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Abstract: Land cover change analysis was performed for three catchments in the rural Eastern Cape, 
South Africa, for two time steps (2000 and 2014), to characterize landscape conversion trajectories 
for sustained landscape health. Land cover maps were derived: (1) from existing data (2000); and 
(2) through object-based image analysis (2014) of Landsat 8 imagery. Land cover change analysis 
was facilitated using land cover labels developed to identify landscape change trajectories. Land 
cover labels assigned to each intersection of the land cover maps at the two time steps provide a 
thematic representation of the spatial distribution of change. While land use patterns are 
characterized by high persistence (77%), the expansion of urban areas and agriculture has occurred 
predominantly at the expense of grassland. The persistence and intensification of natural or invaded 
wooded areas were identified as a degradation gradient within the landscape, which amounted to 
almost 10% of the study area. The challenge remains to determine significant signals in the 
landscape that are not artefacts of error in the underlying input data or scale of analysis. Systematic 
change analysis and accurate uncertainty reporting can potentially address these issues to produce 
authentic output for further modelling. 

Keywords: land cover change; remote sensing; object-based image analysis; OBIA; Landsat 
 

1. Introduction 

Landscape units or land cover (LC) types encountered in the mesic regions of South Africa are 
diverse, comprising inter alia irrigation agriculture, dryland cultivation, extensive rangeland and 
forests, as well as low-density urban areas. Driven by critical water security issues in the country, 
noteworthy progress has been made towards establishing links between catchment health and 
especially the effects of invasive alien plants (IAPs) and the provision of hydrological services [1,2] 
within landscape units. While direct habitat destruction remains the primary threat to biodiversity, 
IAPs pose an increasing challenge both locally and globally [3] and can adversely affect the primary 
productivity of the natural grasslands in South Africa used for livestock farming [3,4]. The reduction 
in biodiversity heightens ecosystem susceptibility to biological invasions that, in turn, erode 
ecosystem services [5]. Landscape change, by IAPs and other land use approaches, may contribute to 
land degradation and the reduction of water and other available resources to native species and rural 
inhabitants [1–3]. Therefore, one of the fundamental requirements necessary for evaluating the merit 
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of any land use activity is the ability to accurately quantify ecosystem services associated with  
such activity [6].  

LC reflects the state of the landscape at a particular point in time [7] arising from processes 
operating at the terrestrial surface representing elements determined both by natural conditions, as 
well as by human influence [8]. LC change (LCC) involves alterations in biogeochemical cycles, 
climate and the hydrology of ecosystems [9] from anthropogenic actions. LC dynamics have 
important consequences for natural resources as drivers of change in ecosystems and their  
services [9,10], and determining LCC can provide information about these processes [7]. LCC analysis 
identifies the difference between LC categories in maps of different time points [7,11,12] and draws 
conclusions about landscape conversion [13–15]. The ability to quantify the rates and extents of LCC 
and develop models that relate changes in LC to underlying land use processes and environmental 
effects depends on accurate observations of landscape change [7,16]. LCC provides information about 
processes in the landscape and allows change trajectories to be identified relating to processes within 
the landscape [7]. The occurrences and mechanisms of these LCC processes may be difficult to 
analyse due to a lack of empirical ecological and geospatial data correctly representing the variables 
driving these changes [14]. Therefore, to ensure sustained landscape health, change analysis of 
landscape activities needs to be performed to enable the quantification of the derived benefits to 
humans occupying the catchment [17]. 

Satellite-based Earth observation and geographic information systems (GIS) have been 
established as the best tools for observation, measurement and monitoring of LCC [18–20]. Earth 
observation data provide large area coverage of features on the face of the Earth at near real time. 
The historical archive of such imagery provides multi-temporal monitoring capability and is 
therefore well suited to generate LC maps for change analysis. Useful information is derived from 
electromagnetic radiation reflected or emitted from the Earth’s surface captured in satellite images, 
by systematically employing image analysis [21,22]. Independent classification of remote sensing 
images from two or more different dates is the most common method of generating a multi-temporal 
series of maps for landscape pattern analysis [23]. A traditional pixel-based or an object-based 
approach [21] can be followed where classes or categories are assigned to each pixel (or object). 
Common image classification techniques include unsupervised and supervised classification. 
Various classification algorithms are available, with the most used algorithm being the maximum 
likelihood classifier (MLC) [24]. However, traditional supervised classifiers are often outperformed 
by more elaborate classification methods, such as artificial neural networks, expert systems and 
decision trees (DT) [25]. 

Accurately generating an LC map and quantifying the extent of a LC class or its change over 
time require careful selection of reference data for use in both training and validation [26–29]. The 
accuracy of training data will influence the success of the classification, while the validation data, 
assumed to be correct, are used to perform accuracy assessment [28,29].  

When using LC data products created using differing input datasets, methodologies and legend 
categories, post-classification editing can be carried out when executing LCC analysis to improve 
classification accuracies and the correction of minor inconsistencies that would impede direct 
comparison [30]. This is especially the case when using nationally-produced LC data products, such 
as are available in the United Kingdom [31], the United States of America [30] and South  
Africa [19,32]. If exact locations of map errors are known, LC maps can be rectified through  
post-classification editing to minimize error propagation prior to LCC analysis. However, error can 
be introduced during sampling if inaccurate LC classes are assigned or through misclassification 
during image analysis [33,34].  

The accuracy of LCC modelling is directly dependent on the accuracy of the input LC  
data [16,19], and thus, classification errors in the independently-generated maps of LC derived using 
different methodologies are compounded in an LCC analysis, possibly leading to spurious results in 
landscape change [16]. For any LCC analysis, the reliability of the LCC detected should therefore be 
assessed in order to explain the certainty with which the change can be considered real or  
spurious [26,31,35,36]. A single-date sample-based error matrix, often the endpoint of accuracy 
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assessment prior to LCC analyses, provides insufficient information to assess the accuracy of gross 
change [26,35]. To address the errors introduced by comparison of erroneous input  
maps, Fuller et al. [31] proposed a method to measure the level of change with 75% reliability as a 
function of the accuracy of each input LC map, the number of classes mapped and the percentage of 
change detected, while Pontius et al. [33,37] describe measures to determine the probability of error 
in predicted land change based on erroneous input maps. 

This paper describes the use of independent LC maps for change analysis in a  
grassland-dominated landscape in the Eastern Cape of South Africa to delineate LCC trajectories that 
are crucial to accurately quantify water and carbon fluxes. Invasion by woody plants is a driver of 
grassland transformation, which influences ecosystem services provided by rangelands, such as 
forage production, water supply, habitat, biodiversity, carbon sequestration and recreation [38]. 
Therefore, from a rangeland management perspective, understanding the LC trajectories relating to 
grass production would be important for local farmers [38]. In addition, the success of the Working 
for Water (WfW) programme [2], which uses labour-intensive methods to clear invasive woody 
plants while supporting job creation [3], can be evaluated. As IAPs are reported to have a high total 
incremental water use compared with indigenous vegetation [39], clearing could salvage a significant 
proportion of water to maintain other ecosystem services [40,41]. 

The objectives of the paper include: (1) the post-classification editing and accuracy assessment 
of the existing national LC product [32]; (2) deriving and validating a second LC map [42] to facilitate 
change analysis; (3) performing LCC analysis on these datasets; and (4) delineating important  
LCC trajectories.  

2. Materials and Methods  

2.1. Study Area 

Three quaternary catchments (labelled T35B, T12A and S50E in Figure 1) situated in the 
Mzimvubu-Tsitsikamma Water Management Area (WMA) in the Eastern Cape of South Africa  were 
selected for investigation. The vegetation of the study area is best described as grassland interspersed 
with thicket, formal plantations and IAPs [43]. Grassland is the second largest biome in South Africa 
comprising almost 29% of the total area [44], of which about 30% has been permanently  
modified [43]. The grasslands comprise not only grass species, but also bulbous perennials that 
reappear annually [45]. Invasion by woody plants has transformed the grassland, which influences 
rangeland production. Vegetation diversity and richness have also been degraded by poor farming 
practices, such as overgrazing, burning and wood felling. The soils comprise mostly deep clayey loams 
to rocky soils.  

 
Figure 1. Three study sites: S50E, T12A and T35B. WfW, Working for Water; IAP, invasive alien plant, 
NIAPS, National Invasive Alien Plant Survey [46], WMA, water management area. 
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In this rural landscape, communal farming is practiced alongside a strong commercial livestock 
sector. Grazing and crop cultivation are noticeable as the main land use practices [47,48]. The area 
consists of three different land tenure units, namely former commercial farms and traditional and 
betterment villages, predominantly in T12A and S50E, and former Transkei rural areas [48,49]. Major 
users of water and carbon in this socio-ecological system are livestock and alien trees. The local 
district municipality (Chris Hani) and Working for Water (WfW) Alien Plant Clearing Programme 
have been clearing IAPs in these catchments for the past twelve years, with the primary motivation 
of water saving [50]. The location of WfW clearings digitized for the WfW programme [3] can be seen 
in Figure 1 within T12A and south of T35B [46]. 

S50E (31°45′ S 27°30′ E; 44,760 ha), the southernmost catchment, represents an area with high 
grazing potential under communal tenure of the local headman with an eight percent density of 
different IAP species [46]. Within the catchment lies the Ncora Dam supplied by the Tsomo River. In 
close proximity to the east of S50E lies T12A (31°30′ S 27°45′ E; 27,870 ha). Further north, catchment 
T35B (31° S 28°15′ E; 39,550 ha) represents commercial/freehold land with many different land usages, 
including forestry, mixed livestock and crop production.  

Rainfall in the study area occurs predominantly in summer with the highest rainfall measured 
in January. Figure 2 illustrates the annual rainfall variation in the study area derived from Tropical 
Rainfall Measuring Mission (TRMM) satellite data [51,52] validated with complete weather station 
data from Cala and Maclear (see Figure 1) with the median of approximately 680 mm. Over the study 
period, rainfall varied between a low of ~450 mm per annum in 2003 and a high of almost 950 mm in 
2006, a year of extreme rainfall in all of the catchments [53]. The rainfall for the two years selected for 
landscape comparison displays significantly different (p < 0.05) precipitation volumes, with 2000 
being a relatively wet year with ~850 mm, in contrast to 2014, when the area received only ~600 mm.  

 
Figure 2. Rainfall variation in the study area, 2000–2014. 

2.2. Data Selection 

Two time steps (T1 and T2) were selected for analysis. The first time step (T1) was selected to 
describe the landscape in 2000 and coincided with the date of the South African National Land Cover 
(NLC) dataset [32], which is commonly applied in studies requiring LC as input [54–60]. This LC map 
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was classified from multi-temporal Landsat 7 Enhanced Thematic Mapper imagery using primarily 
conventional per-pixel classifiers based on 2000–2001 conditions [32] with a minimum mapping unit 
of 1–2 ha [60] and 45 classes [32]. The year 2000 also corresponds to the launch of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellites (Terra and Aqua) providing science 
quality data with high temporal and spectral resolution and intermediate spatial resolution [61] used 
in other modelling and comparison studies in this project [38].  

In the interest of comparing compatible classes between LC datasets T1 and T2, a revised LC 
legend comprising eight classes (Table 1) was developed for this study aggregating detailed  
classes [62,63] under a number of conceptually broader classes [64] to create a common LC scheme 
before comparison.  

Table 1. Modified LC legend compared to original legends. 

Conceptual Class * Final Legend Abbreviation
Natural, terrestrial non-vegetated  
bare areas 

Bare rock and soil (natural) BRS 

Cultivated and managed terrestrial, 
primarily vegetated areas 

Cultivated land  CLs 
Forest plantations (clear-felled, pine spp., 
other/mixed spp.) 

FPs 

Natural and semi-natural terrestrial, 
primarily vegetated areas 

Unimproved (degraded/natural) grassland UG 
Forest indigenous, thicket bushlands, bush 
clumps, high fynbos 

FITBs 

Artificial, terrestrial primarily,  
non-vegetated areas 

Urban/built-up (residential, formal 
township) 

UrBu 

Natural or artificial primarily  
non-vegetated aquatic or  
regularly-flooded water bodies 

Water bodies Wb 

Natural and semi-natural aquatic or 
regularly-flooded vegetated areas 

Wetlands Wl 

* Chief Directorate National Geospatial Information (CD: NGI) hierarchical structure [64]. 

For this study, the conceptual class “cultivated and managed terrestrial, primarily vegetated 
areas” was divided into “cultivated” (cultivated lands (CLs)) and “managed” (forest plantations 
(FPs)) vegetation, while “natural and semi-natural terrestrial primarily vegetated areas” was 
separated into grassland and low shrubs (unimproved grassland (UG)) and wooded vegetation 
(forest indigenous, thicket bushlands (FITBs)) based on the original NLC legend (Table 1). Due to the 
low reported overall accuracy (65.8%) of the selected T1 dataset [32], it was systematically updated 
using the revised legend (Table 1) with aggregated LC classes, subsequently referred to as Edited 
National Land Cover (ENLC) 2000 for T1. Some tracts, labelled “degraded unimproved (natural) 
grassland”, were recognized as subsistence farming and re-allocated to “CLs”, while some parcels 
were re-allocated to “urban/built-up (UrBu)” after identification as rural villages. Accuracy 
assessment was performed on the edited dataset using stratified random sample points (10137) 
generated using ArcGIS 10.3 (Environmental Systems Research Institute (Esri), Redlands, CA, USA). 
Classes were assigned from aerial photography (dated July 2000: Chief Directorate: National 
Geospatial Information (CD: NGI)) using the eight-class LC legend (Table 1). In addition, a new LC 
dataset was generated through image processing to represent the second time step (T2) for 2014, 15 
years later [42], corresponding to the collection of field data [38]. 

2.3. Image Processing 

Various steps were taken to complete the image processing to generate the LC dataset for 2014 
(T2). These included developing supplementary datasets, image pre-processing and image 
classification [42]. An object-oriented supervised approach using geographic object-based image 
analysis (GEOBIA) was selected for classification of Landsat 8 imagery in eCognition Developer 
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(Trimble, Munich, Germany) [65]. To categorize object-features into respective classes, a rule-based 
decision tree classification with defining threshold conditions was implemented.  

To inform the DT classification, various supplementary datasets were developed. Stratified 
random sample points were generated from the existing LC map (NLC 2000) and buffered by 30 m 
to capture LC areas. A new class was then assigned to the area from aerial photographs for 2014 
according to the new eight-class LC legend (Table 1). Field data (in situ) collected during field visits 
in 2014 (less than 100 points) were also included in these training data. In excess of 5000 points were 
used per catchment, with more points selected for LC classes with greater geographical extent, e.g., 
UG. To delineate urban areas (UrBu), density estimation was performed on the Spot Building Count 
(ESKOM, South African Electricity Supply Commission SBC) [66] data. Digitized boundaries of 
cultivated land (for CLs) and forest plantations (FP) were rasterized, and slope was derived from a 
digital elevation model (SUDEM, Stellenbosch University digital elevation model) [67]. 

Two suitable cloud-free Landsat 8 images (scenes LC81690812014121LGN00 and 
LC81700822014160LGN00, dated 1 May 2014 and 9 June 2014, respectively) covering the spatial extent 
of the study area were downloaded for analysis. Images for the dryer winter season were selected to 
enhance the possibility of detecting greener IAPs within dry grasslands [10]. The Landsat scenes were 
atmospherically corrected by normalizing the solar radiance through conversion of spectral radiance 
to atmospheric reflectance. This was done in ATCOR 2 (ReSe Applications Schläpfer, Wil, 
Switzerland) [68] using the radiance conversion to top of atmosphere (ToA) reflectance model by 
converting digital numbers (DN) to radiance using the gain and bias values found in the metadata of 
each image file. The Landsat scenes had little or no cloud cover. Haze removal was done using the 
ToA reflectance correction method to eliminate the atmospheric effect that can cause image 
contamination and obscure ground features [68], followed by scene sharpening in PCI Geomatica 
(PCI Geomatics, Markham, Ontario, Canada) [69] to improve the spatial resolution of the multi-bands 
in order to separate interspersed land cover classes by extracting small feature objects [70].  

Spectral and vegetation indices were prepared from the stacked Landsat dataset to improve the 
decision tree (DT) construction. These included the Normalized Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), Soil Adjusted 
Vegetation Index (SAVI) and tasselled cap brightness. NDVI was selected to separate indigenous 
forest from grasslands. To address the limitations of NDVI that is affected by soil brightness [71] and 
saturates in high biomass areas [72,73], EVI was calculated, as it shows greater sensitivity to 
vegetation change and reduces atmospheric effects on vegetation index values [73]. NDWI was used 
to improve delineation of wetlands as a result of its sensitivity to changes in liquid water content of 
vegetation canopies [74]. SAVI [75] was computed as a corrective index on soil brightness for areas 
with low vegetation cover (<40%) and exposed soil surface. The brightness algorithm [76,77] was 
calculated to represent the reflectance intensity of bare rocks and soils among other features sharing 
similar spectral radiance. 

Image pixels with relative homogeneity were clustered using the multi-resolution segmentation 
(MRS) algorithm [78,79]. MRS is an ascending area-merging technique where smaller objects are 
progressively merged into larger objects controlling the advancement in heterogeneity with three 
input parameters: scale, shape and compactness [70]. Shape and compactness were weighted at 0.1 
and 0.5, respectively. Scale, referred to as the “window of perception” [80], is a unit-less parameter 
that regulates the size and homogeneity of image objects. Scale was set to two due to land cover 
heterogeneity in the study area. All layers were given equal importance in the segmentation settings, 
except near infrared and red bands, which received double weighting to increase their response 
signal to vegetation greenness. A bottom-up, region-growing segmentation approach was used to 
produce consistent results across the relatively large and heterogeneous study area. A minimum 
mapping unit of 1825 m2 (3 × 3 pan-sharpened pixels [21,27]) was selected to capture small 
fragmented LC classes. 

A decision tree (DT) is defined as a classification procedure that recursively partitions a dataset 
into smaller subdivisions according to a decision framework defined by a tree structure [81]. Not only 
are DTs nonparametric and do not require assumptions regarding the distributions of the input data, 
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but the classification structure is explicit and easy to interpret, making the method intuitive. Using 
training classes derived from aerial photographs with eight land cover classes (Table 1), a preliminary 
DT was generated in the classification and regression trees (CART) software [82] from which the final 
rule-set for the LC mapping was constructed [70]. The shadows class from the classified LC maps 
was incorporated into the surrounding vegetative cover class, validated by visual assessment from 
aerial photographs. The LC maps were combined into a single dataset referred to as Derived Land 
Cover (DLC) 2014 (T2).  

2.4. Accuracy Assessment 

Since accuracy measures estimated from a sample are subject to uncertainty [26,35,83], a more 
robust approach is to report the estimated error matrix in terms of the proportion of the area and the 
estimates of overall accuracy, user’s accuracy and producer’s accuracy based on the population [83] 
along with an associated confidence interval, providing a range of values for the reported parameter, 
which takes the uncertainty of the sample-based estimate into account. Accuracy assessment of both 
ENLC 2000 for T1 and DLC 2014 for T2 was performed by cross tabulation of the estimated area of 
observed reference classes vs. predicted classes. Stratified random sample points were generated per 
LC class using ArcGIS 10.3 (Esri, Redlands, CA, USA) and classes assigned from aerial photography 
of the same year. The estimated proportion of area for each cell of the error matrix was calculated 
and the error matrix of the estimated proportions constructed [26]. Accuracy measures calculated 
from this error matrix include the proportion correctly classified or overall accuracy, producer’s 
accuracy and user’s accuracy [84] with the 95% confidence interval computed from the standard error 
of the estimated area [35].  

2.5. Change Analysis 

The most commonly-used LCC detection method is the comparative approach, whereby 
categorical LC maps generated independently at different time steps are compared using a transition 
matrix to identify the most important transitions [83,85]. The basis for this method is an accurate LC 
map at each time step. Errors in these LC maps will be propagated to the change map, with expected 
error greater than in either of the maps from which it originated [11,31,85]. 

LCC analysis was performed by comparing the reference dataset ENLC 2000 from Time Step 1 
(T1) to the classified dataset DLC 2014 from Time Step 2 (T2) in a transition matrix. Rows in the 
transition matrix represent the LC at T1, while columns represent LC at T2. From the transition 
matrix, net gain and loss per class can be calculated. The accuracy of the resulting LCC map was 
quantified from the accuracies of the individual LC maps at T1 and T2 by multiplying the individual 
accuracies for each classified map [31,33,37,85] since the pattern of error observed in the LCC map 
reflects the errors in the individual input classified maps and their interactions [16] if the classification 
errors are independent [31]. This is unlikely, as locations that were difficult to classify correctly at T1 
would also be difficult to classify correctly at T2 even if different methodologies are used [84]. The 
probability of a particular class transition occurring can be calculated from the user’s accuracies for 
each LC map [33], which give the conditional probability that a pixel transitioned from the LC class 
in its row to the class in its column. Theoretical (D), upper (U), middle (M) and lower (L) bounds for 
estimates of change were calculated [33] from the user’s accuracy per LC class for each input map (T1 
and T2) and reported in a transition matrix. Matrix D assumes the LC maps from T1 and T2 to be 
perfectly accurate, while matrix M assumes possible error in all pixels; matrix U considers error only 
in areas that correspond between T1 and T2, whereas matrix L considers error in places that differ 
between T1 and T2 and assumes no error in pixels that match [33]. The level of change was measured 
with 75% reliability (75% of the observed difference between the maps is real change) [31], calculated 
as a function of the accuracy of each input LC map, the eight classes mapped and the percentage 
change detected according to Figure 3 [31].  
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Figure 3. The level of change that can be measured with 75% reliability when mapped using pairs of 
maps with 2 and 8 classes and with map-accuracies ranging from 75%–99%; after [31]. 

2.6. LCC Trajectories 

Seven main flows or trajectories of aggregated LCC were identified [7,12] and are listed in Table 2 
(highlighted with grey background). These trajectories include: (1) persistence, where no LCC has 
occurred; (2) intensification, which represents the transition of a lower intensity to a higher intensity 
usage; (3) afforestation representing the planting of trees; (4) deforestation, which involves the 
clearance of trees; (5) extensification where higher intensity usage is converted to a lower intensity 
usage; (6) natural dynamics to represent seasonal conversions; and (7) exceptionality associated with 
potential map errors. In the context of this study, these seven categories were subdivided to account 
for specific changes in this landscape (Table 2). As part of persistence (P), label Pf (FITB persistence) 
indicates areas where woody vegetation (including indigenous forest and IAPs) has persisted, while 
label Pu (Urban persistence) describes areas where settlements have persisted over time. Of particular 
importance are areas where forests (indigenous or alien) and other woody areas have disappeared or 
been removed (reclamation, deforestation) or another LC has potentially been replaced by IAPs (FITB 
intensification). Due to the resolution of the satellite imagery used in the generation of the LC classes, 
it was not possible to determine change in the intensity of agricultural activities, but conversion to 
agricultural practices can be identified (agricultural intensification). Exceptionality indicates where 
an improbable conversion occurs, such as to wetland, which may be used to identify classification 
errors. 
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Table 2. Labels and descriptions for conversion patterns and trajectories. Main trajectories of LCC 
highlighted with grey background. 

LC Conversion Label Description
Persistence 
P: Persistence Areas with no change in LC  
Pf: FITB persistence Areas where woody natural and artificial vegetation persists 
Pu: Urban persistence Areas where settlements persist over time 
Intensification 

If: FITBs intensification Areas where woody natural and artificial vegetation substitutes 
previous LC  

Iu: Urban intensification Areas converted to urban  
Ia: Agricultural 
intensification Areas where agricultural activities substitute previous LC  

Afforestation 
R: Afforestation Areas where other LC is converted into plantation 
Deforestation 
D: Deforestation Plantation converted to other LC  
Extensification 

Re: Reclamation 
Woody natural and artificial vegetation areas converted to grassland 
and bare area 

De: Degradation Shrub areas converted to grassland or bare areas 
A: Abandonment Urban and agricultural areas converted to grassland and bare areas  
Natural dynamics 
Dn: Natural dynamic Areas where natural changes occurred  
Exceptionality 

E: Exceptionality 
Unusual conversion: not expected/possible  
misclassification/active intervention 

The use of an LC conversion label not only allows a thematic representation of the spatial 
distribution of change [13], but also provides information about the processes (flows) in the  
landscape [7] that can be represented on a map to simplify the evaluation of LCC. From the 
intersection of the two LC layers, a square transition matrix was created where rows show the classes 
from 2000 (T1), columns show the same classes from 2014 (T2) and the table entry indicates the size 
of the class (in pixels or percentage of study area) at the intersection created by the overlay of the 
successive LC maps. An LC conversion label from Table 2 was assigned to each intersection 
representing the process flow depicted in Table 3. This conceptual schema of using LC conversion 
labels [13] for change analysis was developed to describe patterns and trajectories both qualitatively 
and quantitatively. The area for each LC conversion label was calculated and expressed as a 
percentage of the total area of each of the catchments. 

Table 3. LC conversion labels representing conversion trajectories between T1 and T2. 

Class Label 
2014 (T2)

UG FITBs BRS Wb Wl CLs FPs UrBu 

2000 (T1) 

UG P IF De Dn 

Dn 
Ia 

R 

Iu FITBs Re Pf Re 
E 

BRS 
Dn 

IF 

P 
Wb 

Dn 
P E 

Wl Dn P 
Iu CLs A A 

E E 
P 

FPs D D 
Ia 

P 
UrBu A A R Pu 
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3. Results 

3.1. Accuracy Assessment of Datasets for T1 and T2 

Table 4 presents the accuracy assessment for the LC map ENLC 2000 for Time Step 1 (T1) 
obtained after updating the existing National Land Cover (NLC) dataset [32] based on sample counts. 
Rows represent map categories, while reference categories are given in the columns. Table 4 also 
reports the area for each map category and the percent of the study area to the nearest integer, where 
a zero means a positive number less than one half and a dash means that no pixels were observed. 
Table S1 in the Supplementary Material provides the detail at the catchment level. Table 5 illustrates 
the accuracy of the T1 dataset based on Table 4 data expressed as the estimated percent of the study 
area (the population). Accuracy measures, overall accuracy (OA), user’s accuracy (UA) and 
producer’s accuracy (PA) are presented with a 95% confidence interval [26]. 

Table 4. Summarized accuracy assessment of LC map ENLC 2000 (T1) based on sample counts. 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 
ha % 

UG 3544 269 59 13 77 190 71 60 4283 78,370 70 
FITBs 90 1360 2 6 0 26 31 0 1515 10,367 10 
BRS 1 0 0 0 0 0 0 0 1 19 0 
Wb 1 0 0 448 1 3 0 0 453 1402 1 
Wl 41 0 0 1 155 62 22 0 281 1427 1 
CLs 79 33 0 1 17 1488 15 21 1654 12,089 11 
FP 13 253 0 0 2 1 1125 1 1395 4991 4 

UrBu 68 12 0 0 1 55 1 418 555 3506 3 
Total 3837 1927 61 469 253 1825 1265 500 10,137 112,172 100 

Table 5. Summarized accuracy assessment of ENLC 2000 (T1) expressed as the estimated proportion 
of area. 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total UA PA Overall
UG 58 4 1 0 1 3 1 1 70 83 ± 1 97 ± 1 84 ± 1 

FITBs 1 8 0 0 - 0 0 - 9 90 ± 2 60 ± 2  
BRS 0 - - - - - - - 0 0 ± 50 0 ± 1  
Wb 0 - - 1 0 0 - - 1 99 ± 1 83 ± 4  
Wl 0 - - 0 1 0 0 - 1 55 ± 6 34 ± 6  
CLs 1 0 - 0 0 10 0 0 11 90 ± 2 72 ± 2  
FP 0 1 - - 0 0 4 0 4 81 ± 2 70 ± 3  

UrBu 0 0 - - 0 0 0 2 3 75 ± 4 68 ± 4  
Total 60 14 1 1 2 14 5 3 100    

Based on the sample counts (Table 4) and estimate of the population (Table 5), the overall 
accuracy of the T1 dataset (ENLC 2000) is 84% with a 95% confidence interval of 1% based on the 
calculated standard error. This is almost 20% more than the uncorrected NLC 2000 dataset [32]. A 
summary of the accuracy assessment performed on the DLC 2014 dataset, which was derived 
through classification of Landsat 8 imagery for time step T2, based on sample counts, is presented in 
Table 6. Catchment level results are demonstrated in Table S2. The descriptions for abbreviations 
used as column headings can be found in Table 1. The rows represent the map categories, while 
columns represent reference categories. The areas computed from the map categories, as well as the 
percent of total area are also shown in Table 6. Similar to Table 5, Table 7 illustrates the accuracy of 
the T2 dataset based on Table 6 data expressed as the estimated proportion of area (the population) 
reported as the percent, where a zero means a positive number less than one half and a dash means 
that no pixels were observed.  
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Table 6. Summarized accuracy assessment of LC map DLC 2014 (T2), based on sample counts. 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 
ha % 

UG 3282 363 8 16 170 64 12 42 3957 75,968 68 
FITBs 75 1475 0 1 1 9 37 0 1598 9861 9 
BRS 5 1 24 0 0 1 0 1 32 193 0 
Wb 4 2 0 173 6 0 0 0 185 1319 1 
Wl 26 6 0 17 121 0 2 0 172 538 1 
CLs 91 32 6 4 35 1577 0 25 1770 13,089 12 
FP 15 2 0 0 0 0 541 3 561 4175 4 

UrBu 39 6 0 0 2 5 0 393 445 7030 6 
Total 3537 1887 38 211 335 1656 592 464 8720 112,172 100 

Table 7. Summarized accuracy assessment of DLC 2014 (T2) expressed as the estimated proportion 
of area. 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total UA PA Overall
UG 56 6 0 0 3 1 0 1 68 83 ± 1 97 ± 1 85 ± 1 

FITBs 0 8 - 0 0 0 0 - 9 92 ± 1 55 ± 2  
BRS 0 0 0 - - 0 - 0 0 75 ± 17 42 ± 17  
Wb 0 0 - 1 0 - - - 1 94 ± 4 76 ± 6  
Wl 0 0 - 0 0 - 0 - 0 70 ± 7 10 ± 3  
CLs 1 0 0 0 0 10 - 0 12 89 ± 2 90 ± 2  
FP 0 0 - - - - 4 0 4 96 ± 2 90 ± 3  

UrBu 1 0 - - 0 0 - 6 6 88 ± 3 86 ± 3  
Total 58 15 0 1 4 12 4 6 100    

The producer’s accuracy is a measure of how well a certain area has been classified and indicates 
the probability of a reference sample being correctly classified (not omitted) [84]. Wetlands (Wl) were 
poorly predicted with a low producer’s accuracy of 36% based on sample counts, which means that 
more than sixty percent of the reference samples were omitted from the classification (error of 
omission). The effect of ignoring the population matrix is clearly illustrated, as the producer’s 
accuracy calculated from the area proportion is as low as 10% ± 3%, reflecting the uncertainty in the 
classification. Based on the reference classification, the stratified area for LC class Wl can be calculated 
as 3981 ± 492 ha, more than seven-times the mapped area. An error-adjusted estimate of the area 
covered by Wl (±95% confidence interval) confirms the need to adjust the map area obtained from 
pixel counting to account for the large omission error. FITBs and bare rock and soil (BRS) also showed 
low producer’s accuracies. The user’s accuracy indicates for a given class how many of the pixels on 
the map are actually classified correctly and can be computed directly from the sample counts [26]. 
The FITB class, representing natural wooded areas, including IAPs, produced in the classification 
showed a user’s accuracy of greater than 90%, but poorer producer’s accuracy of only 55% ± 2%. The 
overall accuracy based on reference point data, computed as correctly classified divided by the total, 
ranged between 83% (T35B) and almost 90% (S50E) (Table S2) using sample points (Table 6), but did 
not differ much when using the proportion of estimated area (Table 7). The overall accuracy for T35B 
was 83% ± 1% and for S50E slightly lower at 87% ± 1%. The overall accuracy for the study area was 
calculated as 85% ± 1% (Table 7). 

3.2. Land Cover Change: ENLC 2000 vs. DLC 2014 

From the LC maps at the two-time steps, a post-classification comparison was made of the 
overlaid LC maps for 2000 (T1) and 2014 (T2) using a transition matrix. Table 8 shows the transition 
from one LC class to another as a percent of the study area. Four values are reported per LCC 
combination: the left entries in the cells represent D, assuming each input LC map to be completely 
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accurate; the upper right entries are the upper bound (U) where error exists in corresponding areas; 
the middle right entries (M) assume possible error in all pixels; and the lower right entries (L) assume 
no error in matching pixels. Descriptions of class labels can be found in Table 1. The rows represent 
the T1 (2000) LC classes, while the T2 (2014) LC classes are found in the columns. The diagonal entries 
(light grey in Table 8) indicate the persistence of LC classes, while the off-diagonal entries indicate a 
change from one LC class to a different class. The Total T1 column shows the LC totals at 2000, and 
the Total T2 row shows the LC totals at 2014 expressed as a percent of the total study area. The column 
on the right (Loss T1) indicates loss by LC class, and the row at the bottom (Gain T2) indicates gain 
by LC class. The total change as a proportion of the total study area is given in the entry in the bottom 
row of column Loss T1. The columns UA and PA reflect the product of the user’s and producer’s 
accuracy for each individual LC map (T1 and T2) providing a theoretical accuracy for the transition 
per class.  

Table 8. Transition matrix for the 2000 (T1)–2014 (T2) change. The left entries in the cells represent 
matrix D, the upper right entries matrix U, the middle right entries matrix M and the lower right 
entries matrix L. All entries express the percent of the study area. Persistence of LC classes is 
highlighted in grey on the diagonal, with change on the off-diagonal. 

Class 
2014 (T2) Total Loss 

UA PA 
UG FITBs BRS Wb Wl CLs FP UrBu T1 T1 

2000 
(T1) 

UG 
  42  8  0  0  2  4  1  4  61  19   

60 42 3 7 0 0 0 0 0 2 2 3 1 1 3 3 70 60 9 17 69 94 
  61  2  0  0  0  2  1  2  69  8   

FITBs 
 7   4  0  0  0  0  1  0  13  9   
4 6 5 5 0 0 0 0 0 0 0 1 0 1 0 0 9 14 4 9 83 33 
 3   5  0  0  0  0  0  0  10  4   

BRS 
 1  0   0  0  0  0  0  0  1  1   
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
 0  0   0  0  0  0  0  0  0  0   

Wb 
 0  0  0   1  0  0  0  0  1  0   
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 92 63 
 0  0  0   1  0  0  0  0  1  0   

Wl 
 2  0  0  0   0  0  0  0  2  2   
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 39 3 
 0  0  0  0   0  0  0  0  1  1   

CLs 
 4  1  0  0  0   7  0  1  13  6   
1 4 0 1 0 0 0 0 0 0 9 7 0 0 0 1 11 14 2 6 80 64 
 1  0  0  0  0   9  0  0  11  3   

FP 
 2  0  1  0  0  0   2  0  5  3   
1 2 1 1 0 0 0 0 0 0 0 0 3 2 0 0 4 5 2 3 78 63 
 1  1  0  0  0  0   3  0  4  2   

UrBu 
 1  0  0  0  0  0  0   2  3  2   
0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 2 3 3 0 2 67 58 
 0  0  0  0  0  0  0   3  3  0   

Total T2 
 58  13  1  1  3  12  4  7       

68 58 9 15 0 0 1 1 0 4 12 12 4 4 6 6       
 67  9  0  1  1  12  4  6       

Gain T2 
 17  9  1  0  3  5  2  5    42   
7 16 4 10 0 0 0 0 0 3 3 4 1 2 4 5   19 40   
 6  4  0  0  1  3  1  3    18   

Grassland (UG) still dominates the study area in 2014 with 68% of the total area still classified as 
such when measuring change using the T1 and T2 maps without considering error (accuracy  
84% × 85% = 71%). Though UG has the highest theoretical producer’s accuracy of 94%, the remaining 
UG could be as low as 58% when considering possible error in all pixels (matrix M). Net losses were 
noted for UG and FP, with gains in UrBu. No change was calculated for Wb. For classes FITBs, BRS 
and CLs, the net gain or loss was dependent on the method for calculating land change (matrix D, M, 
U or L). CLs showed a net gain of 1% when no error is considered, but up to 2% loss when possible 
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error in all pixels is considered (M). The low PA for CLs of 63% confirms large differences between 
map and ground conditions. In addition, the theoretical accuracy of the resulting LCC maps, 
computed as the product of the overall accuracies of the individual LC maps at T1 and T2 [11,31,85], 
ranged between a low 67% for T35B to 76% for T12A (Table S3). This leaves a hypothetical error in 
landscape transition of up to 30% based on error propagation from contributing LC maps. The total 
change, computed from loss at T1 and gain at T2, varies between 18% and 42% calculated from the 
lower (L) and upper (U) bounds of change (lower right cell, Table 8) with 19% computed from the 
overlay of the T1 and T2 maps.  

Assuming that map errors are independent and changes are mapped correctly within the area 
of overlap, the accurately-mapped difference due to change (c), as well as those changes that are 
hidden can be calculated [31]. Areas with no change (persistence) can also be identified. Table 9 
assesses the likely differences due to change and those due to error [31]. Where the LCC map reflects 
the true situation (change or persistence), the cell text in Table 9 is shown in bold; true change hidden 
by errors is given in italic text; and where the map records a difference (change or error), the cells  
are shaded. 

Table 9. A comparison of T1 and T2 to assess the differences due to change or error. 

Proportiona1 accuracy of T1 (2000)  a1 0.84     
Proportiona1 accuracy of T2 (2014) a2 0.85     

Number of classes n 8     
Indicative proportion of change c      

Areas of change (c) 
c = 0.19 c = 0.40 

a2 1 − a2 Totals a2 1 − a2 Totals 
a1 0.14 0.02 0.16 0.29 0.04 0.33 
  0.00 0.00  0.01 0.01 

1 – a1 0.02 0.00 0.03 0.05 0.01 0.05 
 0.00 0.00 0.00 0.01 0.00 0.01 

Totals 0.16 0.03 0.19 0.34 0.06 0.40 
Areas with no change (1 − c) a2 1 − a2 Totals a2 1 − a2 Totals 

a1 0.58 0.10 0.68 0.43 0.08 0.50 
1 – a1 0.11 0.02 0.13 0.08 0.01 0.09 

  0.00 0.00  0.00 0.00 
Totals 0.69 0.12 0.81 0.51 0.09 0.60 

 c = 0.19   c = 0.40 
Maps show different classes (sum of shaded cells) 41%   55% 

Maps show the same classes (sum of unshaded cells) 59%   45% 
Real change as a proportion of mapped difference 40%   54% 

Proportion of change which is correctly shown as such 96%   96% 
Cell text in bold reflects true change or persistence; true change hidden by errors is given in italic 

text; and cells are shaded where the map records a difference (change or error). 

With the change of 19% calculated from Table 8 and the levels of accuracy estimated for T1 (Table 5) 
and T2 (Table 7), there would only be a 59% agreement between the two LC maps, and 41% of the 
combined map area would record differences. Of the 41% difference, ~18% would be real change, and 
~23% would have arisen through errors. With a change of 40% (matrix M from Table 8), there would 
only be an agreement of 45% between the maps and 55% difference. Though there is substantial  
over-estimation of changed areas in both scenarios, 96% of all change could be mapped. 

3.3. Land Cover Conversion Dynamics 

Using the conceptual schema of LC conversion labels (Tables 2 and 3) in analysing the change 
matrix statistics, quantitative analysis was performed for the landscape transition between the two 
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time periods. Transitions from and to LC classes BRS and Wl were not characterized according to 
Table 3, but were added to LC conversion label E (exceptionality) due to the low user’s and producer’s 
accuracy for these two classes. Table 10 summarizes the conversion dynamics by area and percent of 
catchment area to the nearest integer, where zero indicates a positive number less than one half, and 
a dash means no transitions were observed. Figure 4 provides the spatial distribution of these LC 
conversions using the indicator-based approach (LC labels) to visualize change trajectories. 

Table 10. LC conversion (area and percentage) described using LC labels. 

LC label (LCC trajectory) 
 

Conversion between Time Step T1 and T2 (2000–2014)
T35B T12A S50E Overall

ha % ha % ha % ha %
Pf: FITB persistence 683 2 1984 7 2746 6 5413 5 

If: FITB intensification 916 2 1466 5 2066 5 4448 4 
Re: Reclamation 2394 6 652 2 1275 3 4321 4 

Pu: Urban persistence 28 0 1133 4 1892 4 3054 3 
Iu: Urban intensification 49 0 1582 6 2343 5 3975 4 

P: Persistence 31,488 80 19,364 70 30,843 69 81,694 73 
Ia: Agricultural intensification 671 2 865 3 1869 4 3405 3 

R: Afforestation 1121 3 54 0 91 0 1265 1 
D: Deforestation 356 1 136 1 572 1 1064 1 
De: Degradation - - - - - - - - 

Dn: Natural dynamic 779 2 15 0 187 0 981 1 
A: Abandonment 533 1 555 2 720 2 1808 2 
E: Exceptionality 530 1 60 0 155 0 745 1 

 
Figure 4. Indicator-based approach for land cover conversion. 

Land use patterns in all three catchments are characterized by persistence (Figure 4 LC labels P, 
Pu and Pf) with more than 70% of the total area showing no change. Conversions between classes 
represent small fragmented areas of less than six percent within the catchments. Intensification of 
woody vegetation where class FITBs have substituted previous LC averaged at four percent, while 
reclamation (Re) to grassland was four percent over all three catchments. Transitions from plantation, 
labelled deforestation (D), covered one percent of the study area extent, while afforestation (R) mostly 
affected T35B. Degradation (De) linked to conversion to bare soil was not represented due to the low 
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accuracy of LC class BRS. Exceptionality (E), indicating possible classification errors and LC classes 
with high uncertainty (BRS and Wl) represented one percent of land transformation. The highest 
exceptional trajectories were found in catchment T35B, caused by the high presence of Wl. 

4. Discussion 

This paper describes the challenges encountered while performing change analysis to determine 
landscape conversion dynamics between two time steps represented by two datasets derived using 
different methods. The original input dataset proposed for Time Step 1 (T1) proved unsatisfactory 
based on overall accuracy and was subsequently improved using manual methods. The T1 dataset 
was derived from a national level dataset frequently used for studies that require LC as input, such 
as the quantification of runoff and infiltration for a particular LC unit [58]. Users often do not consider 
the low reported accuracy. As this dataset coincides with the availability of high temporal resolution 
MODIS data, it is frequently used as a starting point for area-based spatial analysis studies.  

The dataset for Time Step 2 (T2) is the output of the object-based classification of Landsat 8 data. 
The OBIA approach was able to deal with the problem of the salt-and-pepper effect, common in 
classification outcomes using traditional per-pixel approaches [21], while the rule-based expert 
system provided robust LC classifications for highly fragmented catchment landscapes and precision 
in delineating boundaries of the various vegetation types despite the coarser Landsat 8  
resolution [21,86]. The overall accuracy for this LC dataset (T2) using single-date imagery was 
deemed acceptable based on the overall accuracy value of greater than 85% ± 1% when compared to 
reference points (Table 7) expressed as the estimated percent of area (the population). Sufficient 
ground truth data are required for definite mapping of alien plants and other cover classes.  

As LC classification is fraught with uncertainty, it is important to accurately report on the 
uncertainty inherent in data created through spatial modelling [26,35], which starts with an effective 
sampling design of ground truth data [35]. Estimates of overall accuracy, user’s accuracy and 
producer’s accuracy based on the population [83] can be reported. A confidence interval can be 
computed, to describe the uncertainty of the sample-based estimates. In addition, the construction of 
a meaningful LC legend through categorical aggregation in a manner that gives insights concerning 
categorical change over time [62] that can accommodate these wooded classes must be investigated. 
However, it must be noted that category aggregation may decrease the error in the individual LC 
maps, as well as the difference between LC maps at T1 and T2 [87]. 

LCC detection was performed using a transition matrix to compare the categorical LC maps 
from the two time steps. The method (D) assumes that the probability of error in the two 
independently-classified maps (T1 and T2) is randomly distributed, which is unlikely, as error is 
affected by autocorrelation [37]. Upper (U), middle (M) and lower bounds of LCC were also reported. 
Method U assumes that error only exists where LC maps match; therefore, more error is associated 
with higher estimated change, up to 42% in this study area. Simulated errors cause a shift of values 
from the diagonal to the off-diagonal entries of the transition matrix [33]. In contrast, method L 
considers that error exists only in areas of change, therefore more error with less estimated  
change [33]. As some classes are easier to classify than others, and such regions are frequently 
clustered [84]; the error may exhibit spatial autocorrelation. This would cause large homogenous 
classes, such as UG, to exhibit small errors compared to fragmented small classes, such as woody 
outcrops with many edges around small patches. This is clear from the high producer’s accuracy for 
the UG class (Tables 5 and 7) and low producer’s accuracy for FITBs. Error may also be temporally 
autocorrelated, such as classes on flat slopes that persist over time, which may be easier to  
classify [37]. Future studies should therefore consider investigating the spatial and temporal 
correlation of error within the input LC maps prior to LCC analysis, to reduce error 
propagation [34,88]. The accuracy for the LCC map was derived from the overall accuracies of the 
individual LC maps (84% and 85%, respectively) resulting in a low overall accuracy of 71%. From 
Figure 3, the level of change that can be recorded with 75% reliability on maps with 2, 3, 10 and 30 
classes with a particular accuracy can be determined [31]. To map a change such as 19% (Table 8), 
input LC maps would need to be about 96% accurate, assuming 75% reliability. Should greater 
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reliability be required, map accuracies need to approximate 99% [89], which has become the 
operational requirement. Theoretical accuracy of greater than 70% was achieved for the LCC maps 
for the southern catchments (T12A and S50E) with T35B showing greater uncertainty at 67%. 
Individual classes BRS and Wl displayed low producer’s accuracies, which caused conversion 
trajectories involving these classes to be flagged as exceptionality and excluded from the trajectory 
analysis.  

This study used a framework for change analysis [7,13,85] based on change trajectories derived 
from LC labels (Table 3) categorizing combinations of LCC into seven main flows or trajectories. 
When this framework was applied to the LCC maps, the persistence of LC classes (>70% from Table 
10) was noted with grassland remaining the majority cover in the three catchments. Both urban 
persistence (Pu) and FITB persistence (Pf) are clearly visible in catchments T12A and S50E (Figure 4) 
with the expansion of urban areas (Iu, urban intensification) in these two southern catchments 
predominantly at the expense of grassland (UG) and agriculture (CLs), demonstrating the natural 
development of urban areas. Urban intensification is also highest in these catchments where 
subsistence farming is practiced. This apparent intensification may possibly be attributed to the T1 
dataset classification strategy, which focused on identifying formal townships and failed to delineate 
traditional villages practicing subsistence farming, as encountered in these areas. Accordingly, 
agricultural activities intensified (Ia) by four percent in S50E, attributed to conversion from grassland 
(UG) when no error is considered, but up to 2% loss when possible error in all pixels is considered 
(M), associated with low user’s and producer’s accuracies for CLs in LC classification.  

Considering that the class FITBs contains indigenous forest, thicket, bushland, bush clumps, 
high fynbos and alien plants that are spectrally similar and could not be separated using Landsat 
imagery, it is not surprising that T12A, with persistent remnants of indigenous forest, has the highest 
percentage of the class FITB persistence (Pf). The high persistence of FITBs (Pf) in S50E is likely 
attributed to the presence of Pinus spp. [43] on the southwest of the catchment. Interestingly, despite 
T12A being a focus target for Working for Water (WfW) with the aim of eradicating alien trees in 
these catchments, there is still a prominent presence. In both the T1 and T2 datasets, the low 
producer’s accuracy for FITBs highlights the uncertainty associated with this transition. In order to 
provide a better distinction between different wooded classes, higher spatial resolution data need to 
be considered to distinguish between spectrally-homogenous vegetation types [72]. 

Since scientists want to identify the dominant signals of land change, the varying dynamics 
between the three catchments must be noted. Accounting for approximately four percent of the study 
extent, agricultural intensification (Ia) and afforestation (R) can be regarded as an increase in the 
productivity of the landscape, with land use intensification associated with a productivity-driven 
landscape. Conversely, the persistence and intensification of FITBs (Pf + If) may be regarded as a 
degradation gradient existing in the landscape, when IAPs included in the FITBs class affect 
biodiversity and ecosystem services. T12A and S50E have similar trajectories of this degradation 
gradients (Pf + If), which may reflect real change or be an artefact of the classification and LCC 
detection. After persistence, this is the strongest conversion trajectory within these two catchments. 
It can be postulated that the FITB persistence and intensification noticeable in T12A and S50E may be 
attributed to IAPs, known to affect grassland veld types [45]. 

The context of reclamation (Re) in this study designates the potential extent of anthropogenic 
rehabilitation, where areas classified as FITBs (invaded by IAPs and other woody vegetation) have 
been replaced with grassland and bare rocks. Despite reported WfW activity, reclamation (Re) in 
T12A and S50E was less than three percent. In T35B, six percent of FITBs have been returned to 
grassland, an area of almost 2400 ha. This however may be an artefact associated with the low 
accuracy of the LCC map for T35B (Table S3). Spatial analyses of the locational factors, which may be 
driving the LCC trajectories [36,89–91], are envisaged for future research. 

5. Conclusions  

This paper has described the use of independent LC maps for change analysis in a  
grassland-dominated landscape for three catchments in the Eastern Cape of South Africa. Land cover 
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maps were derived from existing national LC dataset data (2000-T1) and through object-based image 
analysis (2014-T2) of Landsat 8 imagery. A revised LC legend comprising eight classes was developed 
aggregating detailed classes under a number of conceptually broader classes to create a common LC 
scheme in the interest of comparing compatible classes between LC datasets T1 and T2.  

Accuracy assessment of the independently-created LC maps revealed the overall accuracies to 
be 83.7% and 85.4% for T1 and T2, respectively. The theoretical accuracy of the resulting LCC maps, 
ranged between a low 67% for T35B to 72% for S50E and 76% for T12A (Table S3) with a hypothetical 
error in landscape transition of up to 30% based on error propagation from contributing LC maps. 
Land use patterns in all three catchments are characterized by persistence with more than 70% of the 
total area showing no change. However, despite the high accuracies for the independently-mapped 
LC at T1 and T2, 37% of the combined map area would record differences of which ~19% would be 
real change and ~19% would have arisen through errors. Through substantial over-estimation of 
areas’ change, 96% of all change could be mapped.  

The LCC analysis has revealed an increase of agricultural intensification, urbanization and 
infrastructural development across the three catchments over the 15-year period. LC class FITBs in 
the guise of natural vegetation or alien plants have persisted and intensified chiefly at the periphery 
of river channels, as well as around agricultural areas and human inhabited regions. While some LC 
classes, such as grassland and water bodies, have maintained approximate states of persistence, land 
degradation resulting from land use intensification and FITBs (possibly IAPs) infestations has  
been identified.  

LC classification is fraught with uncertainty; thus, accurate reporting on this inherent 
uncertainty is needed if water and carbon fluxes are to be properly understood and quantified, 
especially where future scenarios may be considered. In this study area, it was revealed that at the 
current level of change, for 75% reliability of results, an overall accuracy of LC maps of 96% would 
be required. Should higher reliability of change results be required for operational purposes, 
accuracies of 99% for each independently mapped LC dataset would be required. Achieving these 
levels of accuracies at Landsat resolution is unlikely, and thus, some uncertainty in both the 
classification results and the change results must be accepted. 

Landscape units associated with clearly identified persistent or degradation trajectories can be 
used in future studies to characterize water use and carbon fluxes for sustained landscape health 
from remote sensing products allowing models of ecosystem stress to be developed. The challenge 
remains to determine significant signals in the landscape that are not artefacts of the underlying input 
data, different classification schemes and aggregation methods, the experience of classifiers or the 
scale of analysis. Through systematic analysis of changes and accurate reporting of uncertainty, this 
can be addressed to produce output that authentically reflects the landscape dynamics in order to 
accurately quantify the effect of landscape transitions on the ecosystems services in the catchments.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-3263/7/1/7/s1: Table S1: 
Accuracy assessment of the ENLC 2000 (T1) per catchment; Table S2: Accuracy assessment of DLC 2014 (T2) per 
catchment; Table S3: Theoretical accuracy of LCC analysis.  
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