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Abstract: Microbial biogeography in terrestrial and freshwater ecosystems is mainly dominated
by community biofilm lifestyles. Here, we describe applications of computer-assisted microscopy
using CMEIAS (Center for Microbial Ecology Image Analysis System) bioimage informatics software
for a comprehensive analysis of river biofilm architectures and ecology. Natural biofilms were
developed for four summer days on microscope slides of plain borosilicate glass and transparent
polystyrene submerged in the Red Cedar River that flows through the Michigan State University
campus. Images of the biofilm communities were acquired using brightfield and phase-contrast
microscopy at spatial resolutions revealing details of microcolonies and individual cells, then digitally
segmented to the foreground objects of interest. Phenotypic features of their size, abundance,
surface texture, contour morphology, fractal geometry, ecophysiology, and landscape/spatial
ecology were digitally extracted and evaluated by many discriminating statistical tests. The results
indicate that river biofilm architecture exhibits significant geospatial structure in situ, providing
many insights on the strong influence that substratum hydrophobicity–wettability exert on biofilm
development and ecology, including their productivity and colonization intensity, morphological
diversity/dominance/conditional rarity, nutrient apportionment/uptake efficiency/utilization,
allometry/metabolic activity, responses to starvation and bacteriovory stresses, spatial patterns
of distribution/dispersion/connectivity, and interpolated autocorrelations of cooperative/conflicting
cell–cell interactions at real-world spatial scales directly relevant to their ecological niches.
The significant impact of substratum physicochemistry was revealed for biofilms during their early
immature stage of development in the river ecosystem. Bioimage informatics can fill major gaps
in understanding the geomicrobiology and microbial ecology of biofilms in situ when examined at
spatial scales suitable for phenotypic analysis at microcolony and single-cell resolutions.

Keywords: CMEIAS; bioimage informatics; biofilm architecture; colonization behavior; image
analysis; ecophysiology; spatial ecology

1. Introduction

This study describes applications of our software suite called the “Center for Microbial Ecology
Image Analysis System” (CMEIAS) to analyze microbial biofilm assemblages derived from river
bacterioplankton and colonized on microscope slides differing in hydrophobicity and surface
wettability. The findings reveal that substratum physicochemistry significantly impacts on the early
immature stage of biofilm community development in the river ecosystem, and that bioimage
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informatics can fill major gaps in understanding the phenotypic characteristics important to the
geomicrobiology and ecology of biofilms analyzed in situ at microcolony and single-cell resolution.

1.1. CMEIAS Software Development

The mission of our CMEIAS project is to develop, document and release a comprehensive
suite of bioimage informatics analysis software applications designed to strengthen quantitative,
microscopy-based approaches for understanding microbial ecology, at spatial scales directly relevant to
microbes and their ecological niches without the need for cultivation [1–16]. The wealth of information
gained by CMEIAS analysis of digital images can bridge with other modern genotypic and phenotypic
technologies to fill knowledge gaps revealing additional insights of in situ phenotypic characteristics of
ecological importance to microbial cells, populations, communities and microbiomes. Examples
include their biodiversity, productivity (conversion of available nutrient resources into biomass
and metabolic energy), food-web dynamics, landscape ecology, strategies of successful colonization
behavior, adaptations and resilience to environmental stresses, and intensities of interaction with
each other within biofilms [2–15]. When finalized, the copyrighted CMEIAS software tools and
their comprehensive documentations are released as free downloads at our project website [1].
Previously released CMEIAS software components used in this study include: (i) the dynamic
library-linked extension plugins operating within ImageTool (University of Texas Health Science Center,
San Antonio, TX, USA) for object analysis and morphotype classification of microorganisms [2–4,13];
(ii) Color Segmentation, a stand-alone software application with advanced technologies of color
differentiation and classification for accurate processing of foreground objects of interest within
complex RGB images [14]; and (iii) JFrad, a Java-based software application featuring many algorithms
to discriminate the fractal geometry of complex coastline architectures of microcolonies and fractal-like
spatial patterns of individual cells colonized within immature biofilms [15]. This study identified
several new image analysis features of landscape/spatial ecology that discriminate biofilms in situ,
and they will be added to the next release version of CMEIAS [16].

1.2. Topics of Microbial Biofilm Architecture and Ecology Analyzed by CMEIAS

Microbial biogeography in terrestrial and freshwater ecosystems is mainly dominated by
community biofilm lifestyles [17]. These surface-colonized assemblages commonly develop very
complex and dynamic architectures that are amenable to image analysis [5,18–20]. The intensity of
attributes that discriminate biofilms commonly varies with the scaling dimensions at which they are
measured [5], emphasizing the importance of analyzing biofilms at multiple spatial scales to accurately
capture the strength at which each measured characteristic occurs in situ. One objective of this study
was to explore and optimize new and existing methods of bioimage informatics provided by CMEIAS
technologies that can discriminate the architecture and ecology of two microbial biofilm assemblages
derived from the same river bacterioplankton community. A second objective was to examine
the influence of substratum physicochemistry on river biofilms during early immature stages of
development before they become confluent and fully embedded in a matrix of exopolymers. For these
studies, we analyzed the abundance, landscape ecology, biodiversity, ecophysiology and spatial
ecology of two immature river biofilm assemblages derived from the indigenous bacterioplankton
community. These biofilms were developed on two dissimilar substrata: one named “community A”
developed on plain borosilicate glass and the other named “community B” developed on polystyrene
plastic. They were examined at two spatial scales: low-resolution imaging of microcolonies and
high-resolution imaging of individual microbial cells in the same biofilm.

Polystyrene is a long chain aromatic hydrocarbon polymer (C8H8)n with alternating carbon
centers attached to phenyl groups, and is utilized extensively in the creation of laboratory and
medical implant plastics [21]. It is commonly used as a colonization substratum to identify molecular
requirements for development of protective, host-associated biofilms by microbial pathogens.
Polystyrene was chosen for this study as a substratum for microcolony biofilm growth to contrast
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to the physicochemical properties of borosilicate glass. We hypothesized that variations in biofilm
assemblages on plain glass and polystyrene substrata would be due to the significant difference in
their surface wettability (contact angles of approximately 25◦ vs. 87◦, respectively), and that the
physicochemical characteristics of the very hydrophobic polystyrene substratum would predictably
increase the strength of microbial cell adhesion, intensity of nutrient adsorption and resource
apportionments, and various cell–cell interactions during early dynamic stages of biofilm colonization
in the river ecosystem. These substratum properties would significantly influence the development of
microbial growth within natural biofilms in situ [22,23].

Ecologically important phenotypic characteristics of microbial biofilms analyzed at spatial
resolutions optimized for microcolonies and individual cells include their abundance, size, shape,
surface texture, landscape ecology, fractal geometry, morphology and associated fitness traits
(e.g., starvation survival, defense against bacteriovory), and spatial ecology. These characteristics
provide insights on complex ecophysiological patterns and processes occurring within natural
microbial biofilm landscapes, including indications of the scale-dependent heterogeneities in their
spatial architecture, biomass, productivity, biodiversity, adaptations to environmental stresses,
geostatistically autocorrelated cell–cell interactions, colonization behavior, spatial dispersion and other
life-supporting processes, all driven by the ecological theory of optimal spatial positioning of organisms
to maximize their efficiency in utilization of nutrient resource allocations in situ [5,6,15,18,24–38].
Indeed, acquiring enough food is the first key requirement for successful colonization of habitats
in all of biology [25,28]. The metrics of landscape ecology also bring together many insights on in
situ interactions between spatial patterns of bioactive patches (in this case, multicellular microcolony
biofilms) and ecological processes within landscapes, including their degree of fragmentation, porosity,
edge complexity and fractal geometry affecting resource accessibility, connectivity to neighbors and
influences of spatial heterogeneity on various biotic and abiotic processes [5,15,18,24–32]. Descriptions
of the irregularity in shape of microcolony contours that deviate from concentric expansion of radial
growth, and the fractal geometry of this self-similarity metric for microcolony biofilm communities
provide quantitative insights about the spatial distribution of resources in situ and how organisms
exploit and compete for those resources [15,24–27,30–32]. In addition, at the core of the allometric
scaling relationships between body size and metabolic rate in ecophysiology are the local variations in
nutrient resource allocation within the microhabitats that are being colonized [5,25–37].

2. Materials and Methods

2.1. Preparation of Digital Images of River Biofilms Developed on Plain Glass and Polystyrene Substrata

Submerging transparent microscope slides in aquatic environments provides a simple approach
to produce natural assemblages of microbial biofilm communities suitable for bioimage informatics
analysis using computer-assisted microscopy [5,39]. The microbial assemblages for this study were
developed on cleaned microscope slides of plain borosilicate glass and transparent polystyrene plastic
polymer (Erie Scientific, Portsmouth, NH, USA) that differ significantly in their surface wettability.
The slides were attached to a weighted fishing line and submerged for four summer days (22 ± 2 ◦C)
at a dangling depth of approximately one foot below the surface of the Red Cedar River that flows
through the campus of Michigan State University (East Lansing, MI, USA) [5]. Slides were retrieved,
their underside cleaned, then mounted in filter-sterilized water with a No. 1.5 thickness glass cover
slip, and examined by brightfield microscopy (Zeiss Research Photomicroscope I; Zeiss, Oberkochen,
Germany) using a 10× Neofluor objective lens (numerical aperture, n. a. 0.60) to resolve individual
microcolony biofilms for analyses of their “patch” size, abundance, architecture and landscape ecology,
and then by phase-contrast light microscopy using a 100× Planapochromat Phase 3 objective lens
(n. a. 1.30) to resolve individual sessile bacteria for single-cell phenotypic analysis of community
colonization intensity, morphological diversity, ecophysiology, and spatial ecology [5]. Digital 8-bit
grayscale images of the biofilm objects were acquired, processed, segmented to the foreground objects
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of interest, and spatially calibrated using Adobe Photoshop CS3 (Adobe Systems Inc., San Jose, CA,
USA) and CMEIAS Color Segmentation [14]. Table 1 provides additional information on pertinent
image characteristics and settings optimized for these analyses.

Table 1. Pertinent information on images (equal sampling effort) analyzed for each river biofilm community.

Analysis
Category 1

Objective
Lens

Foreground/
Background

No. Images
(Montages)

Pixel Resolution
(dots/inch)

Min Object
Size 2

Bar Scale
(µm)

Other Pertinent
Features

MB Size and
Abundance 10× Black/White 25 224 30 100 Binary,

Crosshairs

MB Surface
Texture 10× Bright/Dark

Gray 18 224 60 100 Gray, Inverted

MB Landscape
Ecology 10× Black/White 25 224 40 100 Binary,

Crosshairs

MB Fractal
Geometry 10× White/Black 20 224 60 100 Binary, Inverted

IC Size and
Abundance 100× Black/White 24 (4) 320 5 10 Binary, Convex

Hull

IC Morphotype
Classification 100× Black/White 24 (4) 320 5 10 Binary

IC Ecophysiology 100× Black/White 24 (4) 320 5 10 Binary, Convex
Hull

IC Fractal
Geometry 100× White/Black 18 (3) 320 5 10 Binary, Inverted

IC Spatial Ecology 100× Black/White 24 (4) 320 5 10 Binary
1 MB: Microcolony Biofilm; IC: Individual Cell. 2 Pixels per foreground object.

Biofilm image examples of microcolonies and individual microbial cells for each analysis category
are shown in Figure 1a–j, respectively.
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Figure 1. Examples of images for in situ analysis of immature river biofilms of microcolonies and 
individual microbial cells acquired using the: 10× (a–f); and 100× objective lenses (g–j). Biofilm 
assemblages, named communities A and B, were developed on: plain glass (a,c,e,g,i); and transparent 
polystyrene (b,d,f,h,j) slides. Binary images of microcolonies (a,b) were used to measure their size, 
abundance, and landscape ecology. Inverted binary images of microcolonies (c,d) and individual cells 
(g,h) were used to measure their fractal dimensions. Inverted grayscale images (e,f) were used for 
their surface texture analysis. The accurately segmented, high-resolution binary images (i,j) were 
used for phenotypic analyses of morphological diversity, in situ ecophysiology, and spatial ecology 
of individual microbial cells. Image examples a–d are individual micrographs and e–j are montages 
(also see Table 1). Bar scales are 100 μm for images a–f, and 10 μm for images g–j. 

2.2. Data Acquisition and Analysis 

Biofilm images were thresholded to find the foreground objects (microcolonies and individual 
cells) and analyzed using CMEIAS bioimage informatics software [1,2,5,10,13–16]. Extracted data 
were transferred to Microsoft Excel (Microsoft, Redmond, WA, USA), concatenated and analyzed 

Figure 1. Examples of images for in situ analysis of immature river biofilms of microcolonies and
individual microbial cells acquired using the: 10× (a–f); and 100× objective lenses (g–j). Biofilm
assemblages, named communities A and B, were developed on: plain glass (a,c,e,g,i); and transparent
polystyrene (b,d,f,h,j) slides. Binary images of microcolonies (a,b) were used to measure their size,
abundance, and landscape ecology. Inverted binary images of microcolonies (c,d) and individual cells
(g,h) were used to measure their fractal dimensions. Inverted grayscale images (e,f) were used for
their surface texture analysis. The accurately segmented, high-resolution binary images (i,j) were
used for phenotypic analyses of morphological diversity, in situ ecophysiology, and spatial ecology
of individual microbial cells. Image examples a–d are individual micrographs and e–j are montages
(also see Table 1). Bar scales are 100 µm for images a–f, and 10 µm for images g–j.

2.2. Data Acquisition and Analysis

Biofilm images were thresholded to find the foreground objects (microcolonies and individual
cells) and analyzed using CMEIAS bioimage informatics software [1,2,5,10,13–16]. Extracted data
were transferred to Microsoft Excel (Microsoft, Redmond, WA, USA), concatenated and analyzed
statistically using Excel analysis toolpack, StatistiXL [40], EcoStat [41], PAST [42], Species Diversity
and Richness [43] and GS+ Geostatistics [44] software applications.

Algorithms in the object analysis and classification plugins of CMEIAS-Image Tool v 1.28 [2,16]
were used to measure the biofilm characteristics of microcolony shape (elongation, compactness,
roundness, aspect ratio, ratio of area/bounding box area), size (area, perimeter, equivalent circular
diameter), luminosity (integrated density), individual cell morphology and cartesian X,Y coordinates
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of object centroids. Algorithms featured in CMEIAS JFrad software [15] were used to compute the
fractal dimensions of microcolony biofilm coastlines and fractal patterns of individual cell distributions
by 11 methods, including corner perimeter, cumulative intersection, corner count, parallel lines,
fast, fast hybrid, box counting, dilation, Euclidian distance map, mass radius (long) and mass
radius (short). Other metrics (biovolume, biomass carbon, 1st and 2nd nearest neighbor distances,
empirical distribution function of the 1st nearest neighbor distance, and cluster index [1st nearest
neighbor distance−1]) used here have also been previously described [5,7,10–13,16,20,45–48], including
a comprehensive ground truth analysis of accuracy for the shape-adaptable biovolume formula [10].
New metrics used here and planned for incorporation into CMEIAS include:

• Circularity: Measures the similarity of the object shape to a perfect circle; computed as:

(4 × object area)/(π × length2) (1)

• Mass Circularity: Another shape feature that measures an object’s similarity to a perfect circle;
computed as:

(perimeter2)/area (2)

• Perimeter/Area: A measure of complexity in the object’s shape; computed as:

(perimeter/area) (3)

• Mean Radius: A measure of object size, indicates the mean radial distance that an extracellular
metabolite must diffuse to reach cells at the center of the microcolony biofilm; computed as:

mean of radial distances between contour pixels of the object and its centroid coordinates (4)

• Maximum Radius: Another measure of object size, indicates the maximum radial distance that an
extracellular metabolite must diffuse to reach the center of the microcolony biofilm; computed as:

maximum radial distance between the object’s contour and its centroid coordinates (5)

• Biomass Carbon: An abundance measurement derived from an allometric conversion of
individual cell biovolume; computed as:

(K × biovolumea) (6)

where K and a are allometric scaling factors of 218 and 0.86, respectively [46–48].
• Biovolume-Weighted Allometric Metabolic Rate: Based on the allometric scaling relationship

between body mass of individual cells and their metabolic rate; the formula for this metric
uses updated information provided by Prof. Jordan Okie [49] to compute the whole-organism
metabolic rate of active organoheterotrophic prokaryotes using a biomass-weighted allometric
scaling relationship of their cell biovolume [10,33–37]; computed as:

[10−1.32 × biovolume1.96], in units of picowatts/cell (7)

• Biosurface Area/Biovolume: Uses accurate morphotype-adapted formulas to compute the
biosurface area and biovolume of the same cell [5,10,13]; the value of this cell size ratio can
reflect the intensity of ecophysiological adjustments as cells downsize in response to nutrient
deprivation/starvation stress [5,34,50–52]; computed as:

(biosurface area/biovolume) (8)
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Global landscape ecology metrics [5,24,29,30,53–56] report on all patches of foreground objects
located within the user-defined polygon area of interest in the image. They include the following:

• Landscape Shape Index: Measures the complexity of patch shapes within the landscape;
computed as:

Sum of (perimeter/area) for all object patches in the landscape image (9)

• Mean Square Pixel Index: Measures the similarity of each object’s shape to a square. The index
is 1.0 for square objects and approaches 0 as their elongation increases; computed as:

1.0 − (4 × (square root of patch areas))/perimeter (10)

• Patch Cohesion: Measures the configuration of physical connectivity between adjacent patches,
i.e., the degree of their connectivity to each other; this metric value increases with the intensity of
patch aggregation and interconnection within the landscape; computed as

(1 − (∑ patch perimeters/(∑ patch perimeters × square root of patch area))/
(1 − (1/square root of landscape area analyzed)) × 100 (to convert to a percentage)

(11)

• Edge Density: Measures the proportion of total patch areas in the landscape image represented by
pixels that define each object’s perimeter; patches with a higher edge density are more fragmented
with less internal area and longer perimeter contours; computed as:

(∑ all patch edge lengths)/total landscape area analyzed (12)

• Mean Patch Area: Average area of all foreground patches in the landscape image; computed as:

(total patch area/number of patches) (13)

• Weighted-Mean Patch Area: The sum of each patch area weighted by its “weighted factor” (the
proportional abundance of that patch area among all patch areas present) divided by the sum of
patch areas; computed as:

∑wx/∑w (14)

where w = patch areas and x = weighting factor. This metric of central tendency assigns more
weight to frequently occurring patches with the same area.

• Largest Patch Index: Percent of landscape area covered by the largest microcolony patch;
computed as:

[(maximum object area)/landscape area analyzed)] × 100.0 (15)

Other important metrics of biofilm architecture used in this study include the following:

• Percent Substratum Coverage: Measures the portion of the landscape area covered by foreground
objects; computed as:

(area of all foreground objects/landscape area analyzed) × 100 (16)

• Areal Porosity: Measures the portion of the landscape area not occupied by foreground
objects [20]; computed as:

[1.00 − (area of foreground objects/landscape area analyzed)] (17)
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• Relative Porosity: Another measure of the portion of unoccupied space in the analyzed landscape
area, represented by the ratio of the unoccupied to object-occupied landscape area; computed as:

[(total landscape area analyzed − area of all foreground objects)/total area of objects] (18)

Several intensity metrics of abundance and landscape ecology require an input of the portion of
the substratum area enclosing the microcolony biofilms and individual microbial cells in the image.
The size of that user-defined area can be reproducibly measured by an independent CMEIAS manual
area analysis of its polygon defined by a set of image-annotated crosshairs located at each corner
(typically drawn to exclude the bar scale), or of the convex hull representing the smallest polygon
enclosing all foreground objects. Figure 2a,b illustrates the polygons made by these two methods for
calculation of intensity metrics that require an input of the enclosing area of the substratum (applies to
Equations (11), (12), and (15)–(18)).

Geosciences 2017, 7, 56  9 of 36 

 

[(total landscape area analyzed − area of all foreground objects) / total area of objects] (18) 

Several intensity metrics of abundance and landscape ecology require an input of the portion of 
the substratum area enclosing the microcolony biofilms and individual microbial cells in the image. 
The size of that user-defined area can be reproducibly measured by an independent CMEIAS manual 
area analysis of its polygon defined by a set of image-annotated crosshairs located at each corner 
(typically drawn to exclude the bar scale), or of the convex hull representing the smallest polygon 
enclosing all foreground objects. Figure 2a,b illustrates the polygons made by these two methods for 
calculation of intensity metrics that require an input of the enclosing area of the substratum (applies 
to Equations (11), (12), and (15)–(18)). 

 
(a) (b)

Figure 2. Use of: crosshairs (a); and convex hull (b) to define the substratum polygon area of interest 
(blue line) when needed to compute intensity metrics for microcolonies and individual cells.  

3. Results and Discussion 

3.1. Optimization of Minimum Object Sizes for Biofilm Images Containing Many Very Small Microcolonies  

CMEIAS-Image Tool allows the user to set the minimum object size (in pixel units) so objects 
smaller than required to discriminate certain selected features of the foreground objects are 
purposefully excluded during threshold segmentation before analysis. This filtered size was set at 5 
pixels to include all individual microbes in the high-resolution, segmented, noise-free binary images 
for analysis of morphological diversity, ecophysiology, fractal dimension and spatial ecology  
(Table 1). Optimization was crucial to increase the discrimination of object size distributions when 
analyzing low-resolution images of natural immature river biofilms since they contained an 
overwhelming amount of noise due to the presence of very small microcolonies with similar non-
discriminating morphologies in both biofilm communities. Figure 3a–d shows how this size filter 
option was used to optimize the signal-to-noise ratio of minimum object size distribution for 
microcolony biofilm analysis (see also Table 1).  

Figure 2. Use of: crosshairs (a); and convex hull (b) to define the substratum polygon area of interest
(blue line) when needed to compute intensity metrics for microcolonies and individual cells.

3. Results and Discussion

3.1. Optimization of Minimum Object Sizes for Biofilm Images Containing Many Very Small Microcolonies

CMEIAS-Image Tool allows the user to set the minimum object size (in pixel units) so
objects smaller than required to discriminate certain selected features of the foreground objects are
purposefully excluded during threshold segmentation before analysis. This filtered size was set at 5
pixels to include all individual microbes in the high-resolution, segmented, noise-free binary images
for analysis of morphological diversity, ecophysiology, fractal dimension and spatial ecology (Table 1).
Optimization was crucial to increase the discrimination of object size distributions when analyzing
low-resolution images of natural immature river biofilms since they contained an overwhelming
amount of noise due to the presence of very small microcolonies with similar non-discriminating
morphologies in both biofilm communities. Figure 3a–d shows how this size filter option was used to
optimize the signal-to-noise ratio of minimum object size distribution for microcolony biofilm analysis
(see also Table 1).
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Figure 3. Low-resolution images showing the use of minimum size filtration to exclude very small
microcolony biofilms that lack discriminating shapes during analysis. Arrows indicate examples of
annotated objects (with magenta perimeters) that are excluded from analysis by thresholding at the
larger indicated minimum object size. The minimum size filter used settings of: 30 (a); 40 (b); 50 (c);
and 60 (d) pixels to compare the images.

3.2. River Biofilm Architecture Analyzed at Microcolony Spatial Resolution

Five measurement attributes (area, perimeter, equivalent circular diameter, mean radius, and
maximum radius) were used to compare the size distributions of microcolony biofilms developed on
the plain glass (Community A) and polystyrene (Community B) substrata (Tables 2 and 3). The percent
proportional dissimilarities of their size distributions ranged between 5.4% and 7.7%. The p-values
(Ho of no difference) of multivariate parametric MANOVA and non-parametric Krustal–Wallis statistic
tests for these five size metrics were 3.24 × 10−34 and 0.000, respectively, indicating that the sizes of
microcolony biofilms in communities A and B are not derived from the same distribution. Further
analyses using the Student t and Mann–Whitney two-tailed two-sample tests indicated that the means
and medians for each of these size metrics are significantly different for the two biofilm communities
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(Table 2). These results plus additional analyses in Table 3 indicate that the microcolony biofilms
are significantly larger in community B. This size differential reveals higher productivity of the
community B developed on the polystyrene substratum in situ. Plausible (but not necessarily all
inclusive) causes and consequences of this outcome [5,10,20,24–32,38,56–61] include increased nutrient
apportionment and utilization efficiency, positive cooperativity among neighbors, defense against
protozoan bacteriovory, and longer distances (i.e., greater mean and maximum radii) that putative
inhibitory metabolites must diffuse in order to reach all cell targets within microcolony biofilms.

Table 2. Statistical analysis of size-filtered microcolony biofilms for communities A and B.

Size Attribute Metric Community A Community B Statistic Value 1 (p) Probability

Area Mean 62.43 106.77 7.876 3.82 × 10−15

Area Median 20.08 21.27 14,264,593 4.36 × 10−9

Perimeter Mean 32.7 46.5 9.474 2.96 × 10−21

Perimeter Median 18.5 19.9 8,912,727 0.000
Equivalent Circular Diameter Mean 6.9 7.6 8.522 1.81 × 10−17

Equivalent Circular Diameter Median 5.1 7.6 13,762,070 2.11 × 10−7

Mean Radius Mean 3.6 4.1 8.798 1.47 × 10−18

Mean Radius Median 2.6 2.7 115,460,954 6.86 × 10−14

Maximum Radius Mean 5.9 7.0 10.123 4.81 × 10−24

Maximum Radius Median 4.0 4.4 18,905,093 0.000
1 Student t and Mann–Whitney tests of differences in means and medians for both communities.

Table 3. Additional descriptive statistics of the size distributions of microcolony biofilm communities
developed on: plain glass (A); and polystyrene (B) substrata.

Measurement Attribute 1 95th
Percentile

5th
Largest Maximum Sum

Percent
Proportional
Dissimilarity

Community
Interpretation

Area-A 197.30 5840.15 9249. 78 857,703.6
6.30 B > AArea-B 267.56 16,988.70 26,301.37 1,708,762.0

Perimeter-A 87.5 1724.1 1981.9 449,429.9
7.67 B > APerimeter-B 120.7 3649.3 7508.7 744,382.7

Equivalent Circular Diameter-A 15.9 86.2 108.5 94,826.2
5.40 B > AEquivalent Circular Diameter-B 18.5 147.1 183.0 121,999.3

Mean Radius-A 8.6 69.3 88.4 49,952.2
5.94 B > AMean Radius-B 10.2 106.5 141.8 65,801.2

Max Radius-A 14.6 134.9 177.5 81,361.7
7.24 B > AMax Radius-B 18.2 218.3 356.7 112,463.6

1 A and B: communities A and B, respectively. Units are µm2 for area, µm for others. The microcolony counts in
25 images of A and B were 13,738 and 16,004, respectively.

A second architectural analysis of microcolony biofilms was implemented to assess their surface
texture. Figure 4a,b shows examples of heterogeneity in surface texture for biofilm communities A
and B based on the varied distributions of their size and luminosity in pseudocolor rendered images
prepared using the CMEIAS Color Segmentation tool [14]. This result indicates a greater variation and
intensity of surface texture for the biofilm community B developed on the polystyrene substratum
(Figure 4b). This brief test was followed by a grayscale brightness-based assessment of luminosity
within images acquired using brightfield microscopy with transmitted light. In this case, microcolony
biofilms display local heterogeneity in brightness intensity (on a scale of 0–255) due to variations in
their height (third “z” dimension) inversely proportional to the amount of transmitted light that has
scattered (hence been subtracted) as it passes through them during microscopic examination and image
acquisition. Analysis of inverted grayscale images (e.g., Figure 1e,f) then directly relates microcolony
height to luminosity brightness.
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Figure 4. Micrograph examples of heterogeneous surface texture in river microcolony biofilm
communities developed on: plain glass (a); and polystyrene (b) substrata. Inverted grayscale images
were processed to display pseudocolored variations in surface texture based on differences in local
luminosity due to dissimilarities in microcolony height. Bar scales are 100 µm in length.

Biofilm surface texture was analyzed in situ using the integrated density metric that combines
both the size and luminosity of the individual microcolonies (computed as the product of the object’s
pixel area times its mean gray level). For quantitative analysis of surface texture, the integrated
densities of community A and B biofilms were compared in eighteen 8-bit inverted grayscale images
following a brightness threshold of 85% to find and segment their individual microcolony biofilms.
A pair-wise dissimilarity analysis indicated significant differences in their overall distributions, with
distance coefficients of 12.18% proportional dissimilarity, average Euclidian distance of 23.02, and
Canberra distance of 0.64. The mean values of cumulative integrated density per image were 41,597
and 84,003 for communities A and B, respectively. Two-tailed statistical tests rejected the Ho of
no difference between sample means (p = 1.84 × 10−36), sample medians (p = 0.000) and variances
(p = 0.000) of their integrated density, indicating that the surface texture of biofilm community B was
more intensely heterogeneous with significantly more abundant, taller microcolony “mounds” in its
three-dimensional (x, y, z) architecture on the polystyrene substratum, as further evidence of its greater
productivity in this environment.

A third architectural analysis of the two communities of microcolony biofilms was implemented
to assess differences in their two-dimensional shapes. The microcolonies >40 pixels in size within
low-resolution binary images (25 per community) were analyzed by several metrics that evaluate the
intensity at which their patch contour shapes deviate from a perfect circle of concentric radial growth.
An ANOVA analysis indicated that the metrics of aspect ratio, circularity, roundness and compactness
ranked highest in their ability to discriminate the microcolony shapes (Figure 5).
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The extent of differences in contour shapes of microcolony biofilms of communities A and B was
then tested using these four top-ranked discriminating metrics. A two-tailed multivariate statistical
T-test indicated that the values of this shape feature for the two communities were not derived from
the same distribution (ANOVA F 60.933, p (Ho of no difference) of 8.34 × 10−51). A two-tailed Student
t-test of these four discriminating shape metrics analyzed separately indicated that the community A
microcolonies on the plain glass substratum were significantly rounder and more compact (Table 4),
concurring with a visual inspection of their reduced intensity of radial dispersion (Figure 1a,c and e).

Table 4. Statistical analysis of differences in architecture of microcolony biofilms developed on: plain
glass (A); and polystyrene (B) substrata, based on four discriminating metrics of their contour shape.

Object Shape Metric Community A Community B Two-Tailed t value (p) Probability

Aspect Ratio 0.240 1 0.198 14.006 5.40 × 10−44

Circularity 0.485 1 0.404 13.603 1.24 × 10−37

Roundness 0.686 1 0.614 12.840 2.22 × 10−37

Compactness 0.761 1 0.721 12.516 1.29 × 10−35

1 Significantly greater value at the indicated p level.

3.3. Landscape Ecology of River Microbial Biofilms at Microcolony Spatial Resolution

Several cumulative object analyses were done to characterize the mosaic of microcolony patches in
the biofilm landscapes. They included categories of landscape ecology metrics that assess their patch area
statistics (mean patch area, weighted-mean patch area, largest patch index), abundance and intensity
of aggregated patches (percent substratum coverage), patch shape complexity (landscape shape index,
mean square pixels), patch aggregation/dispersion/interspersion/fragmentation/connectivity (patch
cohesion), patch edge intensity (edge density), and landscape porosity of fluid-filled channels between
microcolony biofilm patches (areal porosity, relative porosity). Each metric was used to analyze
microcolony biofilms >40 pixels in size in low-resolution binary images (25 per community), using the
cross-hair method to define the area of interest polygon when that information was needed to compute
metric intensities weighted by the substratum area (Figure 2a).

The ranked ability of these landscape ecology metrics to discriminate biofilm architectures is
shown in Figure 6, revealing that percent substratum coverage and areal porosity had the greatest
discriminating power among this group. The mean values for all 10 landscape ecology metrics
extracted from images of the two biofilm communities were tested by the two-tailed Student t-test,
and their differences were all statistically very significant (p << 0.01) (Table 5).
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Table 5. Two-Tailed two-sample statistical t tests of significant differences between mean values
of ranked landscape ecology metrics that distinguish the architecture of river microcolony biofilm
communities developed on: plain glass (A); and polystyrene (B) substrata.

Landscape Ecology Index Community A Community B Two-Tailed t Value (p)

Landscape Shape Index 25.604 30.233 1 4.033 2.21 × 10−4

Mean Square Pixels 0.081 0.137 1 6.793 1.53 × 10−8

Edge Density 0.054 0.090 1 7.082 1.11 × 10−8

Relative Porosity 8.762 1 3.673 7.525 2.17 × 10−8

Mean Patch Area 75.56 138.19 1 8.392 2.29 × 10−9

Weighted Mean Patch Area 799.95 4352.91 1 8.211 4.71 × 10−9

Patch Cohesion 99.431 99.604 1 8.407 4.15 × 10−10

Largest Patch Index 1.077 4.317 1 8.491 8.22 × 10−10

Areal Porosity 0.888 1 0.775 9.557 4.26 × 10−12

Percent Substratum Coverage 11.23 22.52 1 9.65 4.23 × 10−12

1 Significantly higher mean value based on the two-tailed test statistic for the 25 images of each biofilm.

These metrics of landscape ecology were evaluated further by comparing paired ascending sort
plots of their values extracted from images of the two biofilm communities. This analysis revealed
clear separations in the distribution of ranked values for each metric of landscape ecology examined
(Figure 7a–j), confirming that all were able to discriminate the biofilm architectures of these two
communities developed on contrasting substrata. Consistent with the visual evidence provided by
representative biofilm images (Figure 1a–f), these data further corroborate that the microcolony
biofilms of community B developed a more dense and discrete landscape pattern, interpreted
as having more productivity (more aggregated patches and larger sizes covering a significantly
larger portion of the substratum area, hence less void spaces), greater edge intensities and complex
shapes enabling their greater exploitation of external resources, significantly enhanced connectivity
between neighboring microcolony patches (often via thin filamentous interconnections; see Figure 1b,f)
that would potentially extend their “calling distances” in cell–cell communication, and more
access to additional opportunities for syntrophic-like cross-feeding and other positive interactions
with community members, ultimately resulting in further growth expansion on the polystyrene
substratum [5,18,24,29,38,53–56,61,62].
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Figure 7. Sorted ascending plots of 10 landscape ecology metrics (Y axis label) analyzed on 25 images 
of microcolony biofilm communities A and B developed on plain glass and polystyrene, respectively. 
The percent proportional dissimilarity coefficients (pair-wise dissimilarity analysis results) are also 
indicated for each metric’s paired distribution. 

Figure 7. Sorted ascending plots of 10 landscape ecology metrics (Y axis label) analyzed on 25 images
of microcolony biofilm communities A and B developed on plain glass and polystyrene, respectively.
The percent proportional dissimilarity coefficients (pair-wise dissimilarity analysis results) are also
indicated for each metric’s paired distribution.
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These architectural differences between the two communities of microcolony biofilms prompted
us to explore the fractal geometry component of their landscape architecture. We anticipated that the
more productive microstructured biofilm of community B would exhibit a greater fractal dimension
on the polystyrene substratum, reflecting its more intense colonization behavior of successful
positioning to maximize nutrient resource acquisition and allocation within the hierarchical fractal-like
nature of resource distribution networks within landscape microenvironments [5,7,15,25–27,30–32,34].
The fractal dimensions of microcolony biofilm coastlines in the inverted grayscale images were
analyzed using optimized segmentation settings (Table 1), an 85% brightness threshold, and all
11 methods of fractal analysis using the automated batch process available in CMEIAS JFrad
software [15]. A univariate ANOVA analysis of the data indicated that nine of the 11 methods
had sufficient discriminating power to discern substantially different intensities of fractal geometry
between the two biofilm communities (Figure 8). The variation in discriminating power is readily
apparent among the 11 fractal methods in JFrad, illustrating the benefit of statistical data mining when
the most discriminating methods of fractal analysis are not known beforehand.
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microcolony biofilms developed on plain glass and polystyrene substrata. The red horizontal line
indicates the minimum F value needed to reject the null hypothesis of insufficient discrimination.

A two-tailed two-sample multivariate Student t test indicated that the nine discriminating
methods combined together found very significant differences in fractal geometry of the microcolony
biofilms in the two communities (Table 6). In addition, the two-tailed two-sample statistical tests
for each of these discriminating methods of fractal dimension analysis evaluated separately had
very low p values that rejected the null hypothesis of no difference between the two communities
(Table 6). The microcolony biofilm architecture was significantly more fractal when developed on the
polystyrene substratum than on plain glass, predictably reflecting different fractal distributions of
available growth-supporting resources and opportunities for species coexistence [25–27,31,32].
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Table 6. Two-tailed Student t statistical test of nine discriminating methods to compare the fractal
geometry of river microcolony biofilm communities developed on: plain glass (A); and polystyrene
(B) substrata.

Fractal Method Community A Community B Student t Value (p) Community
Interpretation

Corner Count 1.379 1.414 3.526 1.12 × 10−3 B >> A
Parallel Lines 1.369 1.387 3.998 2.84 × 10−4 B >> A
Fast (Hybrid) 1.296 1.319 6.867 3.73 × 10−8 B >> A

Fast 1.246 1.268 7.330 8.84 × 10−9 B >> A
Box Counting 1.371 1.614 8.807 1.08 × 10−9 B >> A

Dilation 1.411 1.573 10.190 2.97 × 10−11 B >> A
Euclidean Distance Map 1.372 1.540 10.553 1.29 × 10−11 B >> A

Mass Radius (Long) 1.327 1.469 11.435 1.85 × 10−12 B >> A
Mass Radius (Short) 1.328 1.471 11.475 1.69 × 10−12 B >> A

Two-sample multivariable
two-sided t test t2 = 198.22 2.27 × 10−8 B >> A

3.4. Morphological Analysis of River Microbial Biofilms Analyzed at Single-Cell Resolution

Morphological analysis provides a strong complement to genotypic and other phenotypic
methods of polyphasic taxonomy to deliver important insights on microbial community structure
and function. The list of morphotype-weighted examples is long, including community productivity,
biodiversity, dominance, conditional rarity, niche apportionments, food-web dynamics, ecological
succession/resilience and other membership-environment relationships when competing for limiting
resources, adaptations to various environmental stresses (e.g., starvation, predation, eutrophication,
etc.) and spatio-temporal dispersal activities [2–5,8,16,25,28,48–52,57–63]. The unique, supervised,
hierarchical morphotype classifier featured in CMEIAS uses mathematical rules of pattern recognition
algorithms operating in 14-dimensional feature space to classify all major and several minor microbial
morphotypes of individual cells, and performs with an overall 96% accuracy on properly edited
images [2,13]. This classifier also automatically produces a rendered image containing each cell
differentially pseudocolored in situ to indicate its assigned morphotype class [2]. This latter software
feature was used to produce the Figure 9 composite image illustrating the diversity of microbial
morphotypes present in the river biofilm assemblages.
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Figure 9. CMEIAS (Center for Microbial Ecology Image Analysis System)-based composite image
of the river biofilm assemblage showing each individual cell pseudocolored in situ according to its
morphotype classification. Pseudocolored class assignments are: cocci (red), curved rods (purple),
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High-resolution images of individual microbial cells spatially distributed in situ within each
biofilm community were combined into montages and analyzed. The distributions of cell abundance
among the ranked morphotype classes are presented in Table 7. This equivalent sampling effort
indicated that the biofilm community B had a 56.2% greater cell abundance. Both community
assemblages had an equal richness of the same nine morphotypes, a dominance of cocci (77% of
community A and 71% of community B), and a rare singleton of one branched filament.

Table 7. Morphological classification of river biofilm community assemblages developed on: plain
glass (A); and polystyrene (B) substrata and analyzed at single-cell resolution.

Morphotype Class
Ranked Class Abundance

Community A Community B

Coccus 10,660 15,377
Regular Rod 2935 5972
Curved Rod 121 84
Prosthecate 67 46

Unbranched Filament 48 86
Club 7 38

Ellipsoid 6 49
U-Shaped Rod 4 11

Branched Filament 1 1
Total Cells (24 images) 13,849 21,664

The diversity of these class distributions was examined by several methods of community
analysis [5,28,42,43]. The shape of the Whittaker ranked abundance plot [28,43] showcases differences
in relative numerical abundances, dominance and evenness of each morphotype class in communities
A and B (Figure 10). The major separation of relative abundance in the curves occurred with rare
morphotypes ranked as No. 6, 7, and 8 (clubs, ellipsoids and U-shaped rods). The abundance in these
numerical ranked distributions was greater for six of the nine morphotypes colonizing the polystyrene
surface. Based on the least difference between observed and expected values, the truncated logarithmic
series model made the best fit to both curves because the abundance of intermediate classes was more
common than predicted by the geometric model series, and their curves were steeper than the broken
stick model or the sigmoid curve of the log normal model [28,43]. The singleton morphotype caused
the slight truncation in the models for both communities.
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Table 8 indicates various indices of community α-diversity, evenness and dominance computed
from the data of raw numerical abundance (individual counts) (Table 7), and after a relative normalized
transformation (% ×100) of those same data to equalize community sample sizes. Data normalization
only marginally affected the computed indices (likely because both communities had an equal richness
of the same nine morphotype classes) without affect their ranking. The robust 10,000-iterated Solow
statistic test [43,64] indicated that the diversity and evenness indices were significantly higher (p ≤ 0.05)
for the river biofilm community B on the polystyrene substratum. Correspondingly, the dominance
index was significantly higher for the community A developed on plain glass. These results agree with
other studies indicating that community diversity strongly correlates with larger sizes and complex
structures of landscape patches [24].

Table 8. Indices of α-diversity, evenness, and dominance for comparison of morphological diversity in
river microbial biofilm communities developed on: plain glass (A); and polystyrene (B) substrata.

Community Structure Indices Community A
(Raw)

Community B
(Raw)

Community A
(Normalized)

Community B
(Normalized)

Shannon–Wiener Diversity 0.627 0.684 1 0.627 0.685 1

Simpson’s Diversity (1/D) 1.569 1.725 1 1.569 1.725 1

McIntosh Diversity 0.203 0.240 1 0.204 0.241 1

Brillouin Diversity 0.626 0.683 1 0.625 0.683 1

Q Statistic Diversity 1.332 4.897 1 1.299 5.009 1

McIntosh Evenness 0.302 0.358 1 0.302 0.358 1

Brillouin Evenness 0.285 0.311 1 0.285 0.312 1

Camargo Evenness 0.402 0.489 1 0.402 0.489 1

Smith and Wilson Evenness (1-D) 0.408 0.473 1 0.408 0.473 1

Berger-Parker Dominance 0.770 1 0.710 0.770 1 0.710
1 Community with the statistically significant (p ≤ 0.05) higher index value based on the Solow test. D: Simpson’s
Dominance Index.

The Renyi ordering analysis provides a robust, entropy-based test of whether the trends of
α-diversity that differ between communities change with the diversity index used, and allows the
relative magnitude of α-diversity across a range of indices to be compared directly [43,65]. This analysis
of the ranked abundance of morphotype classes for the two communities (Figure 11) showed that
their ranges of diversity indices do not cross one another indicating that they are validly comparable,
and that community B developed on the polystyrene substratum had a higher Renyi index at each
point of the scaled indices, validating its greater morphological diversity.
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β-Diversity indications of the degree of differences in distribution of ranked abundance among
morphotype classes of communities A and B are provided in computations of various dissimilarity
(distance) coefficients (Table 9) [42] and in plots that examine the communal relationships of their
ranked dominance and rarity (Figure 12a,b) [5,25,28,66,67].

Table 9. β-Diversity coefficients of dissimilarity (distance) between morphotype class distributions in
river biofilm communities developed on plain glass and polystyrene substrata.

Distance (Dissimilarity) Coefficients Value

Percent Proportional Dissimilarity 6.754
Euclidian Distance 5610.120

Average Euclidian Distance 1870.222
Canberra Distance 0.346

Bray–Curtis Distance 0.223
Chord Distance 0.102

Geodesic Distance 0.455
Manhattan Distance 7754

Mahalanobis Distance 2.529
Renkonen Distance 0.936

The K-dominance analysis compares the cumulative abundance of classes as a percentage
against their log class rank in the community [5,28,43,66]. The result showed that community A
had a higher dominance of its most abundant cocci morphotype (Figure 12a). The normalized rarity
plot [5,28,67] compares the relative abundance and cumulative biovolume for each morphotype class
in the community, and identifies community classes that are considered “rare” when they locate within
the lower left quadrant (25th percentile) of the plot range. This analysis indicated that most of the class
richness was represented by the seven rare morphotypes (comprising ≤25% of the class abundances),
and the relative abundances of their cumulative biomass were similar for some morphotype classes but
different for others (Figure 12b). This latter result also suggests that rarity for some morphotype classes
may be “conditional” because their relative abundances were affected by the substratum environment
upon which they had colonized [68]. This finding has potential importance because conditionally
rare classes can contribute significantly to community stability and resilience during the ecological
succession that follows environmental perturbation [2–4].
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3.5. In Situ Ecophysiology of River Microbial Biofilm Communities Analyzed at Single-Cell Resolution

CMEIAS bioimage informatics were used to analyze traits of community ecophysiology in
situ, including their intensity and productivity of biofilm colonization, allometric metabolic rate, and
indicators of adaptations to starvation and predatory stresses [5,10,13,33–37,48–52,57–60]. The strengths
of these vital activities were compared in images of the two river biofilm communities using data of
each cell’s biovolume, surface area/biovolume ratio, and relative lengths of elongated cells.

Table 10 presents data on the substratum area-weighted intensity of productive colonization
and cell size-weighted allometric metabolic rates with equal sampling efforts for both communities.
The total cell counts, spatial density, substratum coverage and cumulative biovolume intensities were
1.56–2.03-fold higher for community B. This greater intensity of biomass is consistent with earlier
results (Tables 2 and 3) indicating a larger, more abundant/widespread/highly structured architecture
of microcolony biofilms for the corresponding community. Two-sample two-tailed statistical tests
indicated that the differences between means were highly significant for spatial density (p = 0.0001),
and significant for biovolume intensity (p = 0.02), mean cell biovolume (p = 0.04) and median cell
biovolume (p = 3.81 × 10−47). Thus, individual microbial cells were significantly bigger and more
abundant when colonized on the polystyrene substratum. Since the metrics of biomass carbon and
active allometric metabolic rates are derived from cell biovolume [33–37,46–49], they had the same
trend of significantly higher substratum area-weighted intensities and metabolic rate per individual
cell in community B. Considered collectively, these results provide evidence to indicate that biofilm
community B was more metabolically active and better able to convert resources into biomass resulting
in its greater overall productivity on the polystyrene substratum in the river ecosystem.

Table 10. Productive colonization intensity, biovolume, biomass carbon and active allometric metabolic
rates (AMR) in river biofilm communities developed on: plain glass (A); and polystyrene (B) substrata
and analyzed at single-cell resolution.

Measurement Type (Units) Community A Community B

Total cell count (all images) 13,849 21,664
Spatial Density (cells/mm2) 108,909 199,862

Percent Microbial Coverage of the Analyzed Substratum 5.11 8.67
Total Cell Biovolume (µm3; all images) 3,197.748 5593.425

Cell Biovolume Intensity (µm3/mm2 substratum) 25,367.4 51,586.5
Mean Cell Biovolume (µm3/cell) 0.233 0.258

Median Cell Biovolume (µm3/cell) 0.079 0.136
Cell Biomass Carbon Intensity (pg C/mm2 substratum) 1809.4 3568.6

Cumulative Active AMR (nanoWatts; all images) 354.401 1060.348
Active AMR Intensity (picoWatts/mm2 substratum) 2811.43 9783.83

Active AMR per cell (femtoWatts) 25.590 48.932

The relative abundance of populations within a community assemblage to some extent reflects
their success at competing for limited resources [5,28], and therefore the metric used to measure
abundance in community membership can significantly influence how variations in that relationship
are interpreted. This issue applies to all metrics used to measure class abundances in community
analysis [5]. Use of the CMEIAS morphotype classifier made it possible to examine the distribution
of cell biovolumes and their size-scaled allometric metabolic rates among individual morphotype
classes (singleton excluded). This analysis indicated a higher productivity for the biofilm community B
(Tables 10–12). Over 90% of the total biovolume was distributed among the cocci, unbranched filament,
and regular rod morphotaxa classes. The difference between means for the biovolume intensity was
statistically significant (p < 0.05) for the cocci and marginally significant (p = 0.054) for the regular rods.
Although the cumulative biovolume and biovolume intensity were also greater for the U-shape rod,
unbranched filament, ellipsoid and club morphotypes in community B (Table 11), the range of their
individual cell size was substantial, resulting in mean differences that were not statistically significant.
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The cocci, curved rods, U-shaped rods, regular rods, unbranched filaments, ellipsoids and clubs each
had higher cumulative metabolic rates and metabolic rate intensities in community B (Table 12).

Table 11. Distribution of individual cell biovolumes among morphotype classes in river biofilm
communities developed on: plain glass (A); and polystyrene (B) substrata.

Morphotype Class Community A 1 Community B 1 Community A
Intensity 2

Community B
Intensity 2

Coccus 50.978 52.917 12,919.040 24,365.564
Curved Rod 2.027 1.018 513.600 468.836

U-shaped Rod 0.117 0.160 29.633 73.796
Regular Rod 37.596 33.450 9527.573 15,402.069

Unbranched Filament 4.364 6.494 1105.834 2989.937
Ellipsoid 0.126 0.935 32.040 430.328

Club 0.222 3.080 56.290 1418.034
Prosthecate 1.944 0.777 492.565 357.892
1 Percent of total community biovolume. 2 Unit of intensity is µm3/mm2 of substratum area.

Table 12. Distribution of active allometric metabolic rates among morphotype classes in river biofilm
communities developed on: plain glass (A); and polystyrene (B) substrata.

Morphotype Class
Community A
Metabolic Rate

(picoWatts)

Community B
Metabolic Rate

(picoWatts)

Community A
Intensity of Metabolic
Rate (picoWatts/mm2)

Community B
Intensity of Metabolic
Rate (picoWatts/mm2)

Coccus 13.070 29.302 102.782 240.557
Curved Rod 1.731 1.889 13.610 15.505

U-shaped Rod 0.170 0.355 1.340 2.912
Regular Rod 24.810 29.556 195.108 242.638

Unbranched Filament 18.902 69.734 148.647 572.489
Ellipsoid 0.155 2.732 1.058 22.431

Club 0.350 35.398 2.755 290.604
Prosthecate 2.812 1.904 22.116 15.630

Further morphotype-weighted analyses of biofilm communities at single-cell resolution provided
additional insights on their productivity and adaptive responses to environmental stresses. For
instance, sizing down to increase the cell’s surface area/biovolume ratio is one of several self-induced
responses used particularly by K strategists to adapt to starvation stress, and this morphological
change is often accompanied by: (i) expression of transport systems with higher affinity and others
with broader specificity that improve their ability to acquire essential nutrients when their local
apportionment is low; (ii) enhanced distribution of those resources within the cell; and (iii) turnover
of excess ribosomes and internal reserves of storage polymers [5,50–52]. An analysis of all cells in
the two communities indicated that their surface area/biovolume ratios had dissimilar distributions
(40.32% proportional dissimilarity, 495.65 average Eucledian distance, 0.515 Bray–Curtis distance, and
0.651 Canberra distance). Most of this pair-wise dissimilarity was attributed to the coccus morphotype,
which differed between the two communities by distance coefficients of 51.34% proportional
dissimilarity, 540.56 average Eucledian distance, 0.589 Bray–Curtis distance, and 0.662 Canberra
distance. The mean and median values of the surface area/volume ratio were significantly higher for
all cells and for the coccus morphotype in community A developed on the plain glass substratum, and
the probability (p) that these values differed by chance was extremely low (Table 13).
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Table 13. Comparison of surface area/biovolume ratios for cells in river biofilm communities A and B
developed on plain glass and polystyrene substrata, respectively.

Cells Sampled (N) Mean (p for Student t) Median (p for Mann–Whitney)

Community A all sampled cells (13,849) 11.835 (1.09 × 10−73) 12.281 (0.000)
Community B all sampled cells (21,664) 11.124 10.507

Community A cocci only (10,660) 12.686 (4.31 × 10−92) 14.762 (0.000)
Community B cocci only (15,377) 11.774 11.086

Bacteriovory grazing activities by heterotrophic protozoan nanoflagellates and metazoan
predators are important forces that shape the structure and composition of bacterial communities
in aquatic ecosystems, largely because resistance to and refuge from selective bacteriovory are
favored by large cell aggregates (e.g., microcolony biofilms) and elongated filamentous morphologies
(e.g., unbranched filament) that exceed the oral diameter of the cytosome or lorica mouth opening of
the predator, thereby increasing the predator’s difficulty to consume the microbial prey [5,48,57–60,63].
Thus, bacteriovory predation is both size-selective and morphology-selective, and the relative
abundance and length of the unbranched filament morphotype can provide insights on the intensity of
the selective pressure of phagotrophic predatory stress that contributes to shaping the aquatic microbial
community, in line with the evolutionary pressures to maximize resource intake [5,25]. That indicator
morphotype had a 79.2% greater abundance (Table 7), 21.1% greater cumulative length and 26.4%
greater length intensity in the biofilm community B (Table 14). The two-sample two-tailed Student
t tests indicated that these differences in communities A and B were statistically significant (p = 0.04).
These results plus the larger sizes of microcolony biofilms indicated earlier (Tables 2 and 3) predict
that bacteriovory grazing activities and adaptations to resist them were more intense in the biofilm
assemblage of community B, and the increased fitness of the larger microcolonies and longer elongated
unbranched filaments amidst the selective predatory stress likely contributed to their increased relative
abundance and productivity in these river biofilms [5,57–61,63]. These data-supported predictions
also help to explain how the presence of predator bacteriovory tends to increase individual bacterial
biomass under ambient nutrient conditions in aquatic ecosystems [48].

Table 14. Cell length analysis of the elongated unbranched filament morphotype in equal
sampling efforts of river biofilm communities A and B developed on plain glass and polystyrene
substrata, respectively.

Cell Length Metric Community A Community B

Cumulative Length (µm) 926.6 1122.0
Length Intensity (µm/mm2) 7287.0 9211.3

3.6. Spatial Ecology of River Microbial Biofilm Communities Analyzed at Single-Cell Resolution

The dependence of spatially structured heterogeneity on ecosystem function provides the impetus
to include analyses of spatial ecology in studies of microbial biofilm communities [5–7,9,11,12,15,25,
27,30–32,38,45,62,69–74]. Analysis of the in situ spatial patterns of microbes within biofilms reveals
statistically defendable data that support ecological theories of biogeography indicating that their
colonization behavior involves a spatially explicit process rather than occurs independent of their
location in this microenvironment [5–7,25,31,38,69–74]. Spatial dependence is considered positive
when neighboring organisms aggregate due to cooperative interactions that promote their localized
productive growth, and is considered negative when conflicting/inhibitory interactions result in their
uniform, self-avoiding colonization behavior [5–7,9,27,30,38,61,69–74]. This balance between positive
cooperation (aggregation) vs. conflicting competition (over-dispersion) behaviors is crucial in biofilm
ecology [5,38]. For instance, microbial cells exert stronger intensities of quorum-sensing communication
when closely aggregated within biofilms [9,62]. The analysis protocol to measure these distinctions
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of spatial patterns typically involves initial statistical tests of the null hypothesis of complete spatial
randomness, followed by additional quantitative measures of spatial dispersion/aggregation, and
finally by geostatistical analyses that test for the spatial autocorrelation, variation and connectivity in
continuously distributed “z-variate” attributes of selected features (e.g., cluster index) at georeferenced
X,Y coordinate locations of sampling points within the landscape domain [5–7,12,27,41,69–74].

Several features were extracted from each individual cell for this spatial analysis [5–7,9–13,15,
41,42,44,45,71,72], using optimized CMEIAS settings applied to high-resolution, fully segmented,
spatially calibrated montage images of each community assemblage (Table 1; examples are Figure 1i,j).
For instance, the proximity of neighboring cells impacts significantly on the intensity of successful
cell–cell interactions in biofilms, e.g., in situ “calling distance” of quorum sensing-mediated
communication [5,9,62]. Statistical analyses of the 1st nearest neighbor distance indicated that
neighboring cells were positioned further apart in the river biofilm community A developed on
plain glass, indicating a greater proximity of cells in community B developed on the polystyrene
substratum (Table 15).

Table 15. Comparison of 1st nearest neighbor distance distributions for individual cells in river biofilm
communities A and B developed on plain glass and polystyrene substrata, respectively.

Metric and Statistic Test Community A (µm) Community B (µm)

Sample mean ± std.
error 1.63 ± 0.01 1.30 ± 0.01

Sample median 1.45 1.19
75th Percentile 2.01 1.54

Maximum 6.29 5.79
Two-tailed Student t 33.95 (p same means): 1.89 × 10−209 A >> B

Mann–Whitney U 2.84 × 107 (p same median): 1.15 × 10−183 A >> B

The Empirical Distribution Function (EDF) of 1st nearest neighbor distances between individual
cells is a useful second test of spatial randomness. Its plot compares the cumulative rank of 1st
nearest neighbor distances between individual cells in the biofilm community to the theoretical
distribution that would occur if their pattern had complete spatial randomness [5–7]. Replicate
empirical distribution plots for cells in the two river biofilms are shown in Figure 13a–d.

Random distributions in the EDF plot are defined by a diagonal line connecting the XY intercept to
the maximum 1st nearest neighbor distance calculated by analysis. Data points on EDF plots of spatially
structured communities are commonly characterized by a sigmoidal curve, with positions representing
uniform spatial patterns when located below the theoretical random trendline, and aggregated
(clustered) patterns when they rise above the diagonal trendline to the 1.00 EDF asymptote [5–7].
A random distribution is indicated if the EDF curve increases with a shallow slope close to the diagonal
trendline. The results indicate that the proximity of cells in montage images of both communities
has significant spatial structure, with a minority arranged in a uniformly equidistant spatial pattern
and a significant majority that are spatially aggregated. Aggregated cells in community B on the
polystyrene substratum display a steeper incline of their EDF curve (red arrows pointing upward) that
reaches its asymptote at shorter (closer) distances between nearest neighbors (Figure 13c–d). These
results show similarities in EDF of spatially aggregated cells in replicated montages of the same biofilm
community (Figure 13a–d), and are consistent with visual inspection of local aggregate intensities
within representative high-resolution images (Figure 1i,j).
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Figure 13. Spatial pattern analyses of the empirical distribution functions of the 1st nearest neighbor
distances between individual cells in river biofilm communities (two montages each) developed on:
plain glass (a,b); and polystyrene (c,d). Arrows point to steeper slopes for community B.

The next tests of spatial point-patterns for these two biofilm communities evaluated the Holgate
and Clark and Evans indices of cell aggregation based on each cell’s 1st and 2nd nearest neighbor
distances and centroid X,Y coordinates, respectively [41,42,75,76]. These tests rejected the null
hypothesis of complete spatial randomness for both communities (p < 0.05), and indicated significant
aggregation in their overall spatial patterns of distribution (Table 16), consistent with the other spatial
analyses of these two communities.

Table 16. Point-pattern spatial aggregation analysis of cells in river biofilm communities. A and B
developed on plain glass and polystyrene substrata, respectively.

Aggregation Test Community A Community B

Holgate A 1 0.544 0.591
Clark and Evans R 2 0.938 0.964

1 Overall spatial pattern is significantly aggregated when A > 0.500. 2 Overall spatial pattern is significantly
aggregated when R < 1.000.

A useful counterpart to these point-pattern analyses is the Ripley’s K multi-distance clustering
analysis [5,42,71]. This second-order, point distribution statistic interprets multiple separation distances
between objects to determine point pattern changes over a wide spatial scale [5,71]. K(d)-d measures
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average object counts within circles with a distinct radius d centered on every object point in the
landscape divided by the mean spatial density of all objects present [42,71]. A plot of K(d)-d vs. all
radial separation distances in the landscape indicates uniform, random or clustered dispersion patterns
determined by a Monte Carlo simulation of the 95% confidence interval representing the critical limits
of complete randomness [42]. K(d)-d values indicate overdispersed, uniform distribution patterns
when located below the confidence envelope, and clustered distribution patterns when located above
the envelope [42,71]. Peaks of K(d)-d values exhibiting the most intense aggregation can also be
scrutinized at definable radial separation distances [5]. The Ripley K plots over the same sampling
interval range for both landscapes showed strong spatial structures with a uniform pattern at only
one short radial distance, and clustered patterns above the 95% confidence envelope for the remaining
99 greater radial distances examined (Figure 14a,b). Spatially aggregated patterns for cells in biofilm
community A on plain glass had one peak of K(d)-d at a radial distance of ~16 µm (Figure 14a), whereas
cells in biofilm community B on polystyrene exhibited multimodal peaks of K(d)-d at radial distances
of ~7, 30, and 66 µm (Figure 14b).Geosciences 2017, 7, 56  26 of 36 
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Figure 14. Donnelly edge-corrected plots of Ripley’s K multi-distance analysis of spatial patterns for
cells in biofilm communities A and B developed on: plain glass (a); and polystyrene (b) substrata,
respectively. The blue curves represent L(d)-d values at all neighboring radial distances. The red
lines define the upper and lower limits of L(d)-d values for the 95% confidence envelope of random
spatial patterns.

Five additional methods of single-cell analysis were performed to capture the spatial relationships
between neighboring cells and gain further insight on the predicted intensities of their in situ cell–cell
interactions and colonization behaviors on different substrata. These analyses examined their fractal
dimension, point kernel density, minimal spanning tree, linear point alignments, and geostatistical
autocorrelation of pertinent z-variates.

Fractal analysis of structured biofilms can discriminate self-similar spatial patterns of biomass
and deliver insights on intensity of cooperative microbial interactions, including their efficiency
in positioning for optimal utilization of fractal-like apportionments of resource distributions and
coexistence of multiple species among community members [5,7,15,25–27,30–32]. A box counting
analysis [15] of inverted binary montage images (e.g., Figure 1g,h) indicated that the spatial pattern
of individual cells in biofilm community B had a greater fractal dimension (mean ± std. dev. of
1.115 ± 0.046 compared to 1.019 ± 0.058 for community A) that was statistically significantly (Student
t of 2.562, p same mean of 0.04). This greater fractal dimension of individual cell distributions in the
biofilm community B indicates that they have higher spatial complexity, are responding to significantly
different ecological processes that control their spatial structure on the polystyrene substratum,
and predictably reflect an increased, fractal-like nutrient apportionment in that landscape [15,25–27].



Geosciences 2017, 7, 56 27 of 36

A kernel density analysis [42] was performed on the data of spatial point coordinates to examine
the in situ density of cells in both community landscapes. This spatial mapping tool uses a Gaussian
smoothness method to estimate the probability of (dis)continuity in gradients of local cell density
interpolated over the landscape area [42]. Figure 15 shows equivalent pseudocolored scalings of
spatial point kernel densities for cells in high-resolution montage images of the two river biofilm
communities. A comparison of the landscape domains clearly reveals differences in the heterogeneity
and discontinuity of georeferenced spatial intensity of the clustered cells in situ. Cells in community B
congregated into several foci with greater kernel point densities that were spread over larger regions of
the biofilm landscape, and had higher gradient connectivity with less discontinuity of kernel densities
compared to cell locations in the biofilm of community A. Kernel densities of cells in community A
had more discontinuity, as indicated by numerous internal gradients of aggregation that diminished to
the minimum (blue) density within the full range present.
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Figure 15. A Gaussian kernel density analysis of spatial point coordinates for georeferenced individual
cells on landscapes of river biofilm communities A and B developed on plain glass and polystyrene,
respectively. The maps are scaled to the same range of pseudocolored kernel densities and radii for
direct comparison of their biofilm landscapes. Isopleth contour lines connect regions of equal kernel
density in both landscapes. Kernel densities above 0.444 are pseudocolored white and occur in more
prominent patch areas in the biofilm landscape of community B.

Analysis of the minimal spanning tree is another powerful guide to envision predicted
opportunities of cell–cell interactions based on statistical analyses of the spatial connectivity between
individual community members within the landscape [77]. This method of spatial analysis creates
a subgraph image of the original landscape with each cell point linked by the shortest linear vertex to its
closest neighbor, ultimately producing a nearest-neighbor network of vertices inevitably connecting all
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cells to each other in a single tree with a multi-branched architecture having minimum total length and
containing no closed loops [27,42]. Visual inspection of the tree reveals local aggregated patches where
increased densities of vertices with short lengths predict high probability of intense cell–cell interactions.
Minimal spanning trees derived from nearest neighbor point analysis of representative montage images
of biofilm communities A and B (Figure 1i–j) are presented in Figure 16A,B. The minimal spanning
tree of community B provides a vivid representation of greater connectivity among many more patch
areas with branched vertices of shorter length.Geosciences 2017, 7, 56  28 of 36 
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Figure 16. Minimal Spanning Tree plots derived from spatial point pattern analysis of individual cells
in communities of river biofilms developed on: plain glass (A); and polystyrene (B). The spanning tree
for community B has many more branched vertices of shorter length that predict a higher intensity
of closely interacting cells in the biofilm developed on the polystyrene substratum, consistent with
several other results of this study.

Further indications of the spatial location of intense cell–cell interactions are provided in
two-dimensional directional plots that use a continuous sector method to transform individual
object point positions noted by their Cartesian coordinates into another domain of statistically
significant, linear alignments within the landscape [5,42,78]. Plots of linear point alignments computed
at equivalent sampling intervals for river biofilm communities A and B are presented in Figure 17A,B,
respectively. These results indicated many linear alignments whose multi-directional angular
orientations identified more “hot-spot epicenters” of interpoint intersections created by intense
clusters of closely neighboring bacteria in the community B developed on the polystyrene substratum.
Quantitative assessments of the number of linear alignments and their epicenters of clustered
intersections confirmed their increased intensities for community B over a range of increasing radial
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distances of sampling (Figure 18a,b). These results provide additional evidence supporting the
hypothesis that cell–cell interactions are predictably more abundant and intense within the spatially
clustered patterns of cells in the community B biofilm developed on the polystyrene substratum.Geosciences 2017, 7, 56  29 of 36 
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Figure 18. Frequencies of: linear point alignments (a); and epicenter line intersections (b) at six radial
distances of analysis for montage images of river biofilm communities A and B developed on plain
glass and polystyrene substrata, respectively. Values are reported for each montage image.

The final method of spatial ecology analysis for this study involved a geostatistical approach that
measures the dependency among z variate observations in georeferenced space in order to evaluate
the continuity or continuous variation of spatial patterns over that entire landscape domain [5,7,44,72].
It does so by quantifying the resemblance between z variate values at neighboring points as
a function of their spatial separation distance [5,7,44,72]. The data indicate positive autocorrelation
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if the z variate values of neighboring pairs are more similar when located nearby rather than far
apart [5,72], as occurs when communities are spatially clustered to facilitate cell–cell communication
and cross-feeding [9,38,62]. When found, autocorrelated z variates are then mathematically modeled
using regionalized variable theory to connect various spatially dependent relationships of their ecology,
including the range of real-world radial distances at which they occur in situ [44,68,72].

Geostatistical analysis produces a semivariogram (Figure 19) describing the extent that the
measured z variate exhibits autocorrelated spatial dependence between all cell pairs at multiple
sampled locations [5,7,68,72]. Spatial autocorrelation of two z variates were evaluated in this study:
a CMEIAS cluster index indicating the intensity of aggregated colonization behavior between nearest
cell neighbors [5,45], and the cell biovolume to test for cell–cell interactions among neighbors affecting
their allometric metabolism and growth ecophysiology [5,10,37]. For microbial biofilm analyses, these
two z variates typically have units of µm−1 and µm3, respectively.
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Figure 19. Semivariogram of the autocorrelated Cluster Index z variate for cells of community B
in the biofilm landscape. Sample variance is indicated by the dotted line and the best fit isotropic
mathematical model by the solid black line. The nugget and effective range are indicated by the
intercepts of the small red arrow on the Y-axis and the larger red arrow on the X-axis, respectively.

Figure 19 shows an example of the isotropic semivariogram for the cluster index of cells in
a montage image of the biofilm community B. Important discriminating features include the nugget at
the Y-axis intercept denoting the amount of measured microstructure that is not spatially dependent,
and the effective separation range indicating the X-axis value at 95% of the model’s asymptote height,
representing the maximal separation distance between sampling points at which the z variate is still
autocorrelated [5,7,68,72]. This example indicates a strong spatial autocorrelation of the cluster index,
with a very small nugget (sufficient points have been adequately sampled) and the autocorrelated
effective range that defines the maximal radial distance between cells that still influences their
neighbor’s ability to congregate locally in situ within the defined spatial domain. Geostatistical
tests for geometric anisotropy in the semivariograms at 0, 45, 90, and 135 compass degrees did not
indicate a preferential bias in directionality of cells in the biofilms, suggesting no major directional
influence of hydrodynamic forces exerted on their cell positioning during development of the biofilms
within the gently flowing river.

Table 17 summarizes the geostatistical analyses of the cluster index and biovolume z variates
for equal sampling efforts of individual cells in the two biofilm community landscapes. Both
biofilms exhibited spatially-dependent isotropic autocorrelation for both z variates. Their nugget
variances were small, indicating that the analyses were adequately sampled with little discontinuity of
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small-scale variation, and the majority of their measured microstructure was spatially autocorrelated.
The exponential model made an acceptable fit (low residual sum of squares) to the semivariogram data
for both community z variates. Two-tailed Student t and Mann–Whitney tests indicated that the cluster
index for cells in community B had significantly greater mean and median values (p of 1.52 × 10−141

and 0.000, respectively). In addition, the effective separation ranges for both autocorrelated z variates
were somewhat longer (hence stronger) with the biofilm community B developed on the polystyrene
substratum (statistically significant for biovolume). Most cells in both communities had nearest
neighbor distances that positioned them well within the corresponding specific effective ranges
of influence, and thus their “socially-adapted” proximity to each other was sufficient to enable
spatially autocorrelated cell–cell interactions affecting these ecophysiologically relevant metrics.
These geospatial analyses provide statistical proof of spatially structured biofilm communities with
predominantly aggregated distribution patterns that exhibit positive cooperative interactions between
proximal cells benefitting their colonization and productivity, and also reveal the real-world spatial
dimensions at which these cell–cell interactions extend in situ.

Table 17. Spatially autocorrelated z variates of cluster index and cell biovolume for river biofilm
communities A and B developed on plain glass and polystyrene substrata, respectively.

Community
(Image No.)

Autocorrelated
Z Variate

Model Fit
(Residual SS) Nugget Effective

Range (µm)
% of Cells within
Effective Range

A (No. 1) Cluster Index 2.06 × 10−4 0.0109 6.6 100
A (No. 2) Cluster Index 3.98 × 10−4 0.0092 6.6 100
B (No. 1) Cluster Index 1.45 × 10−6 0.0026 10.8 100
B (No. 2) Cluster Index 3.83 × 10−5 0.0086 9.6 100
A (No. 1) Biovolume 1.64 × 10−2 0.0410 6.9 96.46
A (No. 2) Biovolume 4.71 × 10−5 0.0009 6.6 96.47
B (No. 1) Biovolume 1.08 × 10−1 0.0748 11.6 99.94
B (No. 2) Biovolume 2.45 × 10−4 0.0022 12.3 99.89

4. Summary and Conclusions

This paper describes many applications of computer-assisted microscopy using CMEIAS bioimage
informatics software to perform a comprehensive in situ analysis of river biofilm ecology, thereby
advancing our understanding of this major lifestyle for microorganisms. The study compared two
river biofilm communities developed on contrasting substrata (plain borosilicate glass vs. polystyrene
polymer) with significantly different physicochemical properties, used optimized settings of digitally
processed images, their threshold segmentations, and spatial scales to perform phenotypic analyses
of microcolony biofilms and individual cells at appropriate resolutions. The many examples
described here illustrate how two-dimensional images of natural immature biofilms can be acquired
using conventional transmitted brightfield and phase-contrast microscopy before the substratum is
significantly covered with cells embedded within a confluent matrix, and then be analyzed to extend
the range of biofilm architectural and ecological characteristics beyond common three-dimensional
analyses using images acquired by multi-channel laser scanning confocal microscopy.

Many quantitative features were extracted from digital images of these foreground objects
to investigate their size, abundance, surface texture, contour morphology, fractal geometry,
morphological diversity, ecophysiology, and landscape/spatial ecology. The results of numerous
discriminating statistical tests that take into account the variation in replicated samples indicate
that river biofilm architecture exhibits significant geospatial structure in situ. These provide many
insights on the strong influence that substratum hydrophobicity vs. wettability exerts on biofilm
development and ecology at spatial scales in the micrometer range that are directly relevant to
their ecological niches. Important physicochemical properties controlled by these contrasting
surface characteristics that would influence microbial colonization behaviors at the glass–water and
polystyrene–water interfaces include the adsorption/dispersion/apportionment of nutrient resources,
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development of a conditional surface water layer, free energy of water displacement during cell
adsorption and relocation, primary and secondary energy minima and other attractive-repulsive
forces distinguishing hydrophilic-hydrophobic interactions in aqueous environments [22,23,79]. This
collective information should be considered when designing and interpreting experiments that use
polystyrene as the colonization substratum to identify the molecular and cellular requirements for
biofilm development [5].

Despite both biofilm assemblages being derived from the same natural bacterioplankton
community in the flowing river ecosystem, numerous test results provided compelling evidence
indicating that the biofilm community B developed on the polystyrene substratum was the recipient of
“higher rewards.” These benefits resulted in its significantly greater overall ability to convert locally
available resources into biomass, build enhanced architectural complexity/connectivity/dispersion,
increase morphotaxa diversity, and intensify numerous other ecologically important features indicative
of improved positioning of its colonization pattern for optimal apportionment of fractal-like
distributions of limiting nutrient resources, increased allometric metabolic rate and adaptive responses
to predator bacteriovory stress, and produce a higher abundance of spatially structured patches
of aggregated patterns that would enable stronger, positive, cooperative, autocorrelated cell–cell
interactions benefitting their productivity, as predicted [5,10,15,25–38,48–52,56–62,72–74]. Community
A had lower intensities for these phenotypic characteristics, plus a smaller morphotype diversity due
to higher dominance (less evenness) of its coccus morphotype class and indication of stronger adaptive
responses to starvation stress within its biofilm. These many contrasting features of the two microbial
communities indicate that they followed dissimilar paths of biofilm development on these substrata in
the same river ecosystem.

Many metrics of bioimage informatics used in this work are able to discriminate biofilm
architecture, ecophysiology and biogeography. This study provides the workflow direction, optimized
methods of data acquisition and analysis of statistical significance, and ecological interpretations of
test results that are strongly embedded in ecology in general and provide evidence of their enhanced
productivity, connectivity, edge boundaries and shape complexities with greater fractal dimension
that create opportunities of strong social colonization behavior promoting their further expanded
growth [5,9,10,15,25–38,61,62]. This collection of technologies complements other direct and indirect
methods to measure the physical forces of microbial adhesion to abiotic surfaces [79]. In addition,
including image analysis enables the user to quantitatively differentiate the ecologically important
spatial patterns of microcolonies and individual cells in microbial biofilms rather than just report
a qualitative description of a “clumpy” or “dispersed” landscape [16,56].

We conclude that substratum physicochemistry significantly impacts on the early immature
stage of biofilm development in river ecosystems, and that bioimage informatics can fill major gaps
in understanding the geomicrobiology and microbial ecology of biofilms when examined in situ
at suitable spatial scales before they become confluent. This study also illustrates how CMEIAS
computer-assisted microscopy performed at single-cell resolution can contribute useful information
supporting contemporary studies that seek to understand bacterial individuality in order to test the
emerging theory of individual-based modeling and ecology, which predicts that single cell variation
is a major driver of evolutionary events and the ecological dynamics of population structure and
function [5,61,80–82].
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decision to publish the results. The next major upgrade of CMEIAS (ver. 4.0, currently under development) will
contain many new analytical features documented here, be copyrighted by Michigan State University, include
various educational scaffolding user-support components, and be available as a free download for educational
and research purposes at the project website [1].
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