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Abstract: In image processing, it is commonly assumed that the model ruling spectral mixture in
a given hyperspectral pixel is linear. However, in many real life cases, the different objects and
materials determining the observed spectral signatures overlap in the same scene, resulting in
nonlinear mixture. This is particularly evident in volcanoes-related imagery, where both airborne
plumes of effluents and surface deposit of volcanic ejecta can be mixed in the same observation line
of sight. To tackle this intrinsic complexity, in this paper, we perform a pilot test using Nonlinear
Principal Component Analysis (NLPCA) as a nonlinear transformation, that projects a hyperspectral
image onto a reduced-dimensionality feature space. The use of NLPCA is twofold: (1) it is used
to reduce the dimensionality of the original spectral data and (2) it performs a linearization of the
information, thus allowing the effective use of successive linear approaches for spectral unmixing.
The proposed method has been tested on two different hyperspectral datasets, dealing with active
volcanoes at the time of the observation. The dimensionality of the spectroscopic problem is reduced
of up to 95% (ratio of the elements of compressed nonlinear vectors and initial spectral inputs),
by the use of NLPCA. The selective use of an atmospheric correction pre-processing is applied,
demonstrating how individual plume and volcanic surface deposit components can be discriminated,
paving the way to future application of this method.
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1. Introduction

Volcanoes can inject a great amount of gaseous and particulate effluents to the atmosphere, like
water vapour, sulphur dioxide and ash, both at background degassing conditions and during explosive
eruptions [1]. Depending on the volcanic activity and the emission fluxes, these effluents can organize
as volcanic clouds, which interact with solar and terrestrial radiation, thus affecting the observed
spectra in the remotely observed images. The main types of volcanic aerosols are mineral ash, directly
emitted by the eruption and secondary sulphate aerosols (SSA), which are produced in-plume by
oxidation and hydration of SO2 emission. Ash can be detected by thermal infrared (TIR) observations
using absorption signatures between 8 and 12 µm (1250 and 833 cm−1), typically centred around
10 µm (1000 cm−1) (e.g., [2,3]). Sulphur dioxide emissions are measured both with TIR (e.g., [4–6])
and ultraviolet/visible (UV/VIS) satellite instruments [7]. Recently, targeted sensitivity analyses have
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shown that also SSA have a typical spectral signature in the TIR spectral range that can be used to
detect and characterise this volcanic particulate product [8,9].

Apart from quantitative and semi-quantitative observation of these emitted species using high
spectral resolution (sounder) instruments, the interaction of the radiation with the volcanic plumes
allow the detection and tracking of the volcanic plume and the identification of the species therein,
by multi- and hyper-spectral (imaging) observations (e.g., [10–14]). Recently, neural network (NN)
approaches have been tried in order to quantify volcanic ash and SO2 using both multi-spectral
and hyper-spectral data [15–17]. In such cases, unmixing the volcanic cloud spectral signature from
other spectral features, as those arising from other atmospheric components in the line of sight of the
instruments or from the surface, is vital to rule out these different contributions [3,18].

Hyper-spectral imaging sensors normally record scenes in which numerous interacting objects and
material substances, both at the surface and in the overlying atmosphere, contribute to the spectrum
measured from a single pixel, by their interaction with the atmospheric radiation recorded by the
sensor. Given such mixed pixels, the process of identification of the individual constituent materials in
the mixture (endmembers), as well as the proportions in which they appear (abundances), is commonly
referred to as spectral unmixing. In remote sensing images, usually the endmembers correspond
to the spectral response of macroscopic materials present in the scene, such as surface water, soil,
human structures (like buildings) and dominating atmospheric features (like thick meteorological or
aerosols clouds) [19].

In recent literature, unmixing techniques are characterized as linear or nonlinear processes [20].
Linear mixtures are dominant when the incident light interacts with objects composed of one
individual material before reaching the sensor (different physical/micro-physical properties but the
same chemical/mineralogical composition). Thus, light reflected from different materials are mixed
in the sensor itself, with minimal interference [21–23]. On the other hand, nonlinear mixing occurs
as the result of physical interactions between light scattered from multiple materials, with different
chemical/mineralogical composition. These interactions can be sub-divided into multi-layered and
microscopic interactions. Multi-layered interactions occur when light, reflected from one individual
material, interacts with other individual and distinct objects before reaching the sensor. Microscopic
mixing occurs when two or more materials are physically mixed and this mixture interacts with
radiation. In the case of the multi-layered mixing, the first order terms are sufficient to describe
the mixture leading to the bilinear model [24,25]. On the other hand, microscopic interactions
require an extremely complex physical modelling of the mixture and the interaction with radiation.
For these reasons, only approximation are presently proposed in literature [26,27]. However, techniques
developed for the processing of internal mixtures are inefficient in the multiple interaction scenario
(and vice versa). Moreover, these models are based on the assumption that the mixtures are produced
by different materials having Lambertian surfaces. In many real cases, the light that interacts with
different materials does not produce in an isotropically distributed radiance. All these effects result in
nonlinear mixing.

A more flexible solution can be achieved by using machine learning approaches, such as NN [28–30].
These algorithms can learn nonlinear correlations in a supervised fashion based on a collection of
examples (training dataset). However, the universal approximation properties of NN [31] assumes
that the training dataset covers all the possible physical scenarios and interactions between radiation
and fixed materials. Practically, a very large training dataset is necessary to approach the convergence
of NN properties in several possible scenarios, given the problem under investigation. This large
training dataset is not always available. A possible alternative is to project the hyper-spectral image
into a linearised feature space by means of a nonlinear transformation. In this way, any kind of linear
unmixing method can be effectively applied to these linear features. Based on this idea, in this paper,
we propose the use of the nonlinear Principal Component Analysis (NLPCA) for the projection of the
hyper-spectral image into a feature space [32]. The obtained features are then used as input to a linear
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unmixing algorithm for the identification of the endmembers. Finally, the abundance estimation is
performed solving the constrained least square problem.

The remainder of the paper is organized as follows: in Section 2, the the proposed approach is
introduced, while in Section 3, experimental methodology as well as an in-deep analysis of the results
are provided. Finally, Section 4 gives some conclusion remarks.

2. Nonlinear Spectral Unmixing

The general framework of spectral unmixing, either linear or nonlinear, is composed of three
main processing steps: (1) dimensionality reduction; (2) endmember identification and (3) abundance
estimation, as depicted in Figure 1. In cases where the surface characterisation is the sole target
of the analysis, the observed radiances can be converted to surface reflectances by means of
an atmospheric correction, aimed at compensating for the atmospheric attenuation and scattering.
Performing an accurate atmospheric correction is often an arduous task, due to coarse information on
the atmospheric composition. Moreover, applying a correction for the atmospheric contribution may
have a negative impact on the spectral unmixing when the task of the analysis is to find endmembers
present in the atmosphere. The three processing steps are discussed in the following.

Figure 1. Schematic diagram describing the complete processing for hyperspectral unmixing.

As for step 1 (dimensionality reduction), since hyperspectral images are composed by hundreds
of extremely correlated bands, it is possible, and indeed beneficial, to reduce the effective dimension
of the input data by use of decorrelation approaches. This processing step projects the image into
a reduced dimensionality feature space. The algorithm performance in terms of computation time,
complexity and performances are, then, generally improved [33]. However, a careful selection of the
dimensionality of the feature space is essential because this choice limits the number of possible final
endmembers. As for step 2 (endmembers identification), there exist several approaches to rule out
endmembers in a given image scene, which fall into three main groups. Geometrical approaches
are based on the hypothesis that linearly mixed vectors are in a simplex set. Statistical approaches
use parameter estimation techniques to determine the endmember. Sparse regression approaches
formulate unmixing as a linear sparse regression problem. As for step 3 (abundances estimation),
given the hyperspectral image and the endmembers identified in the previous step, the abundance
of each endmember is quantified solving a constrained optimization problem, which minimizes the
residual between the observed spectral vectors and the linear space spanned by the inferred spectral
signatures. Usually, in linear unmixing, the fractional abundances are constrained to be nonnegative
and to sum to one. While atmospheric correction and dimensionality reduction are optional, the
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endmembers’ determination and abundances’ estimation steps are central to any unmixing approaches.
Often, steps 2 and 3 are implemented simultaneously [34]. In the case of nonlinear mixtures, the use
of linear approaches may result in the false identification of non-physical endmembers and in most
cases cannot detect the whole of endmembers actually present in the scene. In the specific case of
nonlinear approaches, the endmembers’ determination and abundances’ estimation steps require
a prior detailed knowledge of the possible physical interactions between materials, which is not
always available. In order to override this limitation, in this paper, we propose a novel approach
that, instead of deriving an extremely complex nonlinear model, linearizes the input data by means
of a preliminary nonlinear transformation. In particular, we propose to use the NLPCA to project
the original hyperspectral image into a linearized feature space. The advantage of the use of NLPCA
is twofold. On the one hand, it performs a linearization of the original information. On the other
hand, it reduces the data dimensionality. The NLPCA, thanks to its nonlinear functions basis, permits
obtaining a set of features that do not present nonlinear correlations, thus allowing the subsequent use
of linear approaches for the endmember determination and inversion phases. As for the endmember
identification, we proposed the use of the N-FINDR algorithm [35]. This choice is based on the
main advantage of the N-FINDR, which is able to automatically detect endmembers without a priori
information. This characteristic is extremely valuable in the case of NLPCA, where the obtained
features may not always have a physical interpretation. The abundance estimation step will be then
carried out by using the SUnSAL algorithm [36] for the solution of the constrained least square problem.
In the following, a detailed description of the NLPCA approach, as well as the N-FINDR and SUnSAL
algorithms are reported.

2.1. Nonlinear Principal Component Analysis

In this work, NNPCA, commonly referred to as a nonlinear generalization of the PCA techniques,
is performed by an AutoAssociative Neural Network (AANN) or auto-encoder [32]. A standard
auto-encoder is a conventional feedforward neural network, having a symmetrical three layer topology,
where input and output layers have the same number of nodes, and a hidden layer, usually referred to
as bottleneck, of smaller dimension than either input/output layers. Both input and output layers have
sigmoidal activation functions. The auto-encoder is trained to perform identity mapping, meaning that
the input has to be equal to the output [37]. This means that, after a successful training phase, the fewer
nodes in the bottleneck layer, than in the input/output, represent (in fact encode) the information of
the inputs in a smaller dimensionality space. Due to the nonlinear nature of NNs, this information
compression is obtained with nonlinear combinations of the inputs. In other words, data compression
caused by the network bottleneck forces hidden units to represent significant features in the data,
removing redundancies. The smaller-dimensionality information vector can, then, be used as input for
the subsequent processing.

Different from standard auto-encoders, the topology of a nonlinear AANN uses by default
three hidden layers, including the internal bottleneck layer of smaller dimension than either input
or output layers (Figure 2). In order to understand why three hidden layers are necessary to obtain
a nonlinear representation of the data, it is useful to consider the nonlinear AANN as a combination
of two successive neural networks or functional mappings, namely coding and decoding sub-networks,
as depicted in Figure 2.
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Figure 2. General structure of the Autoassociative Neural Network (AANN). The AANN can be seen
as a concatenation of two simple networks. The first network project the original data Y into a lower
dimensionality subspace T by means of the transformation function G. The second network reproject
the compressed data T back into the original space by means of the transformation function H.

The first sub-network represents the encoding or extraction function:

T = G(Y), (1)

which projects the original m-dimensional data X onto a lower dimensional subspace defined by the
activations of the units in the central hidden layer (bottleneck), producing a smaller-dimensionality
(say n-dimensional) vector T by means of the mapping F. Similarly, the second sub-network defines
an arbitrary functional mapping:

Y′ = H(T), (2)

which projects from the smaller-dimensionality feature space back onto the original m-dimensional
space, by means of the mapping funtion H. The ability of any NN to fit arbitrary nonlinear functions
depends on the presence of a hidden layer with nonlinear nodes. In [31], it was shown that any
nonlinear function can be approximated by a superposition of a set of σ(x) transformations that
are continuous, bounded and monotonically increasing functions, with σ(x) → 1 as x → +∞ and
σ(x) → 0 as x → −∞. This property is often called universal fitting [38], and is a generalisation of
the Weierstrass theorem (which applies to polynomial functions). Thus, a network lacking a hidden
layer is only capable of producing linear combinations of the inputs, given linear nodes in the output
layer. In the same way, a network lacking a hidden layer but including nonlinear activation functions
in the output layer is only capable of approximating multi-variable sigmoidal functions. Similarly,
a NN with linear nodes in the hidden layer will return linear combinations of the inputs. From these
considerations, it can be affirmed that the NLPCA can be implemented by two NNs approximating
the nonlinear functions G and H. The NN producing the G mapping has as an input layer of m nodes
followed by the hidden layer (often called mapping layer) with m1 > n nodes and sigmoidal transfer
functions (to assure the universal fitting property of NNs). The output layer of this subnet contains
n < m nodes and for this reason it is often called bottleneck. The second NN (also called decoding subnet)
producing the H mapping, has an input layer with n nodes, followed by the hidden layer (often called
demapping layer) with m2 > n nodes and sigmoidal transfer functions. The output layer yields the
reconstructed data and thus contains m nodes.
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In order to correctly define the two mapping functions G and H, a supervised training of the two
NNs is required. This needs, in principle, a complete knowledge of the relations between the input and
output spaces, which is only an ideal case. From a practical point of view, this means that while the
inputs of the coding subnet is known, the output is unknown. Conversely, the input of the decoding
layer is unknown while its output is known (i.e., the input, as the coding+decoding NN are aimed at
approximating an identity mapping). Therefore, a direct supervised training of the two sub-networks
is not feasible. However, one can observe that combining in series the two ANNs is equivalent to
define a composite function Y′ = H(G(Y)) that links the original data Y with its reconstruction version
Y′. Thus, practically, the combined network is trained to produce the identity mapping. This means
that the parameters of the network representing Y′ are optimized so that the reconstructed outputs
match the inputs as closely as possible. The training aimed at learning the identity mapping has
been called self-supervised backpropagation or autoassociation, leading to the definition of these NNs as
AutoAssociative NNs (AANNs).

For AANNs, the training phase is an iterative process and is completed when the following sum
of squared errors is minimized:

E =
n

∑
p=1

m

∑
i=1

(ŷi − yi)p
2. (3)

In Equation (3), ŷi and yi are the calculated and target output vectors of the AANN, for a training
set of p examples.

Once the AANN is trained, it is possible to use extract the coding sub-network only, to project the
original data into a lower dimensional space given by the bottleneck layer. Thus, the f NLPCA can be
obtained from the bottleneck. From a topological point of view, it can be noted that, while the number
of nodes in the bottleneck layer defines the features subspace, the nodes in the coding and decoding
layers are related to the complexity of the mapping and demapping functions. As it can be seen in
Figure 3, the NLPCA defines a set of nonlinear functions able to describe the nonlinear correlations
between input variables. The result is a linearised feature space. However, one of the main difficulties
in designing the AANN relies in the selection of the correct number of nodes in the three hidden layers,
since the mapping functions as well as the subspace dimension strongly depend on them.

Figure 3. Example of a nonlinear dataset being mapped into feature space by means of linear and
nonlinear PCA.

The best NN topology can be retrieved by using a simple heuristic grid search algorithm that
varies recursively the number of nodes of the hidden layers and evaluated the value of the Means
Square Error (MSE) error [39]. Then, the topology presenting the smallest error is selected. However,
without starting assumptions, this approach can be extremely time consuming and different optimal
solutions should be found. Starting from p that represents the number of samples in the training set,
a separate constraint is imposed by each output node, so that the total number of the possible adjustable
parameters (weights and biases for all network connections and nodes, respectively) must be less than
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p×m. Moreover, m, M1, M2 and n being the number of nodes of input/output, coding, decoding and
bottleneck layers, and analysing the structure of the AANN used here, it can be found that the number
of adjustable parameters is (M1 + M2)(m + n + 1) + m + n that implies the following inequality:

M1 + M2 �
m(n− 1)− n

m + n + 1
. (4)

The aim of a dimensionality reduction method is to reduce the original spectral dimension into
a lower dimensional space. This can be translated into the AANN structure as a condition on n, i.e.,
n� m, p. Then, Equation (4) becomes:

M1 + M2 � n. (5)

Assuming a balanced structure of the AANN, M1 and M2 should have the same dimensions
(M1 ∼ M2 = M), we have:

2M� n. (6)

It is worth noting that Equation (6) is effective only if the number of mapping/demapping nodes
M is greater then the number of nodes in the bottleneck layer n. Otherwise, there will not be enough
data to effectively extract n NLPCs. It is also worth underlining that, since the output has to simply
replicate the input, there is no need to have a specific a priori knowledge for the learning phase
implementation. This implies that the AANN training can be performed in a fully automatic way and
that all pixels in the image can be used as training samples for this task. Practically, this has actually
been the technique adopted in this paper.

2.2. Endmember Extraction and Abundance Estimation

After the dimensionality reduction phase been accomplished, the subsequent endmember
extraction and abundance estimation phases need to be accomplished. Among the several algorithms
developed for automatic or semiautomatic extraction of spectral endmembers, the N-FINDR algorithm
attempts to automatically find the simplex of maximum volume that can be inscribed within the
hyperspectral data set [35]. The N-FINDR implementation is firstly initialized by randomly selecting
a set of q endmembers {E1, E2, ..., Eq}, where q ≤ n+ 1, and n corresponds to the dimension of the feature
space. Then, the volume of the simplex defined by the current set of endmembers is derived by:

V
(
E1, E2, ..., Eq

)
=

∣∣∣∣∣det

[
1 1 · · · 1
(E1 E2 · · · Eq

]∣∣∣∣∣
(q− 1)!

. (7)

Then, for each pixel vector X (i, j) of the input hyperspectral data, the volume V is recalculated by
testing the pixel in the first endmembers position:

V
(
X (1, 1) , E2, ..., Eq

)
V
(
X (1, 2) , E2, ..., Eq

)
...

V
(
X (r, c) , E2, ..., Eq

)
,

(8)

where r and c represent the number of rows and columns of the image. If one of the volumes calculated
in Equation (8) is greater than V

(
E1, E2, ..., Eq

)
, then E1 is replaced with the pixel corresponding the

the maximum volume, and a new set of endmembers is produced. The same procedure is then carried
out iteratively by testing the volumes in the other endmembers positions, retaining the combinations
corresponding to the maximum volumes. The processing ends when all the pixels in the input data
have been tested in each endmember position.
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Since in the proposed approach the input data corresponds to the features derived by the NLPCA,
the obtained endmembers are represented in the feature space. In order to obtain the equivalent
endmembers in the spectral domain, the decoding sub-network of the NLPCA is used.

Once the endmembers are obtained, the fractional abundances estimated by minimizing the total
squared error, under the constraints of non-negativity and/or the sum to one:

minx

(
1
2

) ∥∥∥Ea− S
∥∥∥2

2
,

x ≥ 0,
1Tx = 1,

(9)

where E ∈ <q denote the matrix containing the q endmembers, a ∈ <k the fractional abundance vector,
and S ∈ <k the observed mixed pixel. In order to solve the optimization problems, we used the
SUnSAL algorithm, which is an instance of the Constrained Split Augmented Lagrangian Shrinkage
Algorithm (C-SALSA) methodology to effectively solve a large number of constrained least-squares
problems sharing the same matrix system in [36]. Figure 4 depicts the complete schematic of the
proposed approach.

Figure 4. Schematic diagram describing the proposed processing for hyperspectral unmixing.

3. Experimental Results

In this section, two real measurements datasets have been considered to test the proposed
technique. Both radiance and reflectance data, i.e., without and with atmospheric correction, are
used in order to analyze the effect of these two options in our approach. Differently from simulated
data, real images are, generally, strongly conditioned by a great deal of additional circumstances,
such as differences in illumination through the scene, angle of view as well as multiple scattering
effects. These factors have been reported to influence the endmember selection in linear unmixing
approaches [34]. As for the assessment of the effectiveness of the proposed technique, a qualitative
analysis has been carried out by considering comparisons with ground truth fractional abundance maps
and spectral library. In the case of abundance maps’ ground truth, the effectiveness of the technique can
be assessed by estimating the abundances of the endmembers in the scene and comparing the obtained
values with reference fractions. In using ground truth spectral library, the quality of the endmembers
is evaluated by comparing them with some reference spectral signatures using spectral similarity
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criteria. In order to further appreciate the effectiveness of the proposed method in handling nonlinear
mixtures, the obtained results have been compared with those obtained applying the endmembers
extraction and abundance estimation phases, directly to the hyperspectral image and to the linear
features obtained through the use of standard PCA.

3.1. Campi Flegrei

On a first experiment, we applied the proposed technique to a hyperspectral image acquired with
the Hyperion satellite-borne sensor, onboard the EO-1 satellite. Hyperion acquires 220 hyperspectral
bands in the Visible/near-infrared, from 0.4 to 2.5 µm. However, only 155 bands have been retained
from the original dataset, discarding the most noisy and the bands without relevant information for this
application [40]. The considered Hyperion image has been acquired in 2008 over the Campi Flegrei (CF)
area, northwest of Naples, Italy. In this experiment, we focused on the caldera area, comprising more
than 24 craters and volcanic edifices and presenting effusive gaseous manifestations, in particular in
the Solfatara crater.

The CF region is located in the Campanian plain, which is a NW-SE trending Plio-Quaternary
extensional basin bordered by carbonate platforms. The CF caldera has been interested by volcanism
and hydrothermal activity for thousands of years [41]. The main structures of CF consist of two
nested calderas formed after the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions [42].
The outer is the Campania Ignimbrite (CI) caldera, dated 39 ky, while the inner is the Neapolitan
Yellow Tuff (NYT) caldera, dated 15 ky [43]. Currently, the surroundings of Solfatara crater are
the area with the strongest geothermal emission in CF. Large quantities of volcanic-hydrothermal
CO2 are released through soil diffuse emission. The gas emissions from this area consists in about
5000 t day−1 of a CO2/H2O mixture. Its power is 100 MW, which is 10 times higher than the conductive
heat flux over the whole caldera surface [44]. Since the image has been acquired from satellite,
the atmospheric contribution has a relevant role. In this first example, an atmospheric correction is
applied. Figure 5 reports the ground truth of the Hyperion image.

The Hyperion image after the atmospheric correction has been processed to mitigate the striping
effect. The corrected image has been then projected in the feature space by means of the NLPCA.
In particular, we found that the optimal topology for the AANN was 155 input/output nodes, 80 nodes
in the coding/decoding layers and nine nodes in the bottleneck layers. Then, the dimensionality of
the hyperspectral input vector is the reduced by about the 95% by the nonlinear compression of the
implemented AANN.

Once the AANN is trained, the N-FINDR algorithm has been applied to the nine nonlinear principal
components obtained from the bottleneck layer of the AANN and 10 endmembers have been detected.
The obtained endmembers have been used as input to the SUnSAL algorithm in order to estimate the
fractional abundances of each endmember (Figure 6). Finally, the 10 endmembers (EM, in the following)
have been processed through the decoding sub-network of the AANN in order to retrieve their spectral
signatures reported in Figure 7.

Figure 5. Hyperion image: ground truth.
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Figure 6. Hyperion image: fractional abundances obtained from the NLPCA derived data
corresponding to the obtained endmembers (EM1, EM2,...,EM10).

Figure 7. Spectral signatures of the endmembers obtained with the proposed method for the
Hyperion image.

From the obtained endmembers, it can noted that EM1, EM6 and EM8 present similar spectral
signatures, which, according to the available ground truth, represent different extents of man-made
structures. Then, a new endmember representing man-made structures is obtained by summing up
these three endmembers (Figure 8). In a similar way, both EM4 and EM10 could be associated to
different types of vegetations. Finally, EM2 and EM5 clearly refer to water and bare soil, respectively.
The remaining three endmembers EM3, EM7 and EM9 are the most interesting from a volcanic
products deposit detection point of view. Proximal volcanic material is collectively identified by EM3
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and 7, while distal material, in the coastline area and more northwestwards, by EM9. The spectral
signatures of EM3, 7 and 9, while each one different with respect to the others, present a similar lower
reflectance (higher absorption) in the range between about 950 nm and 1000 nm. This identifies similar
material, while in morphological (surface structure, rugosity, macroscopic properties of the deposit)
and, probably, detailed mineralogical composition. Further studies are ongoing, starting with this pilot
analysis, to detect the precise composition of the structures identified with these endmembers, using
their retrieved spectral signatures.

Figure 8. EM1, EM6 and EM8 combined to form a new endmember representing manmade surfaces.

For sake of comparison, the endmember extraction (N-FINDR) and abundance estimation (SUnSAL)
phases have been applied also to the original image and the low-dimensionality image obtained through
the use of linear PCA, respectively. In particular, for the PCA, there have been selected nine linear principal
components in order to have a comparison with the NLPCA. The obtained abundance maps are reported
in Figures 9 and 10. In a first analysis, it can be noted that, in both cases, the noise have a strong impact
on the abundance maps. As for the abundance maps obtained with the original image, EM1, EM4
and EM7 can be associated to manmade surfaces. EM3 seems to be associated to water surfaces while
EM2 can be associated to low reflective surfaces. EM5 and EM6 are related to vegetation while EM9
could be associated to bare soil. EM8 is associated to both volcanic deposits and also dense vegetation.
Finally, EM10 is strongly influenced by noise and cannot be associated to any material. On a more
deep analysis, it can be noted that volcanic products deposit cannot be identified in one endmember
but are present in both EM7 and EM8. A similar result can be obtained analyzing the abundances
derived from the nine linear PCs. However, the amount of noise affecting the abundance maps is
higher. In both cases, the volcanic products deposit are not completely identified.

The main result of this first experiment is that, using an atmospheric correction routine,
the volcanic plume features have been apparently removed and the characterisation of the surface
volcanic material deposit is then possible as a lesser complex spectroscopic interpretation problem,
and with a limited output space dimensionality.
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Figure 9. Fractional abundances obtained from the original Hyperion image.

Figure 10. Hyperion image: fractional abundances obtained from the PCA derived image.

3.2. Kilauea Volcano

A second experiment has been carried out using a hyperspectral image obtained with the AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) sensor. AVIRIS is an airborne optical sensor
delivering calibrated images of the upwelling spectral radiance in 224 contiguous spectral bands
with wavelengths from 0.4 to 2.5 µm. The image used in this case-study has been acquired in 2007 over
the Puu Oo crater, in the eastern rift zone of the Kilauea volcano of the Hawaiian Islands Figure 11.
The volcanic activity is usually characterized by emissions of both ash and sulphur dioxide. This image
was taken during moderate activity of the volcano.

In this case, an atmospheric correction is not applied. By opposition with respect to the previous case,
this processing chain allows to actually identify plume features by means of the endmember extraction.

As done for the previous experiment, the AVIRIS radiance image has been projected in the feature
space by means of NLPCA. In this case, the optimal topology is found to have 224 nodes in the
input/output layers, 110 nodes in the coding/decoding layers and 10 nodes in the bottleneck layer.
Then, as for the CF case-study, also in this case, the dimensionality of the hyperspectral input vector is
reduced by about the 95% by the nonlinear compression of the implemented AANN. Subsequently,
seven endmembers and the corresponding fractional abundance maps have been identified through
the use of the N-FINDR and SUnSAL algorithms (Figures 12 and 13).
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Figure 11. Color and false color representations of the AVIRIS image.

Figure 12. Abundance maps obtained from the AVIRIS image using the NLPCA approach.
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Figure 13. Spectral signatures of the endmembers obtained with the proposed method for the
AVIRIS image.

Surface features have been identified, as for the previous case. Thanks to comparison with
ground truth, endmembers EM2 and 6 are associated with different types of vegetation and EM4
is associated to bare soil, i.e., basalt. Surface volcanic deposit are also identified, as for EM3 that
is associated with tephra deposits. Differently with respect to the CF case, volcanic plume features
here are also identified, as they are not screened out by the atmospheric correction carried out for the
previous case. Endmember EM1 can be associated with water vapour emissions and the subsequent
condensation to liquid clouds of volcanic origin. It tracks very well the plume geometry, as water
vapour is a major volcanic effluent and is very apparent in the extracted image using only EM1.
Looking at the spectral signature of this endmember, the rapid decrease of the reflectivity between
the visible range (maximum at about 500 nm) and the near infrared, point at scattering processes by
relatively small particles, as freshly nucleated water droplets following the emission by the volcano.
Endmember EM5, while presenting several surface structures, including volcanic deposit, as for EM3,
still holds a certain representativity of the plume object, in particular in the near range, as visible
from Figure 12. The spectral signature of EM5 has a larger spectral structure than EM1, in the visible
range, and so it can be argued that it carries information about larger ash particles. This hypothesis is
supported, in conjunction with these spectroscopic/scattering considerations on the spectral signature
of this endmember, by the fact that: (a) the plume identification of EM5 is confined to the near-crater
area, thus suggesting coarse particles with quick sedimentation, and (b) the simultaneous identification of
surface volcanic deposit features, probably with mineralogical composition consistent with the plume-ash
discussed here. Further studies are required to attempt finer attribution of these mixed plume/surface
endmembers’ identification to specific volcanic products, even if these first results are encouraging
towards the application of the methodology. Finally, EM7 is associated to the different illumination paths
(shadows), and then carry very limited information on atmospheric or surface features.

Similarly to the previous experiment, a comparison with the results of the spectral unmixing
(N-FINDR + SUnSAL), applied to the original and the PCA derived images, respectively, has been
carried out. According to the abundance maps reported in Figures 14 and 15, it can be noted that,
similarly to the NLPCA case, in both cases, there are endmembers related to different vegetation
surfaces, bare soil and water vapour. However, the main difference relies in the way the volcanic
materials are detected. In particular, with linear approaches, it is not possible to detect all the volcanic
materials present in the scene, as it was possible with the NLPCA approach.
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Figure 14. Abundance maps obtained from the original AVIRIS image.

Figure 15. AVIRIS image: abundance maps obtained from seven linear PCs.
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4. Conclusions

In this paper, a nonlinear spectral unmixing procedure is tested, using AANN, to separate the various
components of remote sensing imagery of volcanoes and their products. The problem of separating
background, surface deposits of volcanic ejecta and airborne plumes of volcanic effluents, basing on their
individual spectral signatures, from a given remote sensing image, is tackled. The method is tested on two
different cases: (1) Campi Flegrei area (deposits and fumaroles) and (2) Kilauea volcano (deposits and
plume for a moderate eruption). The dimensionality of the spectroscopic problem is reduced of up to
95%, using narrow-bottleneck AANNs, thus removing the redundancies of the hyperspectral input
data. An atmospheric correction procedure is applied to the first case but not to the second. The Campi
Flegrei case-study is very suitable to try the complete removal of the plume interference, due to the
limited effluents concentration for this case. The atmospheric correction has enabled the access to the
identification of volcanic and background features for this case. On the contrary, the thicker plume for
the Kilauea case-study made this case very well adapted to investigate both plume and surface volcanic
products. Then, an atmospheric correction is not performed to retain the airborne plume information
for the subsequent analyses. For Kilauea, the method allows the identification partial separation of
different plume (e.g., water vapour/condensed droplets, ash) and surface tephra deposits. While more
analyses and validation efforts, using ground truth or complementary remote observations, are needed,
this pilot study demonstrate the potential of this methodology to tackle different unmixing problems
linked to the identification of volcanic products from remote-sensing imagery. This is also confirmed
by comparing the results obtained with the proposed method with those obtained using classical linear
approaches. However, it is important to state that the obtained endmembers are extreme points only in
the feature space but they might not be in the original observation space. For this reason, the obtained
abundances may not lead to objective quantification of the endmembers. Finally, if not correctly
designed, the dimensionality reduction using the NLPCA approach, may lead to endmembers that
have physical meaning but do not exist in the real world. This is the case of features representing the
illumination or in some cases sensor artifacts.
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