1 were then plotted in Figure 3a,b. Figure 3a shows
the plots of Na2O + K2O versus SiO2 (as proposed by Le Bas et al. [20]) for all samples, and shows
that the 2010 Bromo ash, Widodaren tuff, Segarawedi tuff, and Merapi ash plotted close to each other
and could be considered as basaltic trachy-andesite, while the Toba tuff was a rhyolite. As expected,
when plotted in Miyashiro’s plot [21] of FeO/MgO versus SiO2 (see Figure 3b), the 2010 Bromo ash,
Widodaren tuff, Segarawedi tuff, Merapi ash, and Toba tuff belonged to the tholeiitic magma series.

Table 2 lists the results of the trace element analyses. After plotting one trace element against
another, it was found that the plots of Y versus Cr (as proposed by Rollinson [22]) were the best plots
to distinguish between the volcanic ash in this study (Figure 4). As seen in Figure 4, samples from
each event clustered together so that each event could be distinguished easily. The range of Y and Cr
values for all samples fell within the volcanic-arc basalts [22]; and both Y and Cr were often used as
fractionation indexes in volcanic-arc basalts [22].

Table 3 lists the results of the mass-specific magnetic measurements for the samples. Data from the
Tiva Canyon tuff were used only for comparison [17]. Our results showed that the average χLF value
of the 2010 Bromo ash was 464.98 × 10−8 m3/kg, which was higher than that of the Widodaren tuff
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(354.64 × 10−8 m3/kg) and lower than that of the Segarawedi tuff (530.26 × 10−8 m3/kg). The results
were comparable with the Tiva Canyon tuff at 12 cm depth, which had a χLF of 500 × 10−8 m3/kg [16].
Table 3 also shows that the average χFD (%) values for all samples varied only slightly around 3.5%,
suggesting a small or negligible contribution of superparamagnetic (SP) grains.

Table 1. Chemical composition of the samples (in weight %) based on X-ray fluorescence
(XRF) measurements.

Oxides Bromo Widodaren Segarawedi Merapi Ash 1 Toba Tuff 2

SiO2 50.70 54.09 54.22 54.69 77.24
TiO2 1.17 1.05 1.04 0.74 0.06

Al2O3 17.09 18.23 18.82 19.29 12.54
FeO 10.93 9.57 9.29 7.76 0.85
MnO 0.20 0.19 0.18 0.19 0.07
MgO 2.22 2.04 2.00 2.25 0.05
CaO 7.58 6.08 5.90 8.12 0.78

Na2O 4.15 4.40 4.24 3.73 3.10
K2O 3.20 3.27 2.97 2.16 5.20
P2O5 0.54 0.60 0.59 0.30 -
SO3 1.44 - 0.21 0.03 -
Total 99.22 99.52 99.46 99.28 100.00

1 Merapi ash [12]; 2 Toba tuff [13].

Table 2. Results of trace elements analysis.

Sample Y (ppm) Cr (ppm) La (ppm) Zr (ppm) Ce (ppm) V (ppm)

Bromo 1 18.12 18 13.84 130.14 40.66 40
Bromo 2 18.71 20 14.94 133.60 46.14 40
Bromo 3 18.33 19 13.78 129.97 42.42 40

Widodaren 1 18.53 13 15.73 134.14 42.86 40
Widodaren 2 19.21 13 15.09 141.28 45.92 40
Widodaren 3 18.86 12 14.26 151.76 44.57 40
Segarawedi 1 16.34 20 14.50 127.44 41.51 60
Segarawedi 2 17.29 19 14.31 119.37 41.52 40
Segarawedi 3 16.47 20 13.96 123.40 42.78 60
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Figure 3. (a) SiO2 versus Na2O + K2O diagram [14]; and (b) FeO/MgO versus SiO2 diagram [15] of
the 2010 Bromo ash (hollow square), Widodaren tuff (hollow triangle), Segarawedi tuff (hollow circle),
Merapi ash (filled triangle) and Toba tuff (filled square). TH: tholeiitic, CA: calc-alkaline.

Table 3. Results of magnetic susceptibility measurements.

Sample χLF
(× 10−8 m3/kg)

Average χLF
(× 10−8 m3/kg)

χHF
(× 10−8 m3/kg)

Average χHF
(× 10−8 m3/kg) χFD (%) Average χFD (%)

Bromo 1 462.5

464.98 ± 2.54

444.6

448.54 ± 3.98

3.87

3.54 ± 0.57
Bromo 2 465.5 446.1 4.17
Bromo 3 462.2 447.7 3.14
Bromo 4 467.8 454.9 2.76
Bromo 5 466.9 449.4 3.75

Widodaren 1 351.9

354.64 ± 10.79

338.5

341.04 ± 9.27

3.81

3.83 ± 0.34
Widodaren 2 369.5 353.5 4.33
Widodaren 3 350.2 336.8 3.83
Widodaren 4 341.1 329.6 3.37
Widodaren 5 360.5 346.8 3.80

Segarawedi 1 530.1

530.26 ± 7.42

509.7

511.36 ± 6.45

3.85

3.56 ± 0.49
Segarawedi 2 525.5 505.1 3.88
Segarawedi 3 521.5 507.3 2.72
Segarawedi 4 540.8 521.6 3.55
Segarawedi 5 533.4 513.1 3.81

χLF: magnetic susceptibility at low frequency; χHF: magnetic susceptibility at high frequency; χFD: frequency-
dependent magnetic susceptibility.

Figure 5a shows the IRM saturation curves for the 2010 Bromo ash samples along with those of the
Widodaren and Segarawedi tuffs. All samples were saturated below the magnetizing field of 300 mT,
implying that the predominant magnetic mineral in these samples was magnetite (Fe3O4). In addition,
the second derivative curves of IRM over field [23] showed that each sample had a different coercivity
spectrum (Figure 5b). This inferred that each sample had its own unique magnetic phase, which was
also supported by the results of thermomagnetic analyses.

Figure 6a–c show the thermomagnetic curves for the 2010 Bromo ash samples, along with those
of the Widodaren and Segarawedi tuffs. For all three samples, the heating curves showed double
peaks that corresponded to the Hopkinson effect, i.e., a peak in magnetic susceptibility associated
with Curie temperature [23]. The presence of magnetite with its distinctive Curie temperature (TC) of
~580 ◦C was obvious in the 2010 Bromo ash (Figure 6a) and Segarawedi tuff (Figure 6c), but was not
so obvious in the Widodaren tuff (Figure 6b). Figure 6a–c also show that there was another magnetic
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phase with a Curie temperature (Tc) of ~250–300 ◦C, indicating a titanomagnetite phase with a Ti
substitution of 0.4–0.5 [24]. Such variations may explain the dissimilarity in IRM saturation curves
for all samples (Figure 5a); moreover, the presence of two different magnetic phases was most likely
due to the mechanisms that govern crystallization of iron-rich melt. Such mechanisms might include
temperature variation, changes in chemistry prior to eruption, and increases in the redox conditions of
the silicate melt [25]. The presence of these two different magnetic phases also reinforced the notion
that new magma injection occurred during the Bromo eruption of 2010.
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Figure 7 shows the ARM demagnetization curves for the 2010 Bromo ash samples, along with
those from the Widodaren and Segarawedi tuffs. By assuming that magnetite was the predominant
magnetic mineral in these samples, the magnetic grain sizes of these samples could be estimated from
the value of MDF (median destructive field) [26,27]. Figure 7 shows that the MDF of the 2010 Bromo
ash and Segarawedi tuff were 15 mT and 25 mT corresponded to a grain size of 3–6 µm for the 2010
Bromo ash and 0.6–1 µm for Segarawedi tuff, respectively (as described in [26]), which represented the
PSD (pseudo-single domain). Meanwhile, the Widodaren tuff sample showed a much lower MDF of
5 mT that corresponded to a grain size of >135 µm, which represented the MD (multi domain).

The petrographic analyses showed that the 2010 Bromo ash contained glass fragments (60%),
crystal fragments (20%), and lithic or tuff fragments (20%). Meanwhile, the Widodaren tuff contained
glass fragments (60%), crystal fragments (35%), and pores (5%). In contrast, the Segarawedi tuff
contained mostly lithic fragments (65%), as well as lower quantities of glass (25%) and crystal (10%)
fragments. Crystal fragments in all events consisted of plagioclase, pyroxene, and opaque minerals.
The above finding suggests that the 2010 Bromo ash and Widodaren tuff experienced fast cooling
processes during their deposition, while the Segarawedi tuff experienced a slow cooling process during
its deposition. However, a fast cooling process does not necessarily produce multi domain magnetite.
Ferk et al. [28] reported that, unlike single domain (SD) magnetite, PSD and MD magnetite was not
affected by an increase or decrease of the cooling rate.

Table 4 shows the ratios of the magnetic hysteresis parameters. Data from Table 4 were plotted
in Figure 8 (as suggested by Day et al. [29]) to identify the grouping of the samples based on their
magnetic domains. Figure 8 shows that the samples from each event (2010 Bromo, Widodaren, and
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Segarawedi) clustered together. The 2010 Bromo ash and Segarawedi samples were clustered in the
PSD region, while the Widodaren samples were clustered in the MD region, thus supporting the results
of the ARM analyses. However, despite all samples (2010 Bromo, Widodaren, and Segarawedi) being
basaltic trachy-andesite, each event was still differentiable based on its hysteresis parameters. Care,
however, should be taken when interpreting the Day’s plot [29] on a mixture of SD and MD magnetite,
or a mixture of magnetite and titanomagnetite [30,31]. These results show that magnetic hysteresis is
the most promising and effective magnetic measurement for distinguishing volcanic ash.
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Figure 6. Thermomagnetic curves for (a) 2010 Bromo ash; (b) Widodaren tuff; and (c) Segarawedi tuff
samples. Tc1: first Curie temperature; Tc2: second Curie temperature.

Table 4. Ratios of hysteresis parameters for samples.

Name of Volcano/Event Sample Code Mr/Ms Bcr/Bc

Bromo 1 BM1 0.19 3.35
Bromo 2 BM2 0.19 3.26
Bromo 3 BM3 0.19 3.35
Bromo 4 BM4 0.21 2.89
Bromo 5 BM5 0.20 3.05

Widodaren 1 WD1 0.10 5.23
Widodaren 2 WD2 0.10 4.72
Widodaren 3 WD3 0.11 4.51
Widodaren 4 WD4 0.10 4.98
Widodaren 5 WD5 0.10 4.77

Segarawedi 1 SW1 0.26 2.46
Segarawedi 2 SW2 0.26 2.54
Segarawedi 3 SW3 0.25 2.55
Segarawedi 4 SW4 0.25 2.58
Segarawedi 5 SW5 0.26 2.51

Mr: remanence magnetization; Ms: saturation magnetization; Bcr: coercivity of remanence magnetic field; Bc:
coercivity magnetic field.

The distinct magnetic characteristics of the 2010 Bromo ash, and Widodaren and Segarawedi
tuffs shown in this study may serve as an initial step in using magnetic characteristics as fingerprints
for volcanic ash and tuff layers. Earlier attempts by Xia et al. [14] to correlate the tephra layers
using magnetic signatures in Iceland showed that the individual tephra did not have unique magnetic
signatures, and that a correlation of the tephra layers could only be achieved through complex statistical
techniques. This study showed that combined with trace element analyses, magnetic measurements
(especially hysteresis measurement) could be used to potentially distinguish between the eruption
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events of volcanic ashes and tuffs. This study even showed that the three samples (2010 Bromo ash,
Widodaren tuff, and Segarawedi tuff) originated from the same caldera, and that a similar composition
of major elements could have distinct magnetic signatures. Despite the positive results of this study,
the use of magnetic parameters as correlation tools in volcanic ash layers should be tested further.
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4. Conclusions

The predominant magnetic mineral in the 2010 Bromo ash was found to be Ti-rich titanomagnetite
with PSD magnetite. Compared with tuff layers from earlier events (Widodaren and Segarawedi),
there were some dissimilarities in magnetic characteristics including grain size, magnetic domain,
and hysteresis parameters. Dissimilarities in these events were also found in Y versus Cr plots and
in petrographic analyses. Thus, the applications of these three methods (magnetic, geochemistry,
and petrographic) might be used to identify volcanic ash and tuff layers. However, the use of
magnetic methods alone should be carried out cautiously, especially if the volcanic ash or tuff layer
has undergone physical and chemical changes such as diagenesis. Furthermore, hysteresis parameters
and Day’s plots have been shown to be effective discriminating tools for identifying volcanic ash and
tuff layers.
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