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Abstract: A comprehensive classification of primitive achondrites is difficult due to the 

high compositional and textural variability and the low number of samples available. 

Besides oxygen isotopic analysis, other minerochemical and textural parameters may 

provide a useful tool to solve taxonomic and genetic problems related to these achondrites. 

The results of a detailed modal, textural and minerochemical analysis of a set of primitive 

achondrites are presented and compared with literature data. All the samples show an 

extremely variable modal composition among both silicate and opaque phases. A general 

trend of troilite depletion vs. silicate fraction enrichment has been observed, with 

differences among coarse-grained and fine-grained meteorites. In regard to the mineral 

chemistry, olivine shows marked differences between the acapulcoite-lodranite and 

winonaite groups, while a compositional equilibrium between matrix and chondrules for 

both groups, probably due to the scarce influence of metamorphic grade on this phase, was 
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observed. The analysis of Cr and Mn in clinopyroxene revealed two separate clusters for 

the acapulcoite/lodranite and winonaite groups, while the analysis of the reduction state 

highlighted three separate clusters. An estimate of equilibrium temperatures for the 

acapulcoite-lodranite and winonaite groups is provided. Finally, proposals regarding the 

genetic processes of these groups are discussed.  

Keywords: primitive achondrites; acapulcoite; lodranites; winonaites; X-ray maps 

 

1. Introduction 

Primitive achondrites are considered transitional products between chondrites and differentiated 

meteorites and are thought to derive from chondritic ancestors that suffered a medium-grade thermal 

metamorphism and partial fusion [1]. 

According to the most recent theories these meteorites originated inside small asteroids that 

underwent accretion and differentiation processes before being destroyed by catastrophic collisions 

that lead to a more or less rapid cooling of the nascent material [1,2]. This theory would justify the 

presence of structures displaying different partial fusion, metamorphism and recrystallization rates, 

like relict chondrules found in some of these samples. A comprehensive and exhaustive classification 

of primitive achondrites has never been performed due to the high compositional and textural 

inhomogeneity and the low number of samples available. Acapulcoites display a fine-grained texture 

(mean grain size 150–300 µm) consisting of olivine and pyroxene, with minor plagioclase, sulfides 

and Fe/Ni alloys [3]. The presence of metal or sulfide veins and of relict chondrules, as well as the 

chondritic amount of plagioclase and the depletion in troilite and metal suggests a low fusion grade 

(1%–5%) at temperatures of about 950–1000 °C, as also indicated by trace element analysis [4,5]. The 

fine texture of mafic silicates can be explained through solid state diffusion and crystallization 

processes [3]. Lodranites, although chemically similar to acapulcoites, display markedly different 

textural features, being much coarser grained (mean grain size 300–700 µm) and containing a lower 

amount of plagioclase and sulfides. It has been suggested that they suffered a much higher 

metamorphic grade (10%–15% according to [6]); 25% according to [5]), corresponding to 

temperatures of about 1050–1200 °C [3], that allowed a higher recrystallization rate and, consequently, 

a coarser grain size than the acapulcoites. The absence of chondrules is consistent with such a 

hypothesis [7]. Their mineralogical composition is depleted in those phases, like plagioclase, sulfides 

and Fe/Ni alloys, which may have been transformed into liquid and removed from the system. This 

hypothesis is confirmed by the trace element composition which displays a marked depletion in 

lithophile incompatible elements, especially rare earth elements (REE) [5,8]. 

Although it is well-established that lodranites experienced higher temperatures than acapulcoites, 

the origin of such temperatures is not clear. The radioactive decay of short-lived isotopes like 27Al, 

typical of the first stages of formation of the Solar System, cannot be considered the only heat source 

due to its slow heating and subsequent cooling rates which should produce a much more homogeneous 

rock, both texturally and compositionally, as compared to acapulcoites and lodranites. A process 

resulting from impacts has therefore invoked to explain the local heating of the parental body and the 
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mixing of evolved and primitive portions [1,2]. Traces of such collisions may be the presence of 

troilite veins and of shock features in olivine crystals [1,7,9]. These features are more common in 

acapulcoites than in lodranites, which experienced a higher metamorphic grade. Recently, several 

reports have focused on the 182Hf–182W chronometry to reveal the early evolution history in the 

acapulcoite-lodranite parent body [10,11], while others have focused on the I–Xe system to determine 

the accretion age of the acapulcoite-lodranite parent body, suggesting the existence of post-formation 

collision events [12]. The affinity of lodranites for acapulcoites appears evident from the isotopic 

distribution of oxygen, supporting the hypothesis that they originated from a common parent body. 

According to this hypothesis acapulcoites are representative of the outer, less thermally 

metamorphosed, portion of the parent body and lodranites are representative of the inner, highly 

metamorphosed zones. This hypothesis is in agreement with geochemical data [4]. Acapulcoites and 

lodranites are therefore considered end-members of the same series, although intermediate products, 

like LEW 86220 [13–15] and Y-74357 [16], are extremely rare. 

An evolution scheme has been proposed [17], which considers, in a progressive heating process, the 

following steps: primitive acapulcoites, typical acapulcoites, transitional acapulcoites, enriched 

acapulcoites and lodranites. Each step is characterized by a partial loss of sulfides (first step) or 

silicates (following steps). An attempt to solve this classification complexity has been made by 

comparing LREE values [17]. Better results have been obtained using the Zr and Ti contents of  

ortho- and clinopyroxenes [8], even if this cannot be considered a secure classification parameter due 

to the high analytical uncertainty. Other parameters, like Se partitioning [18,19], or the LREE in  

ortho- and clinopyroxenes did not provide reliable results. 

The other group of primitive achondrites contains winonaites and the silicate inclusions in the iron 

meteorites of the IAB group, which are considered to represent different regions of the same parental 

body [20]. Even in this case the group contains both more primitive and more evolved members, 

displaying evidence of a fusion and differentiation process on the parental body. The presence of 

moderate fractionation of both siderophile and lithophile elements suggests a chondritic affinity, 

although the contents of the lithophile elements are more variable respect to those observed in the 

acapulcoite-lodranite clan [20]. The studies on the age of formation suggest that these meteorites are 

coeval to acapulcoites-lodranites and that their initial formation stage is similar, with regions of the 

parent body that reached high metamorphic grade temperatures and a subsequent diffuse recrystallization, 

whereas other regions proceeded further, achieving partial fusion temperatures [20–23]. Nevertheless, 

the final formation stage appears quite different, with regions in which the molten metal mixed to 

silicates and formed the silicate-inclusion-rich IAB iron meteorites and other regions, which formed 

winonaites, that were not subject to this process [24]. Based on W and Sm isotope measurements for 

metals and silicates of non-magmatic iron meteorite groups and winonaites, their exposure history and 

parent body formation has been assessed [25]. A metal separation at 5.06 +0.42/−0.41 Ma after the solar 

system formation was proposed, which agrees with the previously published 182Hf–182W ages for both 

the silicate melting (4.6 +0.7/−0.6 Ma) and the formation of winonaites (4.8 +3.1/−2.6 Ma) and corresponds 

to an accretion age of ~2 Ma after Solar System formation for the IAB/winonaite parent body [10]. 

The metamorphism of IAB silicate inclusions and winonaites has been reported to take place at 

significantly different times, between ~11 and ~14 Ma, via an impact triggered melt pool formation 

process [25]. Currently, the main parameter used for the classification of primitive achondrites is the 
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isotopic composition of oxygen. As revealed by the oxygen isotope (OI) data, samples belonging to the 

two groups (acapulcoites-lodranites and winonaites-IAB silicate inclusions) are located in two distinct 

areas below the terrestrial fractionation line, suggesting an origin from separate parent bodies [26,27]. 

It is important to stress that this method may be, in some cases, partially affected by terrestrial 

contamination, especially where desert samples are concerned. It is, therefore, crucial to complement 

OI data with other geochemical and textural parameters. Herein we suggest the use of a new tool based 

on minerochemical and textural parameters that may be useful to solve taxonomic and genetic 

problems related to primitive achondrites [1,2]. In order to determine these parameters a detailed 

modal, textural and minerochemical analysis regarding both the matrix and the chondrules of a set of 

18 meteorites belonging to primitive achondrites has been performed and the results have been 

compared with literature data [4,13,14,17,28] on these and other primitive achondrites. 

2. Materials and Methods 

Optical microscopy and imaging have been performed at the laboratories of the Museo di Scienze 

Planetarie di Prato by means of a Axioplan-2 polarizing optical microscope equipped with Axiocam-HR 

camera and Axiovision 4.1 software. SEM-EDX X-ray maps have been performed at the Dipartimento 

di Chimica dell’Università di Firenze by means of a Hitachi SEM model S-2300 operating at 25 kV, 

15 nA, 1 μm of spot diameter and equipped with a Si(Li) EDX analyzer and a Noran System Six 300 

software. EMPA-WDS analyses have been performed at the Padova laboratories of the IGG–CNR 

(National Council of Research) with a Cameca Camebax Microbeam microprobe operating at 20 kV, 

20 nA and 1 μm of spot diameter. 

X-ray maps have been performed at a high definition (1024 × 812 pixels) with total acquisition time 

of 25 min for each map. The modal analyses have been extracted from elemental X-ray maps using the 

image analysis tool of the Noran System Six 300 software which provides the areal distribution of the 

selected element by means of the processing of its pixels # vs. net counts histogram. Repeated 

measures on the same area provided a maximum error of 10%. Measurements have been performed on 

at least three 3 × 2 mm2 areas per sample, averaging the results. The mineralogical phases have been 

then quantified on the basis of the surface percentage amount of selected elements, according to the 

correspondence scheme presented in Table 1: for example olivine and pyroxene have been quantified 

based on the amount of Mg, while the Fe/Ni alloys and Fe-oxides have been discerned on the basis of 

the gray scale in the back-scattered electrons (BSE) image mode. 

The list of the thin sections analyzed and of the institutions that provided the samples is reported, 

together with their classification, in Table 2. 

Figure 1 reports an example of a multi-elemental X-ray map performed on a chondrule of the 

sample Y-74025. 
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Table 1. Correspondence scheme between the quantified mineralogical phases and the 

elements detected. 

Element Mineral Phases 

Si Silicates 

S Sulfides 

Fe Fe/Ni alloys and secondary oxides 

Al Plagioclase 

Ca Apatite and clinopyroxene 

P Apatite 

Mg Olivine and orthopyroxene 

Table 2. List of the thin sections studied and of the institutions that provided the samples; 

MSP = Museo di Scienze Planetarie della Provincia di Prato; NHM = Natural History 

Museum of London; Hamb = Mineralogisches Museum, Universität Hamburg;  

JSC-ARES = Johnson Space Center—Astromaterial Research and Exploration Science; 

AMRC-NIPR = Antarctic Meteorite Research Center—National Institute for Polar 

Research; Vernad = Vernadsky Institute of Geochemistry and Analytical Chemistry; 

UCLA = University of California, Los Angeles. 

Meteorite Name Thin Section Label Classification Institution 

Allan Hills 81187 ALH 81187 acapulcoite JSC-ARES 

Allan Hills 81261 ALH 81261 acapulcoite JSC-ARES 

Allan Hills 77081 ALHA77081-11-8 acapulcoite JSC-ARES 

Asuka 881902 A881902-141-3 acapulcoite AMRC-NIPR 

Dhofar 290 DHO 290 acapulcoite Vernad 

Graves Nunataks 98028 GRA 98028 acapulcoite JSC 

Northwest Africa 1052 MSP 2377 acapulcoite MSP 

Northwest Africa 1054 MSP 2378 acapulcoite MSP 

Northwest Africa 3008 NWA 3008 acapulcoite Hamb 

Northwest Africa 1058 MSP 2264 winonaite MSP 

Northwest Africa 1463 UCLA NWA 1463 winonaite UCLA 

Pontlyfni BM1975, M6 P6851 winonaite NHM 

Queen Alexandra Range 94535 QUE 94535 winonaite JSC-ARES 

Yamato 74025 Y74025-52-1 winonaite AMRC-NIPR 

Yamato 74063 Y74063-52-4 acapulcoite AMRC-NIPR 

Yamato 74357 Y74357-62-1 lodranite AMRC-NIPR 

Yamato 791491 Y791491-51-1 lodranite AMRC-NIPR 

Yamato 8005 Y8005-51-3 winonaite AMRC-NIPR 
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Figure 1. BSE scanning electron photomicrograph (bottom right) and X-ray compositional 

maps of the elements Na, Mg, Al, Si, S, Ca, Cr and Fe in a chondrule of the sample  

Y-74025 (winonaite). The color intensity is proportional to the amount of the element 

present. Mineral phases can be identified following the scheme reported in Table 1. 

3. Results and Discussion 

3.1. Textural Features 

Primitive achondrites display an extremely wide textural variability due to the fact that some of 

them contain chondrules set in a fine grained matrix, while others have no chondrules and show a fine- 

or a coarse-grained texture. Representative examples of the typical textures are shown in Figure 2. 

Meteorites indicated with the letters from (A) to (I) display a fine-grained texture and relict 

chondrules; those from (L) to (Q) have a variable grain size from fine to medium; those from (R) to 

(T) are characterized by a markedly coarse grain size. 

The modal analysis is conventionally performed by means of optical microscope images. This 

method is not particularly suitable for primitive achondrites as they are often characterized by a fine 

grained texture, which impedes an accurate determination of grain size. Therefore, the modal analysis 

of the mineral phases used herein has been obtained by means of image analysis of the X-ray maps 

performed on the investigated meteorites. X-ray maps can provide a very high spatial resolution 

(below 5 μm) that allows detection also of very small grains (mean size < 50 μm), that can be therefore 

included in the count. This method has also been applied to the microcrystalline structures typical of 

the chondrules, allowing a comparison between the modal composition of the chondrules and of the 

surrounding matrix. The results presented in Table 3 regard the matrix and display the mean values 

obtained from modal analyses performed on 3–5 different areas of 3 × 2 mm2 for each sample. The 

selected areas are representative of the typical texture of the matrix. 
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Figure 2. Photomicrographs of the thin sections of the meteorites investigated in the 

present study: (A) A-881902; (B) Y-74063; (C) GRA 98028; (D) NWA 1052; (E) NWA 1054; 

(F) NWA 1058; (G) NWA 1463; (H) NWA 3008; (I) Y-74025; (L) ALHA77081; (M) 

ALH 81187; (N) DHO 290; (O) QUE 94535; (P) Y-8005; (Q) Pontlyfni; (R) ALH 81261; 

(S) Y-74357; (T) Y-791491; transmitted light, crossed polars; scale bar is 500 μm. 

Chondrules are highlighted with white circles. 
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Table 3. Modal distribution of mineralogical phases as determined by analysis of X-ray map images; all values are in %; error is 2σ; sample 

classification is reported in Table 2. 

Mineral  

Phases 

Samples 

Yamato 

74357 

Yamato  

791491 

Yamato  

8005 

QUE 

94535 

ALH 

81187 

ALH 

81261 

ALHA 

77081 

Yamato 

74025 

Yamato 

74063 

GRA  

98028 

Asuka 

881902 

NWA 

1052 

NWA 

1054 

NWA 

3008 

NWA 

1058 

NWA 

1463 

DHO  

290 
Pontlyfni 

Silicates 83.0 ± 7 77.3 ± 10 54.7 ± 10 84.3 ± 4 82.4 ± 4 87.5 ± 6 83.7 ± 2.3 86.9 ± 3 86.2 ± 5 69.8 ± 3 79.1 ± 6 84.2 ± 5 85.6 ± 5 89.5 ± 5 63.6 ± 5 49.3 ± 6 79.8 ± 5 67.1 ± 5 

Opaque phases 17.7 ± 10 21.3 ± 10 44.5 ± 8 15.3 ± 1 16.8 ± 3 12.1 ± 5 14.4 ± 2.3 11.6 ± 3 16.0 ± 2 30.3 ± 3 22.0 ± 8 15.8 ± 2 16.1 ± 2 10.5 ± 1 27.1 ± 2 51.1 ± 10 24.5 ± 3 33.8 ± 2 

Fe/Ni alloys 13.4 ± 10 14.1 ± 8 12.2 ± 10 1.4 ± 1 6.0 ± 3 5.5 ± 4 8.8 ± 2.1 2.5 ± 1 4.6 ± 2 3.9 ± 3 3.3 ± 1 4.2 ± 2 3.2 ± 2 2.1 ± 1 13.1 ± 3 42.9 ± 8 7.1 ± 2 10.9 ± 2 

Troilite 0.4 ± 0.1 2.4 ± 0.4 5.8 ± 0.5 6.5 ± 2 1.9 ± 1 5.9 ± 3 5.6 ± 0.6 8.2 ± 3 8.4 ± 1.4 16.3 ± 2 14.5 ± 2 6.2 ± 1.5 7.5 ± 2 3.2 ± 1 7.0 ± 2 4.0 ± 2 5.6 ± 2 19.1 ± 2 

Oxides 3.9 ± 0.7 4.8 ± 1 26.5 ± 4 7.3 ± 3 9.0 ± 2 0.8 ± 0.3 n.d. 0.7 ± 0.2 3.0 ± 2 10.2 ± 2 4.2 ± 2 5.3 ± 2 5.3 ± 1.5 5.3 ± 2 7.0 ± 2 4.3 ± 2 11.6 ± 2 3.9 ± 1.5 

Diopside 2.5 ± 1.2 0.5 ± 0.1 5.1 ± 2 3.1 ± 1 0.8 ± 0.2 7.0 ± 1 3.2 ± 1.1 7.3 ± 0.3 5.9 ± 1.4 6.5 ± 2 4.6 ± 2 5.3 ± 1.5 5.3 ± 1.3 10.5 ± 2 6.4 ± 1 4.3 ± 2 2.0 ± 2 5.0 ± 1.5 

Plagioclase n.d. n.d. 7.7 ± 3 7.8 ± 0.6 6.6 ± 1.5 13.2 ± 3 12.8 ± 1.4 14.5 ± 1.4 13.1 ± 3 10.4 ± 2 12.6 ± 3 15.8 ± 3 16.0 ± 2 15.8 ± 2 9.6 ± 2 4.3 ± 3 9.3 ± 3 9.1 ± 3 

Olivine 65.3 ± 5 31.3 ± 7 11.6 ± 5 24.5 ± 5 32.7 ± 7 25.5 ± 2 26.7 ± 2.2 21.2 ± 3 24.0 ± 3.5 26.6 ± 6 24.9 ± 3 26.3 ± 4 26.7 ± 3 36.8 ± 4 33.8 ± 4 18.8 ± 2 30.3 ± 5 32.0 ± 4 

Orthopyroxene 15.2 ± 7 43.6 ± 1 29.6 ± 3 48.2 ± 5 39.6 ± 10 40.2 ± 1 38.8 ± 1.0 43.0 ± 3 41.1 ± 2 27.5 ± 4 37.6 ± 5 36.8 ± 3 37.4 ± 3 26.3 ± 2 18.8 ± 2 21.4 ± 5 36.8 ± 3 21.0 ± 3 

Chromite n.d. 1.5 ± 1 0.3 ± 0.1 n.d. 0.1 ± 0.2 1.1 ± 0.8 1.9 ± 1.6 0.1 ± 0.1 0.3 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.5 ± 0.1 n.d. 0.4 ± 0.1 n.d. n.d. n.d. 

Apatite n.d. n.d. n.d. n.d. 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.1 n.d. 0.7 ± 0.1 1.2 ± 1 0.3 ± 0.1 n.d. 0.4 ± 0.1 n.d. 1.2 ± 0.8 1.4 ± 0.3 0.3 ± 0.1 n.d. 

Weathering * 22.3 ± 10 20.2 ± 10 39.6 ± 7 32.1 ± 9 35.5 ± 10 7.3 ± 3.0 n.d. 5.6 ± 2 16.1 ± 7 26.1 ± 6 17.0 ± 4 26.3 ± 4 26.7 ± 5 35.1 ± 6 22.1 ± 6 8.3 ± 3 33.8 ± 5 10.1 ± 4 

Note: * weathering is calculated as % of the secondary oxides with respect to the total amount of opaque phases. 
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All the samples display an extremely variable modal composition and no clear groups can be 

singled out: silicates account for 50% to 80% of the total volume, with olivine and orthopyroxene as 

major phases. Opaque phases are considered as the sum of troilite, Fe/Ni alloys and oxides. It is 

important to stress that the large error values reported in Table 3 are mainly due to the high 

inhomogeneity of the samples rather than to the analytical method. The high variability in the modal 

composition shown by these samples, that has been noted previously [22,29,30], does not affect the 

petrographic valence of the analysis since it reflects the complex magmatic processes that these 

meteorites have undergone. 

A plot of the troilite/silicate ratio (in vol %) versus the total silicate vol % enables a number of 

interesting observations to be made. Besides the general trend of relative depletion of the total amount 

of troilite related to the enrichment of the silicate fraction, a peculiar feature can be observed if the 

overall texture is considered (Figure 3): coarse grained meteorites displaying an equigranular texture 

with marked 120° triple junctions, thus indicating a high metamorphic degree, are located in the 

bottom right portion of the plot (empty circles), while fine-grained meteorites, regardless of whether 

they contain relict chondrules, are located in the upper left portion of the diagram (full circles). 

 

Figure 3. Diagram displaying the troilite/silicate ratio as a function of the total modal amount 

of silicates. Numbers refer to samples as indicated: 1 = Y-8005; 2 = ALH 881902; 3 = GRA 

98028; 4 = QUE 94535; 5 =Y-74063; 6 = Y-74025; 7 = NWA 1058; 8 = NWA 1463;  

9 = Pontlyfni; 10 = NWA 1052; 11 = NWA 1054; 12 = TIL 99002; 13 = Superior Valley;  

14 = MAC 88177; 15 = LEW 88280; 16 = EET 84302; 17 = Y-74357; 18 = Y-791491;  

19 = NWA 3008; 20 = ALH 81187; 21 = ALH 81261; 22 = ALHA77081; 23 = DHO 290. 

Fine and coarse grained meteorites are depicted by full and empty circles, respectively. See 

Table 2 for sample classification. Data for samples 12–16 are from previous reports [1,17]. 
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Another interesting trend can be highlighted by plotting the sialic/mafic silicates ratio versus the 

total amount of silicates. The meaning of this plot is based on the ground that since in the partial fusion 

of a chondritic parental body the first silicate liquid phase produced is mainly constituted by sialic 

components (plagioclase), the residual solid results enriched in mafic components (olivine and 

pyroxene [5]). In our case, the data reported in Figure 4 show that lodranites are strongly depleted in 

sialic silicates and appear well separated from the other primitive achondrites, whereas no meaningful 

trends are clearly detected for acapulcoites and winonaites. 

 

Figure 4. Plagioclase/mafic silicate ratio as a function of the total amount of silicates; full 

circles are data of this study, empty circles literature data (samples from 19 to 24). Numbers 

refer to samples as indicated: 1 = Y-74063; 2 = Y-74025; 3 = Y-74357; 4 = Y-791491;  

5 = Y-8005; 6 = QUE 94535; 7 = GRA 98028; 8 = ALH 81187; 9 = ALH 81261;  

10 = ALHA77081; 11 = A-881902; 12 = NWA 1052; 13 = NWA 1054; 14 = NWA 3008; 

15 = NWA 1058; 16 = NWA 1463; 17 = DHO 290; 18 = Pontlyfni; 19 = NWA 725;  

20 = TIL 99002; 21 = Monument Draw; 22 = Mt. Morris; 23 = Y-75300; 24 = Y-75305. 

See Table 2 for sample classification. 

Moreover, a separate modal analysis comparing the chondrules and adjacent areas of the matrix has 

been performed on 6 of the investigated meteorites, in order to shed light on some petrogenetic 

features of these meteorites. The results obtained on each meteorite are presented in Table 4 and 

discussed below. 

GRA 98028: 

In this meteorite the intrachondrule texture is extremely fine-grained, and the chondrules contain 

several minute metal-sulfide aggregates and are often rimmed by metal/sulfide ponds. They range in 



Geosciences 2015, 5 232 

 

 

size from 200 to 800 µm. The modal analysis shows that the chondrules are silicates, especially 

orthopyroxene, enriched and depleted in opaques compared with the matrix. 

Y-74063: 

In this meteorite, the chondrules are relatively uncommon and smaller (200 to 500 µm) than in  

GRA 98028. The few chondrules observed display a markedly coarse-grained texture. The modal 

analysis highlighted an enrichment in ortho- and clinopyroxenes, and a depletion in opaque phases 

compared with the matrix. Nevertheless, the olivine and the plagioclase contents are similar. These 

results suggest that the meteorite underwent a higher metamorphic degree if compared to GRA 98028, 

as confirmed by the coarser texture. 

Y-74025: 

This meteorite displays smaller (300–500 µm) and coarser-grained chondrules. The modal composition 

of chondrules appears to be enriched in olivine and depleted in orthopyroxene, while no differences of 

the opaque phases with respect to the matrix can be observed. 

A-881902: 

This sample displays a high number of chondrules with extremely variable sizes (300–800 µm), 

shapes and types: some chondrules have a typical chondritic, fine-grained radial texture, while others 

show large crystals with 120° triple junctions, typical of higher metamorphic degrees. This variability 

is not confirmed by the modal analysis data since neither marked enrichments nor depletions are 

visible among silicate and opaque phases indicating on the whole higher metamorphic degree conditions. 

NWA 1058: 

As previously reported [31], this meteorite is characterized by a high number of relict chondrules, 

with large sizes (800–1500 µm), rounded shapes and fine-grained textures. The modal analysis performed 

on these chondrules highlighted an enrichment in silicates (namely orthopyroxene and olivine) and  

a depletion in opaque phases, mainly distributed as tiny aggregates of sulfides and Fe/Ni alloys in 

peripheral areas of porphyritic pyroxene (PP) chondrules or as large blebs at chondrules boundaries in 

porphyritic olivine-pyroxene (POP) chondrules. 

NWA 1463: 

The chondrules of this meteorite display sub-rounded shapes and radial, very fine-grained textures. 

Two different types of chondrules have been detected, hereafter named C1 and C2. The C1-type have 

unequigranular textures with large olivine crystals surrounded by a fine-grained matrix consisting of 

ortho- and clino-pyroxenes. The C2-type display an equigranular texture, with diopside homogeneously 

distributed. This textural feature has been confirmed by the compositional maps: the distribution of Ca 

reflects the textural observation, with C1-type chondrules displaying an enrichment in orthopyroxene 

and plagioclase if compared with the clinopyroxene-rich matrix, and C2-type chondrules showing an 
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enrichment in clinopyroxene and plagioclase compared with the orthopyroxene-rich matrix. Similarly 

to the previous cases, all the chondrules are depleted in opaque phases. 

Table 4. Modal analysis of chondrule-bearing samples; chondrule data ranges are compared 

with the corresponding matrix mean values (in brackets). Opaques are considered as the 

sum of Fe/Ni alloys, troilite and oxides. See Table 2 for meteorite classification. 

Meteorite  

Name 

N° of  

Chondrules 

Chondrules  

Dimensions’  

ranges (μm) 

Modal Abundances (%) 

Silicates Opaques
Fe/Ni 

Alloys
Troilite Oxides Diopside Plagioclase Olivine Orthopyroxene

GRA 98028 5 200–800 
74–87  

(70) 

8–28 

(30) 

2–4 

(4) 

5–14 

(16) 

3–15 

(10) 

4–9  

(7) 

10–15  

(10) 

21–33  

(27) 

25–46  

(28) 

Y-74063 3 200–500 
93–95  

(86) 

3–8  

(16) 

0–1 

(5) 

2–6 

(8) 

1–6 

(3) 

9–22 

(6) 

9–14  

(13) 

13–26  

(24) 

44–54  

(41) 

Y-74025 4 300–500 
80–85  

(87) 

13–19 

(12) 

0–4 

(3) 

9–18 

(8) 

0–1 

(1) 

1–12 

(7) 

10–17  

(15) 

30–41  

(21) 

17–32  

(43) 

A-881902 5 300–800 
76–85  

(79) 

8–13 

(22) 

0–4 

(3) 

2–12 

(15) 

2–3 

(4) 

2–9  

(5) 

7–14  

(13) 

25–34  

(25) 

28–36  

(38) 

NWA 1058 2 800–1500 
82–90  

(64) 

8–16 

(27) 

6–12 

(13) 

2–4 

(7) 

0–12 

(7) 

2–10 

(6) 

1–12  

(10) 

37–38  

(34) 

20–50  

(19) 

NWA 1463 2 1250–1500 
30–55  

(49) 

4–14 

(51) 

2–12 

(43) 

2  

(4) 

2  

(4) 

8–85 

(4) 

15–23  

(19) 

4–8  

(21) 

10–25  

(17) 

3.2. Mineral Chemistry 

In order to determine taxonomically meaningful minerochemical parameters, a detailed EMPA 

study has been performed of both major and minor elements of selected mineral phases (plagioclase, 

diopside, orthopyroxene and olivine). 

3.2.1. Plagioclase 

Analyses have been performed both on crystals of the chondrules-free areas and on those inside 

chondrules. In regard to the matrix, a mean of 7–10 plagioclase crystals for each meteorite have been 

analyzed. Plagioclase displays an albitic composition (An13–24Or1–6), with no significant variability 

inside each sample. Even the differences among the samples does not suggest any relationship with the 

meteorite class, therefore being of no benefit for taxonomic purposes. The data from the analyses 

performed on chondrules also suggests the absence of any trend, except for those from the meteorite 

NWA 1463 in which plagioclase in chondrules is much more Ca-rich (An29±2 and Or5±1) than that in 

the matrix (An13±1 and Or5±1). That is probably attributable to the lower metamorphic degree suffered 

by this meteorite. 

3.2.2. Olivine 

Quantitative EMPA analyses have been performed on olivine crystals in both matrix and chondrule 

areas. The molar contents of Fa, Fo and Tf calculated revealed a marked difference between 

winonaites, which display a forsteritic composition (Fo ≥ 98), and acapulcoite-lodranites, which were 
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Mg-depleted (Fo = 84–96), in good agreement with literature data [17,32,33]. Nevertheless, this 

compositional feature cannot be unequivocally related to the two different groups and has to be 

considered a first, not crucial, indication. The analyses performed on chondrule crystals showed no 

marked differences compared with matrix data, with a compositional variability lower than that 

existing among the different meteorites. These results are unsurprising for equilibrated products like 

lodranites, but are quite interesting if referred to acapulcoites and winonaites, which underwent a lower 

metamorphic degree. 

Other minor elements, like Mn and Cr, display trends typically related to the petrologic evolution  

of the meteorite. In particular, as has been previously suggested [34], the decreasing MnO/FeO ratio is 

related to reduction processes suffered by the meteorite. Some acapulcoites display high values  

(Fa25–32 mol %), similar to those of chondrites, while others show much lower values (Fa18–20 mol %), 

achieving extremely low values for winonaites (Fa1–3 mol %) [1,35]. 

The Fe/Fe+Mg (Fe#) data obtained on the studied meteorites are in good agreement with literature 

data: as highlighted in Figure 5, all the data display a positive linear correlation (R = 0.979). The most 

reduced samples, like winonaites, are located in the lower-left portion of the graph, allowing a clear 

identification of this group. 

 

Figure 5. Plot of the FeO/MnO ratio versus the Fe# content in olivine. Numbers refer to 

samples as indicated: 1 = NWA 1052; 2 = NWA 1054; 3 = NWA 3008; 4 = NWA 1463;  

5 = NWA 1058; 6 = Pontlyfni; 7 = QUE 94535; 8 = GRA 98028; 9 =Y-74025; 10 = Y-791491; 

11 = Y-74063; 12 = Y-74357; 13 = ALH 81187; 14 = ALH 81261; 15 = ALHA77081;  

16 = Dho 290; 17 = Y-8005; 18 = A-881902; see Table 2 for sample classification. 

3.2.3. Pyroxene 

The EMPA analyses of the major elements performed on pyroxenes allowed the overall 

composition of the samples to be defined: in a classic 4-sided pyroxene diagram (En-Fs-Hed-Dio) all 
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the samples are positioned near the diopside corner and display a narrow compositional range with 

slight differences among groups that confirm the linear distribution observed for olivine: winonaites 

show an Mg-rich composition (mean value Fs50En6Wo44), lodranites a Fe-rich one (mean Fs52En1Wo47), 

while acapulcoites display intermediate values. 

The analysis of the minor elements provided the most interesting results: a plot of the Cr content of 

diopside versus Mg/Fe+Mg (Mg#) of olivine (Figure 6) shows that winonaites are characterized by 

lower values of Cr (<1% of Cr2O3) and higher values of Mg# (>98). Two separate clusters of values 

corresponding to the acapulcoite/lodranite and winonaite groups can be therefore identified, in 

agreement with literature data [22,30,36]. Analogous results have been obtained plotting the Mn content 

versus the Mg# of olivine, although an overlapping area can be observed in the central portion of the 

data distribution, suggesting that the Mn content is a less distinguishing feature than Cr. From a 

minerogenetic point of view, the lower content of Cr in diopside is consistent with the more reduced 

environment in which winonaites formed, due to the higher reduction potential of this element in 

comparison with Fe. It is important to stress that the less reduced state of the acapulcoite-lodranite 

group is somewhat surprising considering that these meteorites were subjected to a higher metamorphic 

degree. This is confirmed by the previously described textural features, like the coarser grain size and the 

presence of 120° triple junctions, as well as by the partial loss of the sulfides and of the sialic-silicate 

fraction. An alternative process of shock-induced selective O depletion can be therefore hypothesized. 

 

Figure 6. Plot of the Cr2O3 content in orthopyroxene versus the Mg# in olivine. Numbers 

refer to samples as indicated: 1 = NWA 1052; 2 = NWA 1054; 3 = NWA 3008; 4 = Dho 

290; 5 = NWA 1463; 6 = NWA 1058; 7 = Pontlyfni; 8 = QUE 94535; 9 = GRA 98028;  

10 = Y-74025; 11 = Y-791491; 12 = Y-74063; 13 = Y-74357; 14 = ALH 81187; 15 = ALH 

81261; 16 = ALHA77081; 17 = Y-8005; 18 = A-881902; see Table 2 for sample classification. 
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3.3. Reduction State 

Reduction phenomena in meteorites can be due to the presence of graphitic carbon in the pristine 

material from which primitive achondrites accreted. Two main reduction schemes can be proposed [1]: 

(1) (Mg,Fe)2SiO4 (olivine) + C → MgSiO3 (enstatite) + Fe + CO 

(2) 2(Mg,Fe)2SiO4 (olivine) + C → 2MgSiO3 (enstatite) + 2Fe + CO2 

As a consequence, mafic minerals (olivine and orthopyroxene) are Fe-depleted. Nevertheless, as the 

solid-state diffusion rate is higher in olivine than in orthopyroxene [37,38], a more marked depletion 

will be observed for Fa than for Fs. Therefore, a plot of Fe# of orthopyroxene against Mg# of olivine 

provides a valuable estimate of the reduction state and of the deviations from the expected reduction trend. 

In Figure 7, the results obtained from EMPA data on the samples analyzed are presented and 

compared with literature data: the more reduced meteorites are located in the bottom right corner, 

while the less reduced ones are near the top left corner. The “normal” reduction trend is therefore 

represented by a line of negative slope of about −1. 

 

Figure 7. Reduction degree diagram (Fe# in orthopyroxene as a function of the Mg# in 

olivine) including the linear fitting of the data. Open symbols are literature data [1]. The 

inset shows the linear fitting parameters for each meteorite group. 

It is worth noting that all the acapulcoite and winonaite samples examined in this study agree well 

with this general trend, i.e., a linear decrease of the Fe# content in orthopyroxene versus an increase of 

the Mg# content for olivine. Conversely, in the lodranite samples, these parameters do not seem to be 

directly correlated (see Figure 7). Linear fitting of the three separated groups of data suggests the 

existence of different trends among the primitive achondrites groups: acapulcoites plot along a line 
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with a slope = −0.6 and are in good agreement with the “normal” reduction process trend described 

above. Lodranites and winonaites, instead, display a marked deviation from the “normal” trend: 

lodranites plot mainly in less-reduced portions of the graph, showing almost constant Fe# values with 

increasing Mg# (dip = +0.09), while winonaites are positioned in the highly-reduced products corner 

and show a much more steeper slope than acapulcoites (slope = −1.4). 

3.4. Metamorphic Temperature 

Although primitive achondrites tend to be considered products formed in thermodynamic  

non-equilibrium conditions, some tentative observations can be forwarded regarding the maximum 

temperature experimented by these rocks during the metamorphic processes they underwent. 

Several geothermometers have been proposed, like the Pt/Pd ratio of troilite [9,39], the Ga, Y, Yb 

partitioning among clino- and orthopyroxene [40], the olivine-chromite ratio [33] and the two-pyroxene 

geothermometer, based on the Ca partitioning between ortho- and clinopyroxene in thermodynamic 

equilibrium conditions. 

In order to evaluate the equilibrium temperature experimented by the studied meteorites, we applied 

the two-pyroxene geothermometer [33]. Accordingly, the studied meteorites experienced temperature 

values ranging from 900 to 1150 °C. Moreover, a distinctive distribution has been observed: samples 

belonging to the acapulcoite-lodranite group are divided into two subgroups depending on the presence 

or absence of chondrules (Figure 8). Chondrule-bearing samples are positioned in the upper-left 

portion of the diagram, while chondrule-free samples in the lower-right portion. This distribution is in 

agreement with the hypothesized higher metamorphic degree which may have led to a complete 

destruction of the chondrules. The exception of the meteorite ALH 81261 may be explained with the 

low statistic relevance of the chondrule observation, due to the sporadic presence of these relict 

structures only in selected thin sections of the same meteorite. 

 

Figure 8. Two pyroxene diagram (Ca content in orthopyroxene as a function of the Ca 

content in clinopyroxene) for acapulcoites-lodranites (A) and winonaites (B). Full squares 

indicate the chondrule-bearing samples, open squares the chondrule-free ones. Superimposed 

is the line indicating the estimated equilibrium temperature trend as determined by the 

“two pyroxene” method. 
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For winonaites no clear trends can be identified. This behavior can be explained by more marked 

disequilibrium conditions of formation. This assumption is in apparent contrast with the previously 

cited low compositional variability of olivine. This incongruity can be explained by the different  

solid-state diffusion rates of olivine compared to pyroxene: a lower homogenization temperature 

relative to pyroxene is therefore required for olivine. EMPA data, which display a marked 

compositional homogeneity for olivine and a much higher non-homogeneity for orthopyroxene in 

winonaites, suggest that these meteorites suffered a petrogenetic process completely different from that 

of acapulcoite and lodranites. 

4. Discussion and Conclusions 

A number of considerations can be made regarding the reduction state of primitive achondrites.  

A possible explanation of the constant Fe# values of lodranites reported in Figure 7 might be that they 

originate from a chondritic precursor with a reduction state that did not change during metamorphism: 

in this case, the assumptions described above regarding the olivine-orthopyroxene equilibrium would 

not be valid. The deviation of the winonaites from the expected “normal” reduction trend can be 

explained by the existence of a parental body distinct from that of acapulcoites-lodranites, in 

agreement with previous proposals [8,33,41]. 

There are many observations in support of this hypothesis: 

- The composition of the winonaite parent body might be non-chondritic or, at least, different 

from that of the presently known classes of chondrites, as the reduction state is intermediate 

between those of the E and H chondrites [22,42]. 

- The oxygen isotopic composition is different from that of the acapulcoite-lodranite group [26]. 

- The high reduction degree might suggest that the parental body of these meteorites formed in 

an area of the solar system with an oxygen fugacity lower than that of the acapulcoites-lodranites 

formation area. 

An alternative explanation is the existence of a mixing process between primitive materials and 

more differentiated ones due to asteroidal impacts, with local heating and remixing of fluid and  

solid phases and, consequently, non-equilibrium cooling [43–47]. This second hypothesis also has 

experimental support: 

- Some samples display an inequigranular texture, with visible shock and rapid cooling features 

like metal veinlets in silicates. 

- Some samples (i.e., Pontlyfni) contain relict chondrules, which is in contrast with the high 

metamorphic degree required for a marked reduction state. 

A possible third explanation considers that they originate from an intrinsically more reduced parent 

body which was then subjected to impacts, in agreement with [44]. 

The most common parameter used to distinguish lodranites from acapulcoites and winonaites is 

based on oxygen isotope measurements [48]. This analysis, although improved and more statistically 

meaningful than in the past due to the recent discoveries of new samples belonging to these groups, 

does not take into account the very high textural variability of these samples, especially regarding the 

presence of pristine material like the chondrules, which is expected to display isotopic features 
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different from those of the bulk sample. The accurate modal analysis performed using X-ray maps 

allowed the determination of the modal distribution of the phases of both the chondrules and the matrix 

in each group of primitive achondrites. Hence, it provides a comprehensive estimate of the silicate/sulfide 

and mafic/sialic silicate ratios and an accurate evaluation of the metamorphic grade of the studied 

meteorites and allows their assignment to the acapulcoites or lodranite groups. Moreover, minerochemical 

parameters such as the Cr and Mn contents of orthopyroxene and the accurate evaluation of the 

reduction state performed with the Fe# vs. Mg# plot, are useful instruments to distinguish winonaites 

from meteorites belonging to the other groups. Finally, the relationship between the presence of relict 

chondrules and the metamorphic equilibrium temperature in acapulcoites has been proved for the first 

time, suggesting the provenance from a different parental body and a different petrogenetic and 

evolutive history from that of winonaites, for which such a relationship has not been observed. The 

combined textural and minerochemical investigation has been demonstrated to be a powerful tool in 

support of oxygen isotopic data offering a more reliable means for the appropriate classification of 

primitive achondrites. 
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