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Abstract: Thermodynamic data for platinum group (Os, Ir, Ru, Rh, Pd and Pt) minerals are very limited.
The present study is focused on the calculation of the Gibbs free energy of formation (∆fG˝) for
selected PGM occurring in layered intrusions and ophiolite complexes worldwide, applying available
experimental data on their constituent elements at their standard state (∆G = G(species) ´ ∆G(elements)),
using the computer program HSC Chemistry software 6.0. The evaluation of the accuracy of the
calculation method was made by the calculation of (∆Gf) of rhodium sulfide phases. The calculated
values were found to be in good agreement with those measured in the binary system (Rh + S)
as a function of temperature by previous authors (Jacob and Gupta (2014). The calculated Gibbs
free energy (∆fG˝) followed the order RuS2 < (Ir,Os)S2 < (Pt, Pd)S < (Pd, Pt)Te2, increasing from
compatible to incompatible noble metals and from sulfides to tellurides.
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1. Introduction

The platinumgroup elements Os, Ir, Ru, Rh, Pd and Pt (PGE) are among the most valuable elements
in nature with strategic importance, due to their growing use in advanced technologies and automobile
catalyst converters. Platinum groupelements (PGE) can be classified into two subgroups: the Os-, Ir-,
Ru-rich or IPGE (more refractory) and PPGE (low-melting and more soluble) (Ir group), interpreted to
reflect compatible behavior (partition or distribution coefficient between solid and magma, D ě 1)
during large-degree mantle melting and (Pt, Pd)-rich or PPGE assemblages, reflecting the incompatible
behavior (D ď 1) of the PPGE, showing enrichment as a function of the differentiation degree [1].
The behavior of PGE during partial melting and crystal fractionation and which minerals are collectors
of PGEs have been investigated and reviewed extensively [2–20].

Despite the great interest in the PGE, the thermo-chemical basis of their geochemical properties
remains unclear. Thermodynamic data for PGE-minerals (PGM) are very limited, due probably to
experimental difficulties and very limited data on the activity-composition models and relevant phase
diagrams [21–28]. Assuming that the required thermodynamic data (enthalpy, entropy, Gibbs free
energy) of the reactants and physical/chemical conditions (P, T) are available, then the mineral Gibbs
free energy can be calculated [26–28]. This paper focuses on: (1) the calculation of the Gibbs free
energy of formation for the selected PGM in PGE-bearing complexes worldwide, at standard state
conditions (∆fG˝), using the current state of knowledge from experimental data on the PGE; and (2) the
application of the calculated Gibbs free energy (∆G) values to predict the stability of PGM.

2. Methodology

Minerals have a Gibbs free energy of formation (∆fG˝) value, which describes the amount of
energy that is released or consumed when a phase is created from its constituent elements in their
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standard state. It is well known that the ∆fG˝ of a mineral varies with changes in pressure (P),
temperature (T) and mineral composition (X) and that the more stable position is one of lower energy.
The HSC Chemistry software 6.0, includes databases and various modules providing different types of
chemical/thermodynamic calculation.

The Gibbs free energy is defined [26] by the following equation:

G = H ´ T ˆ S (1)

The enthalpy and entropy values are available in different databases (HSC 6.0 Thermo-chemical
Data Source on PGE [29–37]). The standard Gibbs free energy (∆G˝) values of PGM were calculated
(Table 1, [21–24,35]) as the difference between free energy (G) of the products and reactants (Equation (2)
using data from the NBS tables of chemical thermodynamic properties [37]).

∆G = Gpspeciesq´ΣGpelementsq (2)

Table 1. The calculated standard Gibbs free energy (∆fG˝) values of formation for platinumgroup
minerals are compared to available literature data.

Mineral Literature Data
Ref.

Formula Name
∆fG˝ ∆fG˝ ∆fH˝ S˝ Cp

kJ/mol kJ/mol kJ/mol J/mol¨ K J/mol¨ K

RuS2 Laurite ´204.1 ´188.1 ´199.2 55.2 66.46 [22,23]
OsS2 Erlichmanite ´135.1 ´134.1 ´146.9 54.8 – [21]
IrS2 Unnamed iridium disulfide ´123.9 ´131.8 ´143.1 72.8 – [21]
IrTe2 Shuangfengite ´68.0 – ´71.13 123.43 – [35]
PtTe2 Moncheite ´52.9 ´52.33 ´58.19 120.95 75.09 [24,35]
PdTe2 Merenskyite ´60.6 ´47.36 ´50.40 126.67 76.30 [24,35]
Ir2S3 Kashinite ´196.4 ´220.5 ´241.4 97.1 – [21]
PtS Cooperite ´76.1 ´76.22 ´81.79 54.87 48.17 [24]
PdS Vysotskite ´66.7 ´72.25 ´70.87 57.63 48.66 [24]

OsAs2 Omeiite ´75.8 – ´76.57 101.32 – [35]
PtAs2 Sperrylite ´193.4 – ´217.57 31.928 – [35]
Rh2S3 Bowieite ´252.4 – ´262.47 125.52 – [35]
RuO2 Ru-oxide ´252.7 – ´305.01 58.158 – [35]

It is notable that the ˝ (“not”) on ∆fG˝ indicates that the ∆G value is based on the reaction at
standard conditions (1 M solution concentration, 1 atm gas pressure). Temperature is not part of the
standard conditions, but commonly, a temperature of 298 K is used. If the concentration is different
from 1 M or 1 atm gas pressure, the change of the Gibbs free energy is written as ∆G.

Using the Reaction Equations mode, chemical compounds and reactions were analyzed, in order to
calculate the change of the Gibbs free energy (∆fG˝) at standard conditions. Calibrating a chemical
reaction, ∆rG˝ is calculated by Equation (3), when the chemical reaction follows Equation (5):

∆G = GpProductsq´ GpReactantsq (3)

ΣGpProductsq´ΣGpReactantsq= pc ˆ GC + d ˆ GD + . . . q´ pa ˆ GA + b ˆ GB + . . . q (4)

aA + bB + . . . = cC + dD + . . . (5)

Although the question of the original existence of bonds between metallic PGEs and sulfur,
oxygen or other ligands remains unclear, the calculated Gibbs free energy values were calculated
assuming the existence of metallic PGEs and sulfur [21,22,38] via the Equation (2).

Although thermodynamic calculations, which are derived by various computational methods
based on the available reference data, and experimental methods yield considerable uncertainties [22,24],
the calculated thermodynamic values for PGM appear to be in a good agreement with those given in
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the literature. In addition, to evaluate the accuracy of the method of the calculation of the Gibbs free
energy of formation, the (∆fG) for the rhodium sulfide phases Rh3S4 and Rh2S3were calculated using
the HSC program (Tables 2 and 3). The Reaction Equations mode was used to estimate the free energy
of Reactions (6) and (7) through Equation (3), combining data from the HSC main database.

3Rhpsq+ 2S2pgq= Rh3S4 (6)

4Rh3S4psq+ S2pgq= 6Rh2S3 (7)

These values were compared to those obtained using a solid-state electrochemical technique [25].
The calculated values of ∆fG for these rhodium sulfides (Tables 2 and 3; Figure 1) were found to be in
good agreement with those of temperature in the range from 925 to 1275 K.
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Figure 1. Comparison of the calculated Gibbs free energy (ΔG) against temperature, for two reactions.  
(A) 3Rh(s) + 2S2(g) = Rh3S4(s) in this study with values obtained by previous authors [25]. Data for 
Line (a) from Table 2; data for Line (b): ΔGf(J·mol−1) = −548026 + 304.5 × T (K) from [25].  
(B) 4Rh3S4(s) + S2(g) = 6Rh2S3(s) in this study with values obtained by previous authors [25]. Data for 
Line (a) from Table 3; data for Line (b): ΔGf(J·mol−1)= −230957 + 160.03 × T (K)from [25]. 

Table 3. Comparison between ΔGf values of (a) this study and (b) [25] for the reaction:  
4Rh3S4(s) + S2(g) = 6Rh2S3(s). 

T (K) ΔG (a) (kJ/mol) ΔG (b) (kJ/mol) |ΔG (b) − ΔG (a)| 
900 −96.016 −86.93 9.086 
950 −86.619 −78.929 7.691 
1000 −77.219 −70.927 6.292 
1050 −67.812 −62.926 4.887 
1100 −58.392 −54.924 3.468 
1150 −48.956 −46.923 2.034 
1200 −39.499 −38.921 0.578 
1250 −30.018 −30.920 0.901 
1300 −20.509 −22.918 2.409 

Near 1250 K, there is excellent agreement between the measured and calculated values. At lower 
temperatures, the calculated values fall below the measured values, and this discrepancy increases with 
decreasing temperature. The reason for this discrepancy is not obvious, but it is probably due to many 
experimental difficulties and uncertainties and/or a database collected from different methods. 
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Figure 1. Comparison of the calculated Gibbs free energy (∆G) against temperature, for two reactions.
(A) 3Rh(s) + 2S2(g) = Rh3S4(s) in this study with values obtained by previous authors [25]. Data for
Line (a) from Table 2; data for Line (b): ∆Gf (J¨ mol´1) = ´548026 + 304.5 ˆ T (K) from [25].
(B) 4Rh3S4(s) + S2(g) = 6Rh2S3(s) in this study with values obtained by previous authors [25]. Data for
Line (a) from Table 3; data for Line (b): ∆Gf (J¨ mol´1)= ´230957 + 160.03 ˆ T (K) from [25].
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Table 2. Comparison between ∆Gf values of (a) this study and (b) [25] for the reaction:
3Rh(s) + 2S2(g) = Rh3S4(s).

T (K) ∆G (a) (kJ/mol) ∆G (b) (kJ/mol) |∆G (b) ´ ∆G (a)|

900 ´289.89 ´273.98 15.92
950 ´272.63 ´258.75 13.88
1000 ´255.46 ´243.53 11.93
1050 ´238.37 ´228.3 10.07
1100 ´221.37 ´213.08 8.29
1150 ´204.46 ´197.85 6.60
1200 ´187.62 ´182.63 5.00
1250 ´170.88 ´167.4 3.48
1300 ´154.22 ´152.18 2.04

Table 3. Comparison between ∆Gf values of (a) this study and (b) [25] for the reaction:
4Rh3S4(s) + S2(g) = 6Rh2S3(s).

T (K) ∆G (a) (kJ/mol) ∆G (b) (kJ/mol) |∆G (b) ´ ∆G (a)|

900 ´96.016 ´86.93 9.086
950 ´86.619 ´78.929 7.691
1000 ´77.219 ´70.927 6.292
1050 ´67.812 ´62.926 4.887
1100 ´58.392 ´54.924 3.468
1150 ´48.956 ´46.923 2.034
1200 ´39.499 ´38.921 0.578
1250 ´30.018 ´30.920 0.901
1300 ´20.509 ´22.918 2.409

Near 1250 K, there is excellent agreement between the measured and calculated values. At lower
temperatures, the calculated values fall below the measured values, and this discrepancy increases
with decreasing temperature. The reason for this discrepancy is not obvious, but it is probably due to
many experimental difficulties and uncertainties and/or a database collected from different methods.

3. Calculated Change of the Gibbs Free Energy (∆fG˝)

The calculated changes of the free energy of formation (∆fG˝) for selected PGM in layered intrusions
and ophiolite complexes are negative (Table 1), supporting their stability compared to the separate
elements (spontaneous reaction). They showed the following order: RuS2 < (Ir, Os)S2 < (Pt, Pd)S < (Pd, Pt)Te2;
that is, increasing from compatible to incompatible noble metals and from sulfides to tellurides.
In addition, due to the common presence of (Os–Ir–Ru)-oxides in nature, the ∆fG˝ for RuO2 was
calculated (Table 1). Using the equations of the HSC program, the calculated ∆fG˝ values in standard
conditions (Table 1) were extrapolated to a wide range of temperature, up to 1300 ˝C (Table 4), and the
variation of the free energy versus temperature is plotted (Figures 2–4). Since ∆H and ∆S are essentially
constant with temperature unless a phase change occurs, the free energy versus temperature plot
can be drawn as a series of straight lines, where ∆S is the slope and ∆H is the y-intercept [39,40].
Furthermore, since the ∆S values are always negative for these reactions, the ∆H-T∆S becomes larger
with temperature, and the lines slope upwards (formation reactions are exothermic).
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With respect to the recorded difference between the diagrams showing smooth curves (Figure 2A,
Band 3B) and diagram for tellurides (PtTe2, PdTe2 and IrTe2 (Figure 3A)), showing an abrupt change
of direction at 450 ˝C (Figure 3B), it may be related to the phase changes, as is exemplified by a phase
change at 449.51 ˝C, for compositions between PtTe2 and Te (melting point of Te metal) in the related
phase diagram [41,42].
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Table 4. Extrapolation of the calculated free energy values at standard stage (∆fG˝) (Table 1) to a wide
range of temperatures.

T (˝C) RuS2 OsS2 IrS2 IrTe2 PtTe2 PdTe2 Ir2S3 Rh2S3 PtS PdS OsAs2 PtAs2 RuO2

25 ´204.1 ´135.1 ´123.9 ´68.0 ´52.9 ´60.6 ´196.4 ´252.4 ´76.1 ´66.7 ´75.76 ´193.4 ´252.7
50 ´202.9 ´134.0 ´123.2 ´67.7 ´52.4 ´60.3 ´195.2 ´251.5 ´75.7 ´66.4 ´75.6 ´191.3 ´248.3

100 ´200.5 ´131.8 ´121.6 ´66.5 ´51.4 ´59.9 ´192.8 ´249.8 ´74.7 ´65.6 ´74.9 ´186.7 ´239.5
150 ´197.7 ´129.1 ´119.6 ´64.9 ´50.5 ´59.4 ´189.8 ´247.3 ´73.5 ´64.7 ´73.7 ´181.5 ´230.9
200 ´194.5 ´126.2 ´117.2 ´62.8 ´49.4 ´58.9 ´186.2 ´244.3 ´72.1 ´63.6 ´72.0 ´175.9 ´222.3
250 ´191.1 ´123.0 ´114.7 ´60.3 ´48.4 ´58.4 ´182.4 ´241.1 ´70.6 ´62.4 ´70.0 ´169.9 ´213.9
300 ´187.5 ´119.7 ´112.0 ´57.4 ´47.4 ´57.9 ´178.4 ´237.6 ´69.0 ´61.1 ´67.5 ´163.5 ´205.5
350 ´183.9 ´116.2 ´109.3 ´54.2 ´46.3 ´57.5 ´174.2 ´234.0 ´67.5 ´59.8 ´64.7 ´156.7 ´197.2
400 ´180.1 ´112.7 ´106.5 ´50.6 ´45.2 ´57.0 ´170.0 ´230.3 ´65.8 ´58.4 ´61.6 ´149.6 ´189.1

449.5 -- -- -- ´46.7 ´44.1 ´56.6 -- -- -- -- -- -- --
450 ´176.3 ´109.2 ´103.6 ´46.7 ´44.0 ´56.5 ´165.6 ´226.5 ´64.1 ´57.0 ´58.2 ´142.2 ´180.9
500 ´172.5 ´105.6 ´100.7 ´40.0 ´40.4 ´53.6 ´161.2 ´222.6 ´62.4 ´55.5 ´54.3 ´134.6 ´172.9
550 ´168.6 ´101.9 ´97.8 ´33.1 ´36.7 ´50.7 ´156.7 ´218.6 ´60.7 ´54.1 ´50.6 ´126.7 ´165.0
600 ´164.6 ´98.2 ´94.8 ´25.8 ´32.8 ´47.6 ´152.2 ´214.6 ´59.0 ´52.7 ´46.4 ´118.4 ´157.1

626.8 -- -- -- -- -- ´46.0 -- -- -- ´51.9 -- -- --
650 ´160.6 ´94.4 ´91.7 ´18.2 ´29.0 ´44.6 ´147.7 ´210.5 ´57.0 ´51.2 ´42.0 ´110.0 ´149.3
700 ´156.6 ´90.7 ´88.7 ´10.4 ´25.0 ´41.5 ´143.1 ´206.3 ´55.4 ´49.7 ´37.3 ´101.3 ´141.5
750 ´152.5 ´86.9 ´85.6 ´2.3 ´21.0 ´38.4 ´138.4 ´202.1 ´53.6 ´48.2 ´32.4 ´92.4 ´133.8
800 ´148.4 ´83.0 ´82.5 6.0 ´17.0 ´35.3 ´133.8 ´197.9 ´51.9 ´46.8 ´27.3 ´83.3 ´126.2
850 ´144.2 ´79.1 ´79.4 14.5 ´12.9 ´32.2 ´129.1 ´193.6 ´50.0 ´45.2 ´20.6 ´72.5 ´118.6

876.8 -- -- -- 19.2 ´10.7 ´30.6 -- -- -- -- -- -- --
900 ´140.0 ´75.3 ´76.3 23.3 ´8.7 ´29.1 ´124.4 ´189.3 ´48.3 ´43.8 ´12.8 ´60.8 ´111.1

926.8 -- -- ´74.6 28.1 -- -- ´121.9 ´187.0 -- -- -- -- --
950 ´135.8 ´71.3 ´73.1 32.2 ´4.5 ´26.0 ´119.7 ´185.0 ´46.5 ´42.3 ´4.9 ´48.8 ´103.6

1000 ´131.6 ´67.4 ´70.0 41.4 ´0.3 ´22.9 ´115.0 ´180.7 ´44.7 ´40.8 ´3.1 ´36.7 ´96.2
1026.8 ´129.3 -- -- -- 2.0 -- -- -- ´43.7 -- ´ ´30.1 ´92.3
1050 ´127.3 ´63.5 ´66.8 50.7 3.9 ´19.8 ´110.2 ´176.3 ´42.9 ´39.3 11.4 ´24.4 ´88.9
1100 ´123.1 ´59.5 ´63.6 60.2 8.3 ´16.7 ´105.5 ´171.9 ´41.1 ´37.8 19.8 ´11.9 ´81.5
1150 ´118.8 ´55.5 ´60.4 69.9 12.6 ´13.6 ´100.7 ´167.4 ´39.3 ´36.3 28.4 0.7 ´74.3
1200 ´114.4 ´51.5 ´57.2 79.7 17.0 ´10.5 ´96.0 ´163.0 ´37.5 ´34.8 37.1 13.5 ´67.0
1250 ´110.1 ´47.5 ´54.0 89.8 21.4 ´7.4 ´91.2 ´158.5 ´35.7 ´33.3 46.0 26.5 ´59.9
1300 ´105.7 ´43.5 ´50.8 99.9 25.8 ´4.3 ´86.4 ´154.0 ´34.0 ´31.8 55.0 39.6 ´52.7

A particular case of the free energy change accompanying a chemical reaction is the standardfree
energy of formation, which is the free energy change accompanying the formation of one mole
of a compound from the constituent elements, all being in their standard states. The change in
the standard free energy with temperature is due to the changes ∆H˝ and ∆S˝ (this is related to
the standard enthalpy and entropy ∆G˝ (∆G˝ =∆H˝´T¨∆S˝) and, of course, to the change in the
temperature itself. It has been assumed that the free energies of formation of the elements in their
standard states are, by convention, taken to be zero; the enthalpy scale is fixed by defining H = 0,
describing the most stable phase of the pure elements, and the enthalpy of compounds contains the
enthalpy of formation Hf from elements, which is usually measured calorimetrically [25–28]. Thus,
the enthalpy of the compound is calculated by adding the enthalpy of formation to the experimental
enthalpy difference H(T)–H [27].

HpTq “ H f p298.15q `
ż T

298.15
CpdT`

ÿ

Htr (8)

where Hf(298.15) is the enthalpy of formation at 298.15 K and Htr is the enthalpy of transformation of
the substance.

Absolute entropy values can be calculated from the experimental heat capacity values through
the equation:

S “ Sp298.15q `
ż T

298.15
pCp{TqdT`

ÿ

Htr{Ttr (9)
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where S(298.15) is the standard entropy of the substance, which can be calculated by integrating
Cp/T function from 0 to 298.15 K, T is temperature and Htr is the enthalpy of phase transformation at
a temperature Ttr.
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Entropies of crystalline substances approach zero at 0 K (´273.15 ˝C). This fundamental experimental
observation is compatible with the third law of thermodynamics [27]. If entropy is understood as
a measure of disorder, the disorder reaches its minimum at absolute zero and in perfect crystal
structures. The heat capacity values of crystalline substances in equilibrium approaches the zero value
at 0 K. Theoretical thermodynamic modeling cannot predict the temperature dependence of heat
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capacity at elevated temperatures. The term ∆Cp is usually small, but seldom zero. Plots of ∆G˝ versus
T are, therefore, slightly curved. The term ∆Cp can usually be expressed as a function of temperature
by an empirical equation, and the inclusion of this in the expression for ∆G˝ leads to the following
fully-mathematical correlation, which is therefore adopted for fitting experimental heat capacities:

Cp = A + B ˆ 10´3 ˆ T + C ˆ 105 ˆ T´2 + D ˆ 10´6 ˆ T2 (10)

where A, B, C and D are coefficients estimated from experimental data [26].
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Since ∆H and ∆S are essentially constant with temperature unless a phase change occurs, the free
energy versus temperature plot can be drawn as a series of straight lines, where ∆S is the slope and
∆H is the y-intercept [26–28]. The lines slope for selected PGM (Figure 5) upwards because ∆S for
these reactions is always negative, therefore ∆H-T∆S becomes larger with temperature because the
formation reactions are exothermic (∆H < 0).
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4. Application of (∆fG) Values to the Origin of PGM

The mineral stability, depending mainly on the availability of PGE/reactants and/or differences
in pressure and temperature relative to standard conditions, may have an effect on the equilibrium
constants [26–28]. Although the stability relationships between various phases can be studied using the
experimental method, thermodynamics may give us an approach to the calculation of the Gibbs free
energy and phase diagrams [28]. However, the requirements for the PGM stability and re-deposition
remain still unclear, since the activity-composition models and relevant phase diagrams for PGM are
very limited, and the PGM forming processes in natural systems are complicated [1–20,28].

The calculated Gibbs free energy values may contribute to better understanding of the knowledge
provided by geochemical data, mineral chemistry and structure relationships (microscopic scale) as
they are obtained from the investigation of PGE/PGM in nature [43–50]. The more negative Gibbs
free energy values for the RuO2 compared to those for the RuS2, in the range of temperature lower
than 500 ˝C (Table 4, Figure 5), seems to be in good agreement with the common transformation
of laurite to oxides/hydroxides in small chromite occurrences [13,48], in placer deposits [49], in the
oxidized zone of the Great Dyke of Zimbabwe layered intrusion [50], in laterite deposits [51–53] and
elsewhere. The equilibrium constant for the transfer of an ion from one phase to another is directly
related to Gibbs free energy and the partition coefficient, which are defined by the behavior of the
elements. The apparent epigenetic desulfurization at relatively low (350–500 ˝C) temperature and
partial oxidation of primary laurite crystals has been facilitated by strong brittle deformation and
crystal deformation and dislocations, making it possible to remove the sulfur [3,13,48].
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Thus, a differential stress driving the deformation of ores, in particular those associated with
ophiolite complexes, and changes in temperature, pressure, surface energies, solubility and the
diffusion process, have a potential effect on PGM reactions [54]. Although the relative stability of
RuO2 and RuS2 phases as functions of fO2 and fS2 (a redox reaction) is not constrained, the change of
a mineral assemblage into a different assemblage means that the new association at the given pressure,
temperature and mineral association has a lower free energy than the initial one [55].

On the basis of the calculated Gibbs free energy of formation for the RuS2 (´204.1 kJ/mol), which is
lower compared to that for the OsS2 (´135.1 kJ/mol) (Table 1, Figure 2A), the reaction Os + RuS2 ØRu + OsS2

is not favorable thermodynamically (positive ∆fG˝), although the substitution reaction of Ru by Os
has been recorded in nature: laurite in chromitites associated with ophiolite complexes is commonly
characterized by the general formula (Ru > Os > Ir)S2, but in the Othrys complex and other ophiolites
of the Balkan Peninsula, it is Os-rich (Os > Ru > Ir)S2, reaching the composition of erlichmanite [4].
Such a composition has been interpreted as Os–Ru substitution during crystal fractionation, while the
metal-sulfide equilibrium curves for PGE indicate that at given T, the formation of RuS2 requires fS2

lower than that for OsS2 [56].
Furthermore, the role of fS2, fTe2 and temperature has been emphasized for the composition and

crystallization of sulfides and tellurides, scavenging Pt and Pd originally contained in the sulfide
melt [41,42]. In addition, the earlier deposition of (Pt, Pd)S compared to (Pd, Pt)Te2, since (Pt, Pd)S
is dominant in the UG2chromitite unit (Bushveld), which is located at a lower stratigraphic level
compared to the Merensky Reef, where (Pd, Pt)Te2 are dominant PGM [18,43], seems to be consistent
with the more negative free energy values in the former than in the latter (Table 1).

The occurrence of (Pd, Pt)-tellurides, such as moncheite (PtTe2), merenskyite (PdTe2),
melonite [(Ni, Pd)Te2], kotulskite [(Pd, Ni)Te] and bismuth-tellurides [(Pt, Pd)(Te, Bi)2] in certain
porphyry-Cu–Au˘ Pd˘ Pt systems [44–47], may be related to fS2, fTe2 and temperature, as well [41,42].
Assuming that the elevated values of the Pd/Pt ratios, the extremely low Cr contents (<1 ppm) in
high Cu–Pd–Pt-grade ores, negative correlation between Cr content and the Pd/Pt, δ18O values in
porphyry deposits of the Balkan Peninsula suggest genesis from more evolved mineralized fluids
in porphyry Cu–Au–Pd–Pt deposits [44–47], the dominance of (Pd-Pt)-tellurides versus (Pt, Pd)S may be
related to fS2, fTe2 and temperature variation. In addition, the common occurrence of the (Pd, Pt ˘ Bi)Te2,
merenskyite (the main PGM in porphyry Cu–Au–Pd–Pt deposits), at the peripheral parts of
chalcopyrite [44–47], may be related to the lower free energy of formation (∆fG) values for chalcopyrite
(´369.6 kJ/mol [57]) compared to that for merenskyite (´70 kJ/mol), suggesting the subsequent
deposition of the latter, under appropriate fTe2 and temperature conditions. Thus, the combination of
geochemical characteristics of a porphyry deposit indicating an evolved mineralized system, texture
relationships of minerals and free energy data for those minerals data may provide evidence for the
existence of (Pd, Pt)-mineralization.

The strong effect of As on PGE partitioning has been documented by the formation of stable
high-temperature phases between As and Pt or Rh, including sperrylite (PtAs2), hollingworthite
(Rh, Pt, Pd)AsS, and platarsite (Pt, Rh, Ru)AsS [5,13–15]. The presented (∆Gf) values for sperrylite
(PtAs2) (Table 1; Figure 5) seem to be consistent with its common occurrence in chromitites as
an interstitial phase between chromite grains [5,13–15].

Therefore, although the application of calculated Gibbs free energy values for selected PGM
(Table 1) is not clear on the PGE behavior during the evolution of the mineralized systems, the free
energy of PGM formation values can be compared to geological and mineralogy data and structure
relationships observed in rocks associated with PGM to predict their occurrence and stability.

5. Conclusions

Although there are uncertainties in heat capacity and enthalpy data for PGM and the applications
of thermodynamic experiments are limited, the application of thermodynamics to the study of nature
systems can be compared to phase relations observed in rocks associated with PGM to predict their
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occurrence and stability. The preliminary results presented for the Gibbs free energy of the PGM allow
us to present the following conclusions:

‚ The calculated free energy of formation (∆Gf) for selected PGM were negative values, indicating
that these minerals are more stable than the separate elements at standard conditions (the process
is spontaneous).

‚ The calculated Gibbs free energy of formation in the order RuS2 < OsS2 < (Pt, Pd)S < (Pd, Pt)Te2 is
increasing from sulfides to tellurides, and they are consistent with their compatibility.

‚ The evaluation of the accuracy of the method of calculation of the Gibbs free energy of formation
using the HSC program was made by comparison with those obtained using a solid-state electrochemical
technique by previous authors and was found to be in a good agreement.

‚ The lower values of the calculated Gibbs free energy of formation (∆G˝
f) for the oxide RuO2

compared to that for RuS2 at temperatures lower than 500 ˝C are consistent with the observed
transformation of laurite to oxides/hydroxides at relatively low temperatures.

‚ Although much more experimental work is required, the compilation of preliminary Gibbs free
energy values with geological, mineralogical data and phase relations in natural systems suggests
that a thermodynamic approach on PGM may contribute to the better understanding of the PGM
thermodynamic behavior and PGE mineralization.
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