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Abstract: The Sn-W Panasqueira mine, in activity since the mid-1890s, is one of the most 

important economic deposits in the world. Arsenopyrite is the main mineral present as well 

as rejected waste sulphide. The long history is testified by the presence of a huge amount 

of tailings, which release considerable quantities of heavy metal(loid)s into the 

environment. This work assesses soil contamination and evaluates the ecological and 

human health risks due to exposure to hazardous materials. The metal assemblage 

identified in soil (Ag-As-Bi-Cd-Cu-W-Zn; potentially toxic elements (PTEs)) reflects the 

influence of the tailings, due to several agents including aerial dispersion. PTEs and pH 

display a positive correlation confirming that heavy metal mobility is directly related to pH 

and, therefore, affects their availability. The estimated contamination factor classified 

92.6% of soil samples as moderately to ultra-highly polluted. The spatial distribution of the 

potential ecological risk index classified the topsoil as being of a very high ecological risk, 

consistent with wind direction. Non-carcinogenic hazard of topsoil, for children (1–6 years), 
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showed that for As the non-carcinogenic hazard represents a high health risk. The 

carcinogenic risks, both for children and adult alike, reveal a very high cancer risk mostly 

due to As ingestion. 

Keywords: Panasqueira mine; potential toxic elements; modified contamination degree; 

non-carcinogenic hazard; carcinogenic risk; potential ecological risk factor and risk index 

 

1. Introduction 

Mine tailings, with considerable amounts of sulfides, left in the vicinity of environmentally 

sensitive locations, constitute one of the greatest threats to the surrounding environment. These 

materials when exposed to air and water are oxidized through chemical, electrochemical, and 

biological reactions, forming ferric hydroxides and sulfuric acid, leading to the generation of acid mine 

drainage with high contents of metals and sulfates, related to the alteration of sulfides, the equilibrium 

of which depends on their solubility [1–5]. 
Soil is prone to contamination both from hydrological and atmospheric sources. When soil is the 

receptor of tailings drainage, originating from metal mining and smelting, this waste disposal causes a 

major impact, and poses serious environmental concerns [6]. As a direct result of the mining activities, 

soil is generally, affected over a considerable area. The soil fine fraction is usually enriched in metals, 

due to the relative large surface area of fine particles that facilitate adsorption and metal binding to iron 

and manganese oxides and to organic matter [7,8]. Wind-blown dust originating from polluted soil is 

responsible for the aerial dispersion of trace metals [7]. Exposure to these hazardous elements may have 

different pathways, e.g., through the direct ingestion of soils and dust, ingestion of vegetables grown on 

contaminated soil or dust adhering to plants or dust inhalation. According to several authors [9–14]  

the studies dealing with the bioavailability and bioaccessibility of metal(loid) contaminants in  

highly-polluted soil are extremely useful to understand the possible effect on biota, and particularly on 

human health due to the exposure to these contaminants [12,15]. 

Among the purposes of environmental analysis are the determination of the geochemical background 

and natural concentrations of the chemical constituents in environment-background monitoring, as 

well as to determine the concentration of harmful pollutants in environment-pollution monitoring [16]. 

The sorption-desorption soil characteristics generally control the mobility and availability of heavy 

metals [17]. Heavy metal availability in soil depends on a number of factors, including Soil Organic 

Matter (SOM) and pH [18]. Soil pH plays the most important role in determining metal speciation, 

solubility from mineral surfaces, movement and bioavailability of metals [19–21]. Several laboratory 

experiments have shown that heavy metal mobility and availability have a negative correlation with 

pH [22]. Further, [23–25] documented that metal mobility and availability increases with the decrease 

of soil pH, thus enhancing the uptake of heavy metals by plants and, thereby, posing a threat to human 

health [26]. 

Exposure to increasing amounts of metal(loid)s in environmental and occupational settings is a 

reality worldwide, affecting a significant number of individuals. Most metal(loid)s are very toxic to 

living organisms and even those considered as essential can be toxic when in excess. They can disturb 
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important biochemical processes, constituting an important threat for human health. Major health 

effects include development retardation, endocrine disruption, kidney damage, immunological and 

neurological effects, and several types of cancer [27]. The identification of potential threats to human 

health and natural ecosystems is useful information [16]. The quantification of all the types of risks 

and the determination of the total risk of metal(loid)s to the exposed population through oral intake, 

inhalation and dermal contact [28] is also very important. Risk assessment is typically a multistep 

process of identifying, defining, and characterizing potentially adverse consequences of exposure to 

hazardous materials [28]. According to the Toxic Substances Portal [29], Ag, As, Cd, Cu, W and Zn 

are known to be toxic to humans, while arsenic and cadmium are classified as human carcinogens. 

Some studies also consider that Bi causes acute toxicity, and large doses can be fatal [30,31]. 

However, as Bi is considered to be one of the less toxic heavy metals, it is not included in this analysis. 

In a previous paper from the same authors [32], several variables (Ag, As, Bi, Cd, Cu, W and Zn) 

showed moderate to strong correlation in the Panasqueira topsoil. This indicates an anthropogenic 

origin, especially linked to aerial transportation and deposition and/or to a geogenic origin. The main 

goals of the present study are: (a) establishment of the relationship between Potentially Toxic Elements 

(PTEs) with depth and soil pH; (b) assessment of soil contamination using a contamination factor for 

each pollutant; and (c) determination and evaluation of the ecological and human health risks due to 

exposure to hazardous materials. 

2. Materials and Methods 

2.1. Study Area 

The active Panasqueira mine, exploited since the last decade of the 19th century, is located in 

Central Portugal (UTM (Universal Transverse Mercator) 29N, P 4445620.79, M 606697.31; Figure 1). 

It is considered to have the largest Sn-W deposit of Western Europe [33]. The geology has been 

extensively studied by many researchers [34–44]. Briefly, the Panasqueira deposit is a classic example 

of postmagmatic hydrothermal ore deposit, which is associated with Hercynian plutonism [36,41]. The 

paragenesis is complex with four stages of mineral formation identified: 1st stage, the oxide silicate 

phase (quartz, wolframite; cassiterite); 2nd phase, the main sulphide phase (pyrite, arsenopyrite, 

pyrrhotite, sphalerite, chalcopyrite); 3rd stage, the pyrrhotite alteration phase (marcasite, siderite, 

galena, Pb-Bi-Ag sulphosalts); and 4th stage, the late carbonate phase (dolomite, calcite) [38–49]. The 

Panasqueira deposit contains significant amounts of wolframite, arsenopyrite, chalcopyrite and 

cassiterite [34]. 

The long history of exploitation is testified by the presence of a huge amount of tailings and other 

debris (Figure 1b). The piles (Rio ~1.2 million m3; Barroca Grande ~7.0 million m3) and the mud dams 

(Rio ~0.7 million m3; Barroca Grande ~1.2 million m3) are exposed to atmospheric conditions, and are 

being altered by chemical, physical and geotechnical activities. On the top of the Rio tailings, an 

arsenopyrite stockpile (~9400 m3) was deposited and remained exposed until 2006 [41]. 

Topography ranges in altitude from 350 to 1080 m [47], with deep valleys of about 9%–25% 

inclination, constraining the soil into a very thin layer. Climate is severe, with dry and hot summers 

and very cold, rainy and windy winters. The annual precipitation ranges between 1200 and 1400 mm 
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with frequent snow falls, particularly above 700 m altitude. The mean annual temperature is 12 °C, 

ranging from 0 °C during the winter to 30 °C in the summer. The streams are generally dry in the 

summer and flooded in the winter. The prevailing wind in the area is NW-SE, with mean wind speeds 

of 4.22 m/s (h = 10 m), 5.55 m/s (h = 40 m) and 6.21 m/s (h = 80 m) (Figure 1c) [48–50]. The small 

villages around the mine have a historical dependence on soil and water use drinking water, 

agriculture, cattle rearing, fishing and forestry. 

Figure 1. (a) Synthetic map of Portugal showing the location of Panasqueira mining area; 

(b) details of the study area, main geological units and soil samples grid - geological map 

adapted from [34,41,45]; (c) wind rose of the prevailing winds on the top of the mine 

(Barroca Grande tailing); and (d) on the top of a mountain 800 m north of the mine [46]. 

 

2.2. Field Sampling and Sample Preparation 

Soil samples were collected according to a predefined grid (spaced ~400 m—Figure 1b). Two types 

of soil samples were collected at each sampling site: 122 topsoil (0–15 cm) samples and 116 subsoil 

samples collected below 15 cm depth. The difference in the total number of samples of each soil type 

is due to the presence at six sites of incipient and thin lithic soil derived from a substrate of metasediments. 

Topsoil samples were collected for the characterization of superficial contamination derived from the 

tailings, and subsoil samples to assess the extent of contamination at depth and simultaneously to 

identify geogenic markers. Approximately 50% of all samples were collected in duplicate. To establish 
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the local geochemical background, 47 unaffected soil samples (Bk) were also collected outside the 

contaminated area (Casegas area located NE, out of the influence of the Barroca Grande prevailing 

winds). The coordinates of each sample were determined by GPS and georeferenced with UTM 

(Universal Transverse Mercator) coordinates. All soil samples were collected after clearing the soil 

surface of superficial debris and vegetation, and placed in polyethylene bags. Samples were dried in a 

thermostatically controlled oven at 40 °C, disaggregated in a porcelain mortar, sieved (<2 mm), 

homogenized, split into aliquots and the analytical aliquot pulverized to <170 µm in a pre-cleaned 

mechanical agate mill for chemical analysis. 

2.3. Chemical Analysis 

Soil samples were submitted for multi-element analysis at the ACME Analytical Laboratories, 

which is an ISO 9002 Accredited Lab (Vancouver, Canada). A sample weight of 0.5 g was leached in 

hot (95 °C) aqua regia (HCl-HNO3-H2O), and concentrations were determined by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) for Ag, As, Bi, Cd, Cu, W and Zn (detection limits of Ag, Bi, 

Cd, Cu, W < 0.1 mg·kg−1; As < 0.5 mg·kg−1; Zn < 1 mg·kg−1). 

Accuracy and analytical precision were determined using analytical results of certified reference 

materials (standards C3 and G-2) and duplicate samples in each analytical batch. The results were 

within the 95% confidence limits of the recommended values given for the certified materials. The 

Relative Standard Deviation (RSD) was between 5% and 10%. 

Soil pH: numerous studies have verified that soil pH has a great effect on metal  

bioavailability [16,51,52]. The pH gives an indication of the acidity and alkalinity of soil. Many 

chemical reactions are pH dependent, and knowledge of the pH enables the prediction of the extent and 

speed of chemical reactions [53]. The procedure adopted for the determination of pH was modified 

from [54]. A suspension of soil was made up in five times its volume of a 0.01 mol/L solution of 

calcium chloride (CaCl2) in water. The pH was measured using a calibrated pH-meter. 

SOM: plays an important role in determining the fate of inorganic, as well as organic compounds in 

natural soil [55–58]. SOM can be roughly determined by measuring weight loss before and after 

ashing at 430 °C. Results are typically accurate to 1%–2% for soil with over 10% organic matter [53]. 

The procedure adopted was modified from [53]. Approximately 5 g of each sieved sample (<2 mm) 

was placed in a crucible and dried at 105 °C for 24 h. After cooling in a glass desiccator its weight was 

determined in a mass balance (resolution 0.001 g). The difference in weight gives the water content of 

each soil sample. The crucibles were then placed in a muffle furnace at 430 °C for 20 h. After cooling 

in a glass desiccator, the weight was measured on the same mass balance. The difference from the dry 

state gives the soil organic content (%). 

2.4. Data Treatment of Data 

Pearson’s product-moment linear correlation coefficient matrix (r) was estimated in order to 

determine the extent of the relationship between the PTEs, pH and SOM [53]. The normality of 

statistical distribution of all data was verified by the Kolmogorov-Smirnov test (α = 0.05) and Q-Q 

plots. The non-normal data were subjected to a non-parametric test or converted logarithmically to 
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ensure the validity of the results. The statistical analysis was performed using Six Sigma Statistica® 

(Stat Software Inc, Tulsa, OK, USA) and IBM® SPSS® Statistics software (IBM, New York, NY, USA). 

Analysis of Variance (ANOVA) was carried out in order to assess the relationship between the 

Potentially Toxic Elements and the independent variables (depth, pH and SOM), by a two-way 

ANOVA test, according to the following expression: ܼ୧୨୩ = μ +∝୧+ β୨ + γ୧୨ + ε୧୨୩ (1)

where, Z = the kth observation of the PTE taken at jth depth (j = 1 or 2) and ith soil property (i = 1 or 

2), µ = the overall mean estimated, α = the depth effect, β = the soil property (pH or SOM), γ = the 

interaction between depth and the soil property, and ε = the residual error [59–61]. 

Log10 transformation was applied to PTEs in order to convert the data to a normal or near-normal 

distribution and homogeneity of variances (Levene’s test, p < 0.05). For the two-way analysis of 

variance, samples were classified according to pH values (very acid (3.0, 4.0), acid (4.0, 6.0) and 

neutral (6.0, 7.0)) and SOM ((3.6, 10.0) and (10.0, 39.0) in %). It should be noted that the SOM classes 

established, were only defined for statistical purposes. In the cases where there were only two samples 

with neutral pH, this particular class was not considered further. 

Contamination Factor and Modified Degree of Contamination was estimated using the method 

proposed by [62] in sediment pollution studies, but is also applied to soil studies [63,64]. It is based on 

the calculation, for each pollutant, of a contamination factor (CFi) which is the ratio obtained by 

dividing the mean concentration of each metal in soil (Ci) by its corresponding baseline or background 

value (estimated from samples collected outside the area influenced by the mining activities) according 

to [65], and as explained in [6], i.e., the background value, Cb (mg kg−1), for the studied elements is as 

follows: Ag = 0.05; As = 22; Bi = 0.3; Cd = 0.01; Cu = 28; W = 0.35; Zn = 58) [64] ( Table 1): ܨܥ௜ = ௜ܥ ⁄௕ܥ  (2)

Table 1. Classification and description of the Contamination factor (CF) [62] and the 

Modified contamination degree (mCd) [66]. 

CF Value 
Level of the  

Contamination Factor
mCd Value 

Modified Contamination  
Degree Gradations 

0 ≤ CF < 1 Low 
0 ≤ mCd < 1.5 None to very low 
1.5 ≤ mCd < 2 Low 

1 ≤ CF < 3 Moderate 2 ≤ mCd < 4 Moderate 
3 ≤ CF < 6 High 4 ≤ mCd < 8 High 

6 ≤ CF Very high 
8 ≤ mCd < 16 Very high 

16 ≤ mCd < 32 Extremely high 
32 ≤ mCd Ultra high 

In [66] is presented a modified and generalized form of the [62] equation for the calculation of the 

overall degree of contamination (mCd) for each sample as below: 

ௗܥ݉ = ൭෍ܨܥ௜଻
୧ୀଵ ൱ 7൘  (3)
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where CFi is the contamination factor computed for each of the seven pollutants (Ag, As, Bi, Cd, Cu, 

W, Zn) considered in this study. In [66] is defined seven mCd degrees as shown in Table 1. 

Potential ecological risk factor and risk index (PERI): is defined as the sum of the risk factors, 

which quantitatively defines the potential ecological risk of a contaminant in a sample, i.e.: ܲܫܴܧ௜ = ෍ܨܧ௜଻
௜ୀଵ = ෍ܨܥ௜ ∙ ଻ܨܶ

௜ୀଵ  (4)

where PERIi is the Potential Ecological Risk Index for each sample (i); EFi is the monomial potential 

ecological risk factor; CFi is the single contamination factor (Equation (2)); and TF is the heavy metal 

toxic-response factor for each element. Soil toxic-response factors were computed for the seven 

selected elements according to the toxic factor requirements proposed by [62]. For this estimation there 

were used reference guide values of igneous rock types, soil, freshwater and land plants proposed  

by [67], and the land animals reference values proposed by [68]. The TF values obtained were: Zn = 1 < 

Cu = 2 < As = 5 < W = 15 < Bi = 20 < Cd = 30 < Ag = 35. In [62] are defined five EF classes and four 

PERI degrees, as shown in Table 2. 

Table 2. Monomial potential ecological risk factor (EF) and Potential ecological risk index 

(PERI) classification levels [62]. 

EF Ecological Potential Risk 
for Single Substance 

PERI Ecological Risk 

0 ≤ EF < 40 Low PERI < 150 Low 
40 ≤ EF < 80 Moderate 150 ≤ PERI < 300 Moderate 

80 ≤ EF < 160 Considerable 300 ≤ PERI < 600 Considerable 
160 ≤ EF < 320 High 

600 ≤ PERI Very high 
320 ≤ EF Very high 

Human health risk assessment calculations were based on the assumption that residents, both children 

and adults, are directly exposed to soil through three main pathways (a) ingestion; (b) dermal absorption 

and (c) inhalation of soil particles present in the air [69–72]. Ingestion of soil (i) occurs by eating soil 

particles and/or licking contact surfaces (e.g., hands). It is assumed that children present a higher 

ingestion rate, due to hand-to-mouth intake. Dermal absorption (ii) occurs through exposed skin, while 

soil is inhaled (iii) both by mouth and nose during breathing. Particles <10 µm (PM10) are the more 

relevant in this process, although larger fractions of inhaled soil are, probably, decomposed in the 

gastrointestinal track. It is assumed that all contaminants are absorbed, both by the gastrointestinal tract 

or the lung [72]. Equations (5)–(7) were used to estimate the chronic daily intake of each exposure 

route considered [28,69,70,73], supplemented by specific quantitative information (Table 3): ܫܦܥ୧୬୥ = ୱ୭୧୪ܥ × Ingܴ × ܨܧ × ܹܤܦܧ × ܶܣ × 10ି଺ (5)ܫୢܦܥ ୰୫ = ୱ୭୧୪ܥ × ܣܵ × ܨܣܵ × ܣܦ × ܨܧ × ܹܤܦܧ × ܶܣ × 10ି଺ (6)ܫܦܥ୧୬୦ = ୱ୭୧୪ܥ × Inhܴ × ܨܧ × ܨܧܲܦܧ × ܹܤ × (7) ܶܣ
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Table 3. Variables for estimation of soil residential risk in the Panasqueira mining area. 

Parameters Meaning 
Values 

Reference 
Child Adult 

ABSgi fraction of contaminant absorbed in gastrointestinal tract
Ag 0.04; As 1.00; Cd 0.025; 

Cu 1.00; W 1.00; Zn 1.00 
[28] 

ABSdrm fraction of contaminant absorbed dermally from soil As 0.03; Cd 0.001 [28] 

ATc (d) averaging time for carcinogenic effects LT × 365 [73] 

ATnc (d) averaging time for non-carcinogenic effects ED × 365 [73] 

BW (kg) average body weight 15 70 [69,72] 

Csoil (mg·kg−1) concentration of the element in soil -  

DA dermal absorption factor 0.03 for As; 0.001 for other [28] 

CDIing (mg·kg−1·d−1) 
chronic daily intake dose  

through ingestion 
- Equation (5)

CDIdrm (mg·kg−1·d−1) 
chronic daily intake through  

dermal contact 
- Equation (6)

CDIinh (mg·m−3) (nc), (µg·m−3) (c) chronic daily intake through inhalation - Equation (7)

CSFing ((mg·kg−1·d−1)−1) chronic oral slope factor As 1.50 [28] 

CSFdrm chronic dermal slope factor CSFing/ABSgi [28] 

ED (yr) exposure duration 6 24 [73] 

EF (d·yr−1) exposure frequency 350 residents [73] 

ET (h·d−1) exposure time 24 residents [73] 

IngR (mg·d−1) soil ingestion rate 200 100 [73] 

InhR (m3·d −1) inhalation rate 7.6 20 [72] 

IUR ((µg·m−3)−1) chronic inhalation slope factor As 4.3 × 10−3; Cd 1.8 × 10−3 [74] 

LT (yr) lifetime expected at birth 78 national [75] 

PEF (m3·kg−1) particle emission factor 1.36 × 109 [73] 

SA (cm2) exposed skin area 2800 5700 [73] 

SAF (mg·cm−2) skin adherence factor 0.2 0.07 [73] 

RfDing (mg·kg−1·d−1) chronic oral reference dose 

Ag 5 × 10−3; As 3 × 10−4;  

Cd 1 × 10−3; Cu 4 × 10−2;  

Zn 0.3 

[74] 

RfDdrm chronic dermal reference dose RfDing × ABSgi [28] 

RfDinh (mg·m−3) chronic inhalation reference dose As 1.5 × 10−5; Cd 1 × 10−5 [28] 

The carcinogenic and non-carcinogenic side effects for each PTE were computed individually, as 

toxicity calculation uses different computational methods [76]. For each element and pathway, the 

non-cancer toxic risk was estimated by computing the Hazard Quotient (HQ, also known as non-cancer 

risk-Equation (8)) for systemic toxicity [73]. If HQ exceeds unity, it indicates that non-carcinogenic 

effects might occur. To estimate the overall developing hazard of non-carcinogenic effects, it is assumed 

that toxic risks have additive effects. Therefore, it is possible to calculate the cumulative non-carcinogenic 

hazard index (HI), which corresponds to the sum of HQ for each pathway (Equation (9)) [69,77]. 

Values of HI < 1 indicate that there is no significant risk of non-carcinogenic effects. While, values of 

HI > 1 imply that there is a probability of occurrence of non-carcinogenic effects, and are enhanced with 

increasing HI values [73]. The toxicity levels for each element were taken from The Risk Assessment 
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Information System (RAIS) [28]. The probability of an individual developing any type of cancer over a 

lifetime, as a result of exposure to the carcinogenic hazards, was computed for each pathway according to 

Equation (10) [78]. The carcinogenic risk was estimated by the sum of total cancer risk (Equation (11)). 

A cancer risk below 1 × 10−6 is considered insignificant. The result of 1 × 10−6 is classified as the 

carcinogenic target risk. If the cancer risk is above 1 × 10−4 it is qualified as unacceptable [69,79,80]: ܳܪ = ܦ୮ୟ୲୦୵ୟ୷ܴ୤ܫܦܥ ܫܪ(8)  =෍ܳܪ = ୧୬୥ܳܪ + ୰୫ୢܳܪ + ୧୦୬ (9)Risk୮ୟ୲୦୵ୟ୷ܳܪ = ୮ୟ୲୦୵ୟ୷ܫܦܥ × 	୮ୟ୲୦୵ୟ୷ (10)Riskܨܵܥ = 	෍Risk୮ୟ୲୦୵ୟ୷ = Risk୧୬୥ + Riskୢ୰୫ + Risk୧୦୬											= ୧୬୥ܫܦܥ	 × ܨܥ ୧ܵ୬୥ + ୧୬୦ܫܦܥ × ܴܷܫ + ܫୢܦܥ ୰୫ × ୥୧ܵܤܣ୧୬୥ܨܵܥ  
(11)

Reference toxicity values were estimated as given in RAIS [28]. 

Spatial Estimation of extrapolated concentration values of chemical elements and contamination 

factors for the plotting of maps was based on geostatistics by extracting the necessary parameters for 

Ordinary Kriging from the variograms of each variable. Variograms were constructed and modelled 

with Surfer® (v. 8, Golden Software Inc, Golden, CO, USA), and the kriged estimations by Ordinary 

Kriging were also performed with Surfer®. 

3. Results and Discussion 

3.1. Distribution of Ag, As, Bi, Cd, Cu, W and Zn in Soil Samples 

Previous studies carried out in the Panasqueira area [6,43,44], allowed, through the topsoil 

concentrations, the characterization of the anthropogenic soil contamination due to the presence of 

tailings and open air impoundments. 

Descriptive statistical parameters (median and range) for pH, SOM, Ag, As, Bi, Cd, Cu, W and Zn 

are summarized in Table 4. The individual element values are compared with the corresponding local 

geochemical background levels, and also with reference values from the literature. 

All samples, both topsoil and subsoil, have a pH lower than 7. In particular, topsoil pH values range 

from 3.2 to 6.6; 35.9% of topsoil samples have pH values between 3.0 and 4.0; 59.2% are between 4.0 

and 5.0; 4.2% from 5.0 to 6.0, and 1.7% from 6.0 to 7.0, i.e., generally very acid to acid according to 

the United States Department of Agriculture classification [81]. As shown in Figure 2 (pH (a)), it is 

possible to identify that the areas with higher values are located around the villages Barroca Grande,  

S. Francisco de Assis, Rio, Barroca, Dornelas do Zêzere and S. Martinho. Around Rio and Barroca 

Grande tailings, the soil pH is above the 75th percentile (<4.1). The subsoil pH ranges from 3.6 to 6.2: 

23.0% of the subsoil samples have pH values between 3.0 and 4.0; 73.5% are between 4.0 and 5.0; 

2.7% from 5.0 to 6.0, and 0.9% from 6.0 to 7.0, i.e., also generally very acid to acid. The highest pH 

value found in subsoil samples was located in Rio village (Figure 2 pH (b)) on the north section of the 

Rio tailings. In the surroundings of S. Francisco de Assis, Barroca Grande and Dornelas do Zêzere 
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villages, it is possible to identify some agricultural soil with pH > 4.6. Possibly these slightly higher 

pH values are due to land agricultural beneficiation techniques. Nevertheless, the soil of the present 

study area is overall classified as very acid to acid. 

Figure 2. Spatial distribution of pH and soil organic matter (SOM, %) and Ag (mg kg−1) for 

topsoil (a) and subsoil (b). Percentile class limits at P5, P10, P25, P50, P75, P90, P95 and 

P97.5. In blue are represented the main water courses, in grey the villages and in white the 

main tailings and dams. The green dashed lines represent the Ag background levels. 
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Table 4. Median, minimum and maximum concentrations values of topsoil and subsoil 

samples from Panasqueira mine and surrounding environment compared with international 

data. Casegas area, considered as representative of geochemical background (Bk). 

Units 
pH SOM Ag As Bi Cd Cu W Zn 

 % mg·kg−1 mg·kg−1 mg·kg−1 mg·kg−1 mg·kg−1 mg·kg−1 mg·kg−1

Topsoil  

(n = 122) 

Median 4.1 14.6 0.1 65 0.9 0.2 35 6 70 

Min–Max 3.2–6.6 5.7–39.0 0.05–1.7 17–1503 0.3–65 0.1–3 10–292 0.2–200 22–199

Sk 1.59 1.2 4.72 6.98 9.21 3.77 4.80 5.40 1.38 

Subsoil  

(n = 116) 

Median 4.2 10.2 0.1 52 0.6 0.1 33 3 70 

Min–Max 3.6–6.2 3.6–19.5 0.1–0.6 8–350 0.2–15 0.1–1.5 12–146 0.1–29 16–192

Sk 2.09 0.23 1.98 2.05 5.51 3.65 2.86 2.51 1.08 

Geochemical  

background 

Topsoil 4.2 14.5 0.1 63 0.8 0.20 34 4.4 68 

Subsoil 4.3 10.0 0.1 49 0.6 0.10 31 2.5 68 

Bk 3.98 10.5 0.05 22 0.3 0.01 28 0.4 58 

Data from literature 6.0–8.0 a 1–20 b 0.07 c 11 d 0.3 c 0.1 d 16 d 1 d 55 d 

Notes: SOM, soil organic matter; Sk, Skewness; Bk, background values, calculated according the [65] paradigm and 

confirmed by the [82] methods; a Ontario reference values [83]; b Normal Ranges in Soils [16,84,85]; c Mean World  

Soil [67,86]; d Median values for Portuguese Soil [87]. 

The topsoil SOM values range from 5.7% to 39.0% (see Table 4 and Figure 2 SOM (a)), while the 

subsoil SOM values vary from 3.6% to 19.5% (see Table 4 and Figure 2 SOM (b)). Comparing the 

topsoil and subsoil pH and SOM maps (Figure 2 and Table 4) is possible to observe that areas with the 

highest SOM values are related to areas with the lowest pH values. 

To evaluate the presence of possible local anomalies the Ag (Figure 2), As, Bi, Cd (Figure 3), Cu, 

W, Zn (Figure 4) median and maximum values, observed in topsoil, were compared with the 

corresponding results in subsoil samples. Although the results tabulated in Table 4 show that Ag, As, 

Bi, Cu, W, and Zn present highest median and maximum values for topsoil when compared with 

subsoil, the paired samples t-test indicates that there are significant differences between soil samples at 

both depths for the elements As, Bi and W. Additionally, the results clearly show that there are higher 

contents in soil samples at both depths, when compared with the local geochemical background. The 

behavior of the topsoil element concentrations may reflect the influence of the Barroca Grande and Rio 

tailings and open air impoundments, possibly caused by aerial transport and deposition. 

Topsoil samples, as shown in Table 5, have many strong to very strong correlation coefficients, i.e., 

As/Ag, As/Bi, As, Cd, As/Cu, As/W, Ag/Bi, Ag/Cu, As/W, Bi/Cd, Bi/Cu, Bi/W, Cd/Cu, Cd/W, Cd/Zn, 

Cu/W. The strongest correlations are between Ag/Cu (0.94), As/Ag (0.90) and Bi/W (0.90). There is 

also a positive intermediate correlation (r = 0.31 to 0.70) between PTEs and pH. Several authors claim 

that heavy metal mobility holds a positive correlation with pH [18,88,89]. It is well known that pH 

affects heavy metal availability, since it is the major factor in controlling the ability of soil to retain 

heavy metals in an exchangeable form [21]. With low SOM the pH values may become relatively more 

important for the partitioning of metals. Most elements exhibit a weak negative correlation with SOM. 

For subsoil samples the PTEs correlation also presents some strong correlation coefficients (Table 5), 

but they are overall lower than in topsoil. The stronger correlations are between As/Bi (r = 0.75) and 
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Bi/Cu (r = 0.69). At this depth, pH is also the most significant soil property, presenting weak to 

intermediate positive correlations with the PTEs, except W. 

Figure 3. Spatial distribution of As, Bi, Cd (mg·kg−1) values for topsoil (a) and subsoil (b). 

Percentile class limits at P5, P10, P25, P50, P75, P90, P95 and P97.5. The green dashed 

lines represent the elements background levels. In blue are represented the main water 

courses, in grey the villages and in white the main tailings and dams. 
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Figure 4. Spatial distribution of Cu, W, Zn (mg·kg−1) values for topsoil (a) and subsoil (b). 

Percentile class limits at P5, P10, P25, P50, P75, P90, P95 and P97.5. The green dashed 

lines represent the elements background levels. In blue are represented the main water 

courses, in grey the villages and in white the main tailings and dams. 
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Table 5. Pearson’s linear product-moment correlation coefficients for Ag, As, Bi, Cd, Cu, 

W, Zn, pH and SOM in topsoil (n = 122) and subsoil (n = 116) samples. 

Var  Ag As Bi Cd Cu W Zn pH SOM 

Topsoil 

Ag 1.00 0.90 ** 0.84 ** 0.79 ** 0.94 ** 0.83 ** 0.51 ** 0.70 ** −0.1 
As  1.00 0.84 ** 0.77 ** 0.89 ** 0.81 ** 0.44 ** 0.37 ** −0.09 
Bi   1.00 0.82 ** 0.87 ** 0.90 ** 0.44 ** 0.54 ** −0.14 
Cd    1.00 0.86 ** 0.79 ** 0.68 ** 0.42 ** −0.07 
Cu     1.00 0.80 ** 0.60 ** 0.61 ** −0.14 
W      1.00 0.38 ** 0.46 ** 0.01 
Zn       1.00 0.31 ** −0.15 
pH        1.00 −0.40 **

SOM         1.00 

Subsoil 

Ag 1.00 0.43 ** 0.34 ** 0.45 ** 0.42 ** 0.36 ** 0.43 ** 0.30 ** 0.15 
As  1.00 0.75 ** 0.43 ** 0.59 ** 0.49 ** 0.30 ** 0.09 −0.01 
Bi   1.00 0.50 ** 0.69 ** 0.56 ** 0.35 ** 0.04 −0.01 
Cd    1.00 0.53 ** 0.43 ** 0.57 ** 0.17 −0.09 
Cu     1.00 0.44 ** 0.56 ** 0.11 −0.17 
W      1.00 0.14 −0.21 * 0.16 
Zn       1.00 0.45 ** −0.23 * 
pH        1.00 −0.35 * 

SOM         1.00 
Notes: ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05  

level (2-tailed). 

In order to identify the most important factor controlling the different PTEs spatial differences 

concentrations, a two-way ANOVA was performed [90]. In this study, two models were selected to 

group the variables, (a) depth-SOM and (b) depth-pH. The results of the test between dependent 

(PTEs) and independent (depth and SOM) variables (Table 6) showed that soil depth accounts for 

significant variations between the group means: Bi (p = 0.035), Cd (p = 0.015) and W (p = 0.009). The 

independent variable SOM shows significant variations in the concentration of As (p = 0.021), Bi  

(p = 0.068), W (p = 0.013) and Zn (p = 0.021). There is no significant interaction between depth and 

SOM. While the independent variable pH (Table 7) shows that there are significant variations with 

depth for most PTEs (Ag p = 0.071; As p = 0.027; Bi p = 0.001; Cd p <0.000; W p <0.000), except for 

Cu (p =0.371). pH presents a significant variation for Ag (p = 0.031), W (p = 0.001) and Zn  

(p <0.001). The interaction between pH*depth shows no significant variations (p >0.050), except on 

the concentration of Cu (p = 0.038). 

3.2. Quantitative Assessment of Soil Contamination 

In this study, a simplified approach to assess soil contamination based on comparing the measured 

concentrations in the Panasqueira soil with the geochemical background values for Casegas was 

adopted. Table 8 shows the results of contamination factors (CF) and the modified degree of 

contamination (mCd) for the selected elements in topsoil and subsoil, and also in Casegas soil. 
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Table 6. Two-way ANOVA results between the dependent (PTEs) and independent (depth, 

SOM) variables. PTEs were subjected to log-normal transformation (As, As, Cd, Cu, W 

and Zn with α = 0.050; Bi with α = 0.075). 

Source of Variation Dependent Variables df Mean Square F p-Value 

Depth 

Ag 1 0.223 1.624 0.204 
As 1 0.127 1.652 0.200 
Bi 1 0.333 4.484 0.035 
Cd 1 0.926 5.951 0.015 
Cu 1 0.012 0.483 0.488 
W 1 1.486 6.928 0.009 
Zn 1 0.062 1.933 0.166 

SOM 

Ag 1 0.010 0.076 0.783 
As 1 0.417 5.422 0.021 
Bi 1 0.251 3.371 0.068 
Cd 1 0.160 1.029 0.311 
Cu 1 0.007 0.275 0.601 
W 1 1.763 8.219 0.005 
Zn 1 0.173 5.372 0.021 

Depth*SOM 

Ag 1 0.051 0.373 0.542 
As 1 0.007 0.093 0.760 
Bi 1 0.001 0.008 0.928 
Cd 1 0.001 0.006 0.940 
Cu 1 0.037 1.52 0.219 
W 1 0.095 0.44 0.506 
Zn 1 0.002 0.06 0.811 

Error 

Ag 238 0.137 - - 
As 215 0.077 - - 
Bi 225 0.074 - - 
Cd 233 0.156 - - 
Cu 218 0.024 - - 
W 215 0.215 - - 
Zn 235 0.032 - - 

According the topsoil median values of the contamination factor, Bi, Cd and W present an extremely 

high degree of contamination, while Ag and As a high contamination factor. The results demonstrated 

that mCd values vary from the minimum 1.2 in both topsoil and subsoil to the maximum of 150 in 

topsoil, with median values varying from 4 in subsoil to 6 in topsoil. The cumulative frequency 

distribution indicates that only 7.4% of the soil samples were classified as no to low degree of pollution, 

with mCd values < 2.0, and the remaining soil samples (92.6%) registered moderate to ultra-high 

degree of pollution, with mCd values equal or greater than 2.0 (27.9% between 2 ≤ mCd < 4; 27.1% 

between 4 ≤ mCd < 8; 19.7% between 8 ≤ mCd < 16; 15.6% between 16 ≤ mCd < 32 and 2.5% between 

32 ≤ mCd). The enrichment is more pronounced in topsoil (subsoil mCd values ranged 1.2–26.4). 
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Table 7. Two-way ANOVA results between the dependent (PTEs) and independent (depth, 

pH) variables. PTEs were subjected to log-normal transformation (As, Bi, Cd, Cu, W, Zn 

with α = 0.050; Ag with α = 0.075). 

Source of Variation Dependent Variables df Mean Square F p-Value

Depth 

Ag 1 0.353 3.296 0.071 
As 1 0.512 4.930 0.027 
Bi 1 0.832 10.605 0.001 
Cd 1 1.810 13.449 0.000 
Cu 1 0.019 0.805 0.371 
W 1 3.055 14.560 0.000 
Zn 1 0.007 0.266 0.607 

pH 

Ag 1 0.506 4.726 0.031 
As 1 0.031 0.301 0.584 
Bi 1 0.017 0.222 0.638 
Cd 1 0.020 0.146 0.703 
Cu 1 0.000 0.001 0.971 
W 1 2.315 11.033 0.001 
Zn 2 0.605 21.777 0.000 

Depth*pH 

Ag 1 0.116 1.085 0.299 
As 1 0.053 0.510 0.476 
Bi 1 0.082 1.040 0.309 
Cd 1 0.179 1.332 0.250 
Cu 1 0.104 4.351 0.038 
W 1 0.321 1.532 0.217 
Zn 2 0.077 2.769 0.065 

Error 

Ag 233 0.107 - - 
As 230 0.104 - - 
Bi 225 0.078 - - 
Cd 226 0.135 - - 
Cu 217 0.024 - - 
W 213 0.210 - - 
Zn 233 0.028 - - 

Table 8. Contamination Factors (CF) and Modified Degree of Contamination (mCd)  

using geochemical background values. Casegas area is considered as representative of 

geochemical background. 

Var AgCF AsCF BiCF CdCF CuCF WCF ZnCF mCd 

Bk 
Min 1.0 0.4 0.7 1.0 0.6 0.1 0.3 0.7 
Med 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.4 
Max 8 5 9 30 6 26 2 13 

Topsoil 
Min 1.0 0.8 1.0 5.0 0.4 0.6 0.4 1.2 
Med 2 3 3 20 1.2 17 1.2 6 
Max 34 68 215 300 10 571 3 150 

Subsoil 
Min 1.0 0.4 0.7 5.0 0.4 0.1 0.3 1.2 
Med 2 2 2 10 1.1 8 1.2 4 
Max 12 16 51 150 5 84 3 26 
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Casegas is considered as an uncontaminated site, since it is outside the mine area and the influence 

of airborne polluted dust. The maximum mCd value of 13.1, represents a very high contamination 

degree, which is mostly due to the Cd and W contamination factors. In this case, however, the high 

mCd value is most likely due to geogenic sources, as this is a naturally enriched and mineralized zone. 

The calculated mCd values make possible the assessment of the spatial distribution of the modified 

degree of contamination. The first step is the determination of the spatial structure of the new 

variables, and the experimental variograms were used to model the data using exponential models, the 

extracted parameters are for topsoil: main direction = 90°; Nugget effect (C0) = 30; Sill-Nugget effect 

(C1) = 330; range of influence (length) = 1200 m; anisotropy ratio = 1.81; and for subsoil: main 

direction = 90°; C0 = 0; C1 = 19; length = 900 m; anisotropy ratio = 2.90. Estimation of the spatial 

distribution was then achieved by Ordinary Kriging and the respective map plotted. In Figure 5 it is 

possible to observe the mCd spatial distribution revealing areas with very high values. 

Figure 5 shows that soil samples collected near the Barroca Grande tailings (A), Rio tailings (C) 

and the mud impoundments stand out clearly, because the soil is enriched in Ag, As, Bi, Cd, Cu, W 

and Zn; all soil samples from both depths taken from Barroca Grande exceed the As, Bi, Cd and W 

baseline values for Portugal, while at Rio only Zn in some samples (25%) has concentrations that are 

lower than the guide value. According to [42], the Barroca Grande tailings and open impoundments 

have high As, Cd, Cu, Pb, W, and Zn concentrations (mean content in the more coarse tailings material 

As = 7142 mg·kg−1 ; Cd = 56 mg·kg−1 ; Cu = 2501 mg·kg−1; Pb = 172 mg·kg−1; Sn = 679 mg·kg−1;  

W = 5400 mg·kg−1 and Zn = 1689 mg·kg−1 and mean content in the impoundment material (rejected from 

the mill operations) As = 44,252 mg·kg−1 ; Cd = 491 mg·kg−1; Cu = 4029 mg·kg−1; Pb = 166 mg·kg−1;  

Sn = 454 mg·kg−1; W = 3380 mg·kg−1 and Zn = 3738 mg·kg−1). The mineralogy of these tailings 

consists of mainly quartz, muscovite, kaolinite, illite-montmorillonite, montmorillonite-vermiculite, 

and chlorite, and also arsenopyrite, wolframite, and natrojarosite. 

Figure 5. Spatial distribution of the modified degree of Contamination (mCd) for topsoil (a) 

and subsoil (b). Values were estimated on the basis of the concentration factors of Ag, As, 

Bi, Cd, Cu, W and Zn (A, Barroca Grande; B, S. Francisco de Assis; C, Rio). 
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The dams at Barroca Grande may pose a significant potential threat, due to the fine-grained nature 

of the materials, and their location with respect to the Casinhas stream that cross S. Francisco de Assis 

village. The X-Ray Diffraction (XRD) analysis of the impoundment material revealed the presence of 

scorodite, arsenopyrite, quartz, sphalerite, hematite, and muscovite. These tailings and impoundment 

material are metal-enriched at such a level, likely to be toxic to the ecosystem [42]. The concentrations 

exceed the values defined for the 90th percentile of the South Portuguese Zone (As 157 mg·kg−1;  

Cu 108 mg·kg−1; Ni 62 mg·kg−1; Pb 117 mg·kg−1; Zn 134 mg·kg−1), which is indicative of enrichment 

in trace metals. This Ag-As-Bi-Cd-Cu-W-Zn association is quite logical and is linked to the 

Panasqueira ore-paragenetic association. The highest mCd values identified near Barroca Grande (A), 

São Francisco de Assis (B) and Rio (C) confirms that mechanical and chemical dispersion from 

Barroca Grande and Rio tailings and mud impoundments occurs. Most of the samples (90% or higher 

of total samples) collected from Barroca Grande (A), São Francisco de Assis (B) and Rio (C) villages, 

exhibit mCd values >8.0, clearly indicting a very high degree of contamination. 

The Panasqueira tailings impoundments have been and are affected by surface water flows (from 

heavy rainfall events) that have eroded the tailings from their original location and transported the 

materials downstream to residential areas (namely to S. Francisco de Assis). However, the superficial 

flat of the tailings have dried and are susceptible to wind erosion. The relative rates of water and wind 

erosion and transport, in Barroca Grande, São Francisco de Assis and Rio, suggest that wind processes 

have similar, and in many cases greater, impact on loss and local redistribution of soil in ecosystems 

than an eventual erosional soil enrichment. 

3.3. Potential Ecological Risk Factor and Risk Index 

The topsoil and subsoil samples results for individual element potential pollution factor (EF) and 

potential ecological risk (PERI) are presented in Table 9. For both soil sample depths, As, Cu and Zn 

show a low potential ecological risk, with median values <40 (see Table 2). Tungsten also exhibits a 

low risk in subsoil, but a high risk in topsoil, while Bi and Ag show a moderate risk at both depths. 

Cadmium presents a very high ecological risk in topsoil and a high risk on subsoil. Using the median 

values, the topsoil risk factor is ranked as: Cd > W > Ag > Bi > As >> Cu > Zn, while for subsoil the 

ranking is: Cd > Ag > Bi > As > Cu = W > Zn. These results suggest a very high environmental risk, 

especially for Cd. 

In order to estimate the global potential ecological risk in the study area, the PERI was computed. 

The median values classify soil samples at both depths with a very high risk (Table 9). The cumulative 

analysis shows that the soil samples at both depths do not display a low risk index (<150), and only 

7.4% of topsoil present a moderate risk index. PERI classified 92.6% of topsoil samples as high to 

very high ecological risk. The same occurs for 61.2% of subsoil samples, which should be considered 

as an extensive hazard. Figure 6 displays the PERI spatial distribution. Topsoil has a wide area 

classified with a very high ecological risk, which is consistent with the wind direction, the water 

courses and the actual and previous exploration and beneficiation locations (Figure 6a). Subsoil also 

presents a very high risk index in the same topsoil areas, but with smaller area expression. These 

results are consistent with those mapped by the individual elements, Ag, As, Bi, Cd, Cu, W and Zn 

(Figures 2–4), and the modified degree of contamination (mCd; Figure 5), with the same affected areas. 
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Table 9. Statistical results of the single element potential pollution factor (EF) and 

potential ecological risk (PERI) for topsoil and subsoil samples. 

Var AgEF AsEF BiEF CdEF CuEF WEF ZnEF PERI 

Topsoil 

Min 120 4 20 150 1 9 0 224 
Mean 120 23 127 893 3 573 1 1,740 
Med 70 15 60 600 2 255 1 1,020 
Max 1,190 338 4,300 9,000 21 8,571 3 23,353 

Subsoil 

Min 30 4 10 125 2 2 0 173 
Mean 76 33 56 418 7 8 1 600 
Med 60 23 30 250 6 6 1 350 
Max 360 158 770 3,750 26 203 3 4,369 

Figure 6. Spatial distribution of Potential Ecological Risk Index (PERI) for topsoil (a) and 

subsoil (b) in the study area. 

 

3.4. Human Health Risk Assessment 

Both non-carcinogenic hazard (HQ) and carcinogenic risk (Riskpathway) of topsoil in the Panasqueira 

mine and surrounding area, through the different pathways (ingestion, dermal and inhalation), were 

estimated according to the human health risk assessment model [28]. The cumulative hazard index 

(HI) and total risk (Risktotal) were also characterized for multi-pathway routes in resident population. 

The non-carcinogenic effects considered the most conservative exposure condition—children  

(1–6 years old). The potentially toxic elements defined in this study (Ag, Cd, Cu, W and Zn), apart 

from As, do not present a non-carcinogenic hazard for children in the Panasqueira area (maximum 

HIchild-Ag,Cd,Cu,W,Zn ≤ 0.37). The As non-carcinogenic hazard median values, estimated for the different 

exposure routes were HQing-As (2.75) >> HQdrm-As (0.23) >> HQinh-As (0.00). HIchild-As values ranged 

between 0.78 and 69.50, with a median value of 2.98 ≈ HQing-As (2.70), due to the ingestion hazard 

quotient ranging between 0.72 and 64.10. These results (<1—safe level) indicate that there is a cause 

for concern for the non-cancer health effects for children living in the Panasqueira study area, mainly 

due to As oral ingestion, with HQing-As showing median values above one (Figure 7). 
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Figure 7. Comparative boxplot distribution of the Non-carcinogenic Hazard Quotient for 

children of As for Ingestion (HQingAs), Inhalation (HQihnAs), Dermal contact (HQdrmAs) 

routes, the Cumulative Hazard Index (HIAs) and the sum of the Non-carcinogenic Hazard 

Quotient of the other defined PTEs (Ag, Cd, Cu, W and Zn) for Ingestion (HQingPTE(-As)), 

Inhalation (HQihnPTE(-As)), Dermal contact (HQdrmPTE(-As)) routes and the Cumulative Hazard 

Index (HIPTE(-As)) for topsoil samples (tailing samples were removed) in the Panasqueira 

area. The extremes and outliers were removed. 

 

The carcinogenic risks adjusted both to children and adult were studied for the identified PTEs in 

this study. The median values of the different exposure routes and total risk were estimated. Their 

mean distribution were Risktotal (2.62 × 10−4) ≈ RiskAs (2.62 × 10−4) ≈ Risking (2.39 × 10−4) ≈ RiskingAs 

(2.39 × 10−4) >> Riskdrm (2.26 × 10−5) ≈ RiskdrmAs (2.26 × 10−5) >> Riskinh (1.32 × 10−7) ≈ RiskinhAs  

(1.32 × 10−7) (Figure 8). The high significance of As to cumulative carcinogenic elements risk is due to 

the very low risk displayed by the other elements. Furthermore, the representation of the exposure 

routes are distributed as: (a) Risking ≈ RiskingAs ranged 3.97 × 10−5–3.53 × 10−3, with a median value of 

1.52 × 10−4; (b) Riskdrm ≈ RiskdrmAs ranged 3.76 × 10−6–3.34 × 10−4, with median value of 1.44 × 10−5; 

and (c) Riskinh ≈ RiskinhAs ranged 2.21 × 10−8–1.96 × 10−6, with median value of 8.38 × 10−8. The 

cumulative pathway Risktotal ≈ RiskAs ranged 4.35 × 10−5–3.87 × 10−3, with a median Risktotal of  

1.66 × 10−4 mostly due to RiskingAs. Intake of As may cause cancer in several human organs through 

ingestion, and lung and skin cancer through inhalation [28]. Moreover, the Risking represents 91.29% 

of cumulative risk from exposure routes, while Riskdrm (8.69%) and Riskinh (0.05%) have less 

significance. Similar results were obtained in other studies [77,91–94]. The cumulative median Riskdrm 

is > 1 × 10−6 for all samples, of which 69.67% > 1 × 10−5, and the cumulative exposure route median 

Risking is > 1 × 10−5 for all samples, being 72.13% > 1 × 10−4. These results show that there is a very 

high As ingestion cancer risk. The samples with higher hazard are located in and around the villages of 

the study area, being the more representative results found nearby the large tailing piles and open air 
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impoundments (Figure 9). Although the median Riskdrm value is lower and between 1 × 10−6 and 1 × 10−4, 

and is considered as acceptable, it cannot, however, be negligible in the Panasqueira mining area, once 

all samples exceed the target value (1 × 10−6). While the sum of exposure pathways is RiskCd = 1.09 × 10−10 

(<1 × 10−6), it should be noted that it is the cumulative toxic metal and kidney index that is the main 

target for Cd toxicity [26,95]. 

Figure 8. Comparative boxplot distribution of the Carcinogenic Risk adjusted to both 

children and adult for total PTEs (Ag, As, Cd, Cu, W and Zn) for Ingestion (Risking), 

Inhalation (Riskinh), Dermal contact (Riskdrm) routes, the Cumulative Risk (Risktotal) and the 

Carcinogenic Risk of As for Ingestion (RiskingAs), Inhalation (RiskinhAs), Dermal (RiskdrmAs) 

routes and the Cumulative Risk (RiskAs) for topsoil samples (tailing samples were 

removed) of the Panasqueira area. The extremes and outliers were removed. 

 

As the risk analyses showed that ingestion is the most important pathway, further studies should be 

carried out in order to estimate the metal bioaccessibility in human receptors, such as a simplified  

in vitro physiologically based extraction test (PBET), allowing the estimation of the percentage of the 

bioaccessible orally ingested fraction of each metal from soil samples [77,80,96]. Additional 

investigations must be made on different sample media, such as vegetables, rhizosphere, irrigation and 

drinking water and street dust in the local villages under influence of mining activities (such as  

S. Francisco de Assis and Barroca) and also in non-exposed villages considered as reference areas 

(such as Casegas and Unhais-o-Velho). These studies will provide the necessary data and information 

for the determination of the influence of the Panasqueira mine activities, through more than 110 years, 

on the surrounding population, and should be complemented by biological studies [97]. 
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Figure 9. Spatial distribution of the Carcinogenic risk adjusted for both children and  

adult considering (a) ingestion; (b) dermal contact; (c) inhalation routes; and (d) the 

cumulative Risk. 

 

4. Conclusions 

The mining and beneficiation process generates huge quantities of waste materials from the ore 

extraction and milling operations, which accumulate in tailings and open impoundments and are 

largely responsible for the high levels of metals(loid)s released into the surrounding environment. At 

the Panasqueira mine, the mining activities have produced sulphide-rich mine wastes that are 

responsible for the high levels of metals at Barroca Grande and Rio tailings. The oxidation of these 

sulphides may give rise to the mobilization and migration of trace metals from the mining wastes into 

the soil. Heavy metal soil contamination is an outstanding example of environmental risk. Metal(loid)s, 

such as As, Cd or Pb, for example, are toxic for humans, as well as for animals, and can even lead to 

death if ingested in large doses, or over large periods of time. Exposure to hazardous elements may 

have different pathways, such as ingestion, dermal absorption and inhalation of soil particles present in 

the air. 

Collection of surface soil permits the characterization of anthropogenic contamination, caused by 

the presence of tailings and open air impoundments. Such soil, classified globally as very acid to acid, 

occurs in areas with very low soil pH values, which are related to areas with the highest SOM values. 

The metal assemblage identified in these soil types (Ag, As, Bi, Cd, Cu, W and Zn) show highest 
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values in topsoil samples (0–15 cm), when compared with the values of the corresponding subsoil 

samples below 15 cm depth. Soil samples from both depths have higher contents when compared to 

the estimated local geochemical background. These results show the influence of the metal-rich mine 

wastes, stored in Barroca Grande and Rio tailings and in the open impoundments, as the main source 

of pollution of the surrounding environment, possibly due to aerial transport and deposition. 

Very strong correlations were estimated between the PTEs and between PTEs and pH. The 

strongest correlations were Ag/Cu, As/Ag and Bi/W. The PTEs and pH positive correlation, confirm 

the findings of other studies that heavy metal mobility holds a positive correlation with pH, affecting 

their availability. 

The ANOVA results, showed significant variations with depth, and the majority of the PTEs (Ag, 

As, Bi, Cd and W) and pH exhibit a significant variation for Ag, W and Zn. 

According to the calculated contamination factor (CF) and the modified degree of contamination 

(mCd), 7.4% of the soil samples were classified as having no to low degree of pollution with mCd < 2.0 

and 92.6% registered moderate to ultra-high degree of pollution with mCd ≥ 2.0. The spatial 

distribution of the mCd reveals areas with a very high degree of contamination. The highest mCd 

values were identified near Barroca Grande, São Francisco de Assis and Rio, and confirm the 

mechanical and chemical dispersion from tailings. 

The risk factor estimated for individual element potential pollution factor and potential ecological 

risk, revealed at both soil sample depths that As, Cu and Zn have a low potential ecological risk, W 

low risk in subsoil, but a very high risk in topsoil samples; Ag moderate to considerable ecological risk 

and Cd is the worst element, exhibiting a very high environmental risk. The estimated potential 

ecological risk (PERI) classifies samples from both depths with a very high risk. In the PERI spatial 

distribution, topsoil has a wide area classified with a very high ecological risk, consistent with wind 

direction, water courses and current and previous exploration and beneficiation locations. 

The non-carcinogenic hazard effects, determined for children (1–6 years old), indicated that the 

PTEs (Ag, Cd, Cu, W and Zn) do not present a non-carcinogenic hazard for children, while the As 

value is high, representing a risk for the non-cancer health effects for children in the Panasqueira area. 

The carcinogenic risk for both children and adults, revealed a very high cancer risk due to As 

ingestion, which may cause cancer to several human organs cancer through ingestion, and lung and 

skin cancer through inhalation. 

Further studies should be carried out in order to estimate the metal bioaccessibility in human receptors. 

Acknowledgments 

This research is financially supported by FCT—Fundação para a Ciência e a Tecnologia (grants 

SFRH/BD/63349/2009). 

Author Contributions 

The original idea of the study was designed on a brainstorm meeting by all authors. E. Ferreira da Silva 

and J. P. Teixeira were responsible for recruitment and follow-up of study participants. All authors 

participated on the field work. C. Candeias and P. F. Ávila were responsible for data cleaning and 



Geosciences 2014, 4 263 

 

analyses. C. Candeias drafted the manuscript with collaboration of all authors and it was revised by all. 

All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interests. 

References 

1. Cohen, R.R.H.; Gorman, J. Mining-related nonpoint-source pollution. Water Environ. Technol. 

1991, 3, 55–59. 

2. Merson, J. Mining with microbes. N. Sci. 1992, 133, 9–17. 

3. Evangelou, V.P.B.; Zhang, Y.L. A review: Pyrite oxidation mechanisms and acid mine drainage 

prevention. Crit. Rev. Environ. Sci. Technol. 1995, 25, 141–199. 

4. Larocque, A.C.L.; Rasmussen, P.E. An overview of trace metals in the environment, from 

mobilization to remediation. Environ. Geol. 1998, 33, 85–91. 

5. Soucek, D.J.; Cherry, D.S.; Currie, R.J. Laboratory to field validation in an integrative assessment 

of an acid mine drainage-impacted watershed. Environ. Toxicol. Chem. 2000, 19, 1036–1043. 

6. Candeias, C. Modelling the Impact of Panasqueira Mine in the Ecosystems and Human Health: A 

Multidisciplinar Approach. Ph.D. Thesis, Aveiro University/Porto University, Aveiro, Portugal, 2013. 

7. Rasmussen, P.E. Long-range atmospheric transport of trace metals: The need for geosciences 

perspectives. Environ. Geol. 1998, 33, 96–108. 

8. Yukselen, M.A.; Alpaslan, B. Leaching of metals from soil contaminated by mining activities.  

J. Hazard Mater. 2001, 87, 289–300. 

9. Chen, X.; Wright, J.V.; Conca, J.L.; Peurrung, L.M. Evaluation of heavy metal remediation using 

mineral apatite. Water Air Soil Pollut. 1997, 98, 57–78. 

10. Bosso, S.T.; Enzweiler, J. Bioaccessible lead in soils, slag, and mine wastes from an abandoned 

mining district in Brazil. Environ. Geochem. Health 2008, 30, 219–229. 

11. Douay, F.; Pruvot, C.; Roussel, H.; Ciesielski, H.; Fourrier, H.; Proix, N.; Waterlot, C. Contamination 

of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air 

Soil Pollut. 2008, 188, 247–260. 

12. Roussel, H.; Waterlot, C.; Pelfrêne, A.; Pruvot, C.; Mazzuca, M.; Douay, F. Cd, Pb and Zn Oral 

Bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead 

and zinc smelters. Arch. Environ. Contam. Toxicol. 2010, 58, 945–954. 

13. Juhasz, A.L.; Weber, J.; Smith, E. Impact of soil particle size and bioaccessibility on children and 

adult lead. J. Hazard Mater. 2011, 186, 1870–1879. 

14. Ettler, V.; Kribek, B.; Majer, V.; Knesl, I.; Mihaljevic, I. Differences in the bioaccessibility of 

metals/metalloids in soils from mining smelting areas (Copperbelt, Zambia). J. Geochem. Explor. 

2012, 113, 68–75. 

15. Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decre, S.; de Putter, T.; Smolders, E.; Kabyla, B.I.; 

Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other 

metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 

745–752. 



Geosciences 2014, 4 264 

 

16. Radojevic, M.; Bashki, V.N. Practical Environmental Analysis; The Royal Society of Chemistry: 

Cambridge, UK, 2006. 

17. Krishnamurti, G.S.R.; Huang, P.M.; Kozak, L.M. Sorption and desorption kinetics of cadmium 

from soils: Influence of phosphate. Soil Sci. 1999, 164, 888–898. 

18. Antoniadis, V.; Robinson, J.S.; Alloway, B.J. Effects of short-term pH fluctuations on cadmium, 

nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 

2008, 71, 759–764. 

19. Mühlbachová, G.; Simon, T.; Pechová, M. The availability of Cd, Pb and Zn and their relationships 

with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant Soil Environ. 

2005, 51, 26–33. 

20. Zhao, K.L.; Liu, X.M.; Xu, J.M.; Selim, H.M. Heavy metal contaminations in a soil-rice system: 

Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard Mater. 

2010, 181, 778–787. 

21. Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and 

organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. 

Environ. Pollut. 2011, 159, 84–91. 

22. Sukreeyapongse, O.; Holme, P.E.; Strobel, B.W.; Panichsakpatana, S.; Magid, J.; Hansen, H.C.B. 

pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils.  

J. Environ. Qual. 2002, 31, 1901–1909. 

23. Oliver, D.P.; Tiller, K.G.; Connyers, M.K.; Sattery, W.J.; Alston, A.M.; Merry, R.H. Effectiveness 

of liming to minimise uptake of cadmium by wheat and barley grain grown in the field. Aust. J. 

Agric. Res. 1996, 47, 1181–1193. 

24. Braillier, S.; Harrison, R.B.; Hennry, C.L.; Dogsen, X. Liming effects on availability of Cd, Cu, 

Ni and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Pollut. 2006, 

86, 195–206. 

25. Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G. Influence of 

hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. 

Environ. Pollut. 2007, 147, 615–625. 

26. Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street 

dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. 

27. Mudgal, V.; Madaan, N.; Mudgal, A.; Singh, R.B.; Mishra, S. Effect of toxic metals on human 

health. Open Nutraceuticals J. 2010, 3, 94–99. 

28. U.S. Department of Energy. The Risk Assessment Information System (RAIS); U.S. Department of 

Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2013. 

29. Agency for Toxic Substances and Disease Registry. Available online: http://www.atsdr.cdc.gov/ 

(accessed on 23 September 2014). 

30. World Health Organization (WHO). Monographs-Analytical and Toxicological Data. In Basic 

Analytical Toxicology; World Health Organization: Geneva, Switzerland, 2013. 

31. National Drug Formulary of Ethiopia; Drug Administration and Control Authority of Ethiopia 

(DACAE): Addis Ababa, Ethiopia, 2007. 
  



Geosciences 2014, 4 265 

 

32. Candeias, C.; Ferreira da Silva, E.; Ávila, P.F.; Salgueiro, A.R.; Teixeira, J.P. Integrated approach 

to assess the environmental impact of mining activities: Multivariate statistical analysis to 

estimate the spatial distribution of soil contamination in the Panasqueira mining area (Central 

Portugal). Environ. Monit. Assess. 2014, in press. 

33. Smith, M. Panasqueira the tungsten giant at 100+. Oper. Focus. Int. Min. 2006, 33, 10–14. 

34. Thadeu, D. Geologia do couto mineiro da Panasqueira. Comunicações dos Serviços Geológicos de 

Portugal 1951, 32, 5–64. (In Portuguese) 

35. Bloot, C.; de Wolf, L.C.M. Geological features of the Panasqueira tin-tungsten ore occurrence 

(Portugal). Bol. Soc. Geol. Port. 1953, 11, 1–58. 

36. Kelly, W.C.; Rye, R.O. Geologic, fluid inclusion and stable isotope studies of the tin-tungsten 

deposits of Panasqueira, Portugal. Econ. Geol. 1979, 74, 1721–1822. 

37. Polya, D.A. Chemistry of the main stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn 

deposit, Portugal: Implications for models of ore genesis. Econ. Geol. 1989, 84, 1134–1152. 

38. Noronha, F.; Dória, A.; Dubessy, J.; Charoy, B. Characterisation and timing of the different types 

of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. 

Miner. Deposita 1992, 27, 72–79. 

39. Correia, A.; Naique, R.A. Minas Panasqueira, 100 Years of Mining History. In Proceedings  

of the International Tungsten Industrial Association (ITIA) Conference, Salzburg, Austria,  

20–22 October 1998. 

40. Corrêa de Sá, A.; Naique, R.A.; Nobre, E. Minas da Panasqueira: 100 anos de História. Bol. 

Minas 1999, 36, 3–22. (In Portuguese) 

41. e-Ecorisk, A Regional Enterprise Network Decision-Support System for Environmental Risk and 

Disaster Management of Large-Scale Industrial Soils, Contract n.° EGV1-CT-2002-00068;  

WP3–Case Study Site Characterization, Project Management Report for the Reporting Period, 

Deliverable 3.1; Joanneum Research Forschungsgeselfschaft—GMBH: Frohnleiten, Austria, 

2007; not published. 

42. Ávila, P.; Ferreira da Silva, E.; Salgueiro, A.; Farinha, J.A. Geochemistry and Mineralogy of Mill 

Tailings Impoundments from the Panasqueira Mine (Portugal): Implications for the Surrounding 

Environment. Mine Water Environ. 2008, 27, 210–224. 

43. Ferreira da Silva, E.; Ávila, P.F.; Salgueiro, A.R.; Candeias, C.; Pereira, H.G. Quantitative–spatial 

assessment of soil contamination in S. Francisco de Assis due to mining activity of the 

Panasqueira mine (Portugal). Environ. Sci. Pollut. Res. 2013, 20, 7534–7549. 

44. Candeias, C.; Melo, R.; Ávila, P.F.; Ferreira da Silva, E.; Salgueiro, A.R.; Teixeira, J.P. Heavy 

metal pollution in mine–soil–plant system in S. Francisco de Assis–Panasqueira mine (Portugal). 

Appl. Geochem. 2014, 44, 12–26. 

45. Jaques Ribeiro, L.M.; Gonçalves, A.C.R. Contributo para o conhecimento geológico e 

geomorfológico da área envolvente do Couto Mineiro da Panasqueira. Centro de Estudos de 

Geografia e Ordenamento do Território. Revista de Geografia e Ordenamento do Território 2013, 

3, 93–116. (In Portuguese) 

46. Atlas do Potencial Eólico para Portugal Continental, Version 1.0 [CD-ROM]; ISBN 972-676-196-4; 

Instituto Nacional de Engenharia, Tecnologia e Inovação I.P. (INETI): Lisboa, Portugal, 2004.  

(In Portuguese) 



Geosciences 2014, 4 266 

 

47. Reis, A.C. As Minas da Panasqueira. Bol. Minas 1971, 8, 3–34. (In Portuguese) 

48. Costa, P.; Estanqueiro, A. Development and Validation of the Portuguese Wind Atlas. In 

Proceedings of the European Wind Energy Conference, Athens, Greece, 27 February–2 March 2006. 

49. Costa, P.; Estanqueiro, A. Building a Wind Atlas for Mainland Portugal Using a Weather Type 

Classification. In Proceedings of the European Wind Energy Conference, Athens, Greece,  

27 February–2 March 2006. 

50. Costa, P.A.S. Atlas do Potencial eólico para Portugal Continental. Master’s Thesis, University of 

Lisbon, Lisboa, Portugal, 2004. (In Portuguese) 

51. Turner, A.P. The responses of plants to heavy metals. In Toxic Metals in Soil-Plant Systems; 

Sheila, M.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. 

52. Mcbride, M.B.; Richards, B.; Steenhuis, T.; Russo, J.J.; Sauvé, S. Mobility and solubility of toxic 

metals and nutrients in soil fifteen years after sludge application. Soil Sci. 1997, 162, 487–500. 

53. Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and 

Information Centre: Wageningen, The Netherlands, 2002. 

54. ISO 10390:1994 Soil; In Soil Quality—Determination of pH; International Organization for 

Standardization: Geneva, Switzerland, 1995. 

55. Schnitzer, M.; Khan, S.U. Substances in the Environment; Marcel Dekker: New York, NY,  

USA, 1972. 

56. Stevenson, F.J. Humus Chemistry; Wiley: New York, NY, USA, 1982. 

57. Yin, Y.; Allen, H.E.; Huang, C.P.; Sparks, D.L.; Sanders, P.F. Kinetics of mercury (II): 

Adsorption and desorption on soil. Environ. Sci. Technol. 1997, 31, 496–503. 

58. You, S.J.; Yin, Y.; Allen, H.E. Partitioning of organic matter in soils: Effects of pH and water soil 

ratio. Sci. Total Environ. 1999, 227, 155–160. 

59. Zar, J.H. Biostatistical Analysis; Prentice Hall: New York, NY, USA, 1996. 

60. Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hall: New York, 

NY, USA, 1998. 

61. Corwin, D.L.; Lesh, S.M.; Oster, J.D.; Kaffka, S.R. Monitoring management-induced  

spatio-temporal changes in soil quality through soil sampling direct by apparent electrical 

conductivity. Geoderma 2006, 131, 369–387. 

62. Hakanson, L. Ecological risk index for aquatic pollution control, a sedimentological approach. 

Water Res. 1980, 14, 975–1001. 

63. Loska, K.; Wiechula, D.; Korus, I. Metal contamination of farming soils affected by industry. 

Environ. Int. 2004, 30, 159–165. 

64. Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Solderland, L.; Liu, G.H. Impacts of sewage irrigation on 

heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 32, 805–812. 

65. Tuckey, J.W. Exploratory Data Analysis; Addison Wesley: Boston, MA, USA, 1977. 

66. Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of 

contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. 

Monit. Assess. 2008, 136, 227–238. 

67. Reimann, C.; Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist 

and Environmental Scientist; Springer: Berlin, Germany, 1998. 

68. Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: London, UK, 1966. 



Geosciences 2014, 4 267 

 

69. U.S. Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, 

Volume I: Human Health Evaluation Manual; EPA 540-1-89-002; U.S. Environmental Protection 

Agency: Washington, DC, USA, 1989. 

70. U.S. Environmental Protection Agency (USEPA). Soil Screening Guidance: Technical Background 

Document; EPA 540-R-95-128; U.S. Environmental Protection Agency: Washington, DC,  

USA, 1996. 

71. Linders, J.B.H.J. Risicobeoordelino voor de mens bij blootstelling aan stoffen: Uitgangspunten en 

veronderstellingen. In Rapport/Rijksinstituut voor Volksgezondheid en Milieuhygiene  

(nr. 725201003); RIVM: Bilthoven, The Netherlands, 1990. (In Dutch) 

72. Berg, R.V.D. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis 

towards Proposals for Human Toxicological Intervention Values (Partly Revised Edition);  

Report No. 725201011; National Institute for Public Health and the Environment: Bilthoven,  

The Netherlands, 1994. 

73. U.S. Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund: 

Volume III–Part A, Process for Conducting Probabilistic Risk Assessment; EPA 540-R-02-002; 

U.S. Environmental Protection Agency: Washington, DC, USA, 2001. 

74. U.S. Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS);  

U.S. Environmental Protection Agency: Washington, DC, USA, 2013. 

75. INE. Portal do Instituto Nacional de Estatística—Statistics Portugal. Available online: 

http://www.ine.pt/ (accessed on 23 September 2014). (In Portuguese) 

76. U.S. Environmental Protection Agency (USEPA). Guidance for Evaluating the Oral Bioavailability 

of Metals in Soils for Use in Human Health Risk Assessment; OSWER 9285.7-80; U.S. 

Environmental Protection Agency: Washington, DC, USA, 2007. 

77. Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating bioaccessibility into 

human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 

88–96. 

78. Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, 

mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 

2011, 159, 1215–1221. 

79. U.S. Environmental Protection Agency (USEPA). Screening Levels (RSL) for Chemical 

Contaminants at Superfund Sites; U.S. Environmental Protection Agency: Washington, DC,  

USA, 2013. 

80. Luo, X.S.; Yu, S.; Li, X.D. The mobility, bioavailability, and human bioaccessibility of trace 

metals in urban soils of Hong Kong. Appl. Geochem. 2012, 27, 995–1004. 

81. U.S. Department of Agriculture. Available online: http://www.nrcs.usda.gov (accessed on  

23 September 2014). 

82. Tidball, R.R.; Ebens, R.J. Regional geochemical baselines in soils of the Powder River Basin, 

Montana–Wyoming. In Geology and Energy Resources of the Powder River; 28th Annual Field 

Conference Guidebook; American Association of Petroleum Geologists (AAPG): Tulsa, OK, 

USA, 1976. 

83. Ministry of the Environment. Soil, Ground Water and Sediment Standards for the Use under Part 

XV.1 of the Environmental Protection Act; Ministry of the Environment: Ottawa, Canada, 2011. 



Geosciences 2014, 4 268 

 

84. Fiedler, H.J.; Rösler, H.J. Spurenelemente in der Umwelt; Gustav Fischer Verlag: Jena, Germany, 

2013. (In German) 

85. Mench, M. Notions sur les éléments en traces pour une qualité des sols et des produits végétaux. 

Purpan 1993, 166, 118–127. (In French) 

86. Deschamps, E.; Ciminelli, V.S.T.; Lange, F.T.; Matschullat, J.; Raue, B.; Schmidt, H. Soil and 

sediment geochemistry of the iron quadrangle, Brazil: The case of arsenic. J. Soils Sediment. 

2002, 2, 216–222. 

87. Ferreira, M.M.S.I. Dados Geoquímicos de Base de Solos de Portugal Continental, Utilizando 

Amostragem de Baixa Densidade. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2004.  

(In Portuguese) 

88. Yuan, G.; Lavkulich, L.M. Sorption behavior of copper, zinc, and cadmium in response to 

simulated changes in soil properties. Commun. Soil Sci. Plant Anal. 1997, 28, 571–587. 

89. Hettiarachchi, G.M.; Ryan, J.A.; Chaney, R.L.; La Fleur, C.M. Sorption and desorption of cadmium 

by different fractions of biosolids-amended soils. J. Environ. Qual. 2003, 32, 1684–1693. 

90. Qishlaqi, A.; Moore, F. Statistical analysis of accumulation and sources of heavy metals occurrence 

in agricultural soils of Khoshk River Banks, Shiraz, Iran. J. Agric. Environ. Sci. 2007, 2, 565–573. 

91. Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around insutrial clusters in 

Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. 

92. De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of 

the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 

66, 505–513. 

93. Ferreira-Baptista, L.; de Miguel, E. Geochemistry and risk assessment of street dust in Luanda, 

Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. 

94. Dudka, S.; Miller, W.P. Permissible concentrations of arsenic and lead in soils based on risk 

assessment. Water Air Soil Pollut. 1999, 113, 127–132. 

95. De Burbure, C.; Buchet, J.P.; Bernard, A.; Leroyer, A.; Nisse, C.; Haguenoer, J.M.; Bergamaschi, E.; 

Mutti, A. Biomarkers of renal effects in children and adults with low environmental exposure to 

heavy metals. J. Toxicol. Environ. Health 2003, 66, 783–798. 

96. Drexler, J.W.; Brattin, W.J. An in vitro procedure for estimation of lead relative bioavailability: 

With validation. Hum. Ecol. Risk Assess. 2007, 13, 383–401. 

97. Coelho, P.; Costa, S.; Costa, C.; Silva, S.; Walter, A.; Ranville, J.; Pastorinho, R.; Harrington, C.; 

Taylor, A.; Dall’Armi, V.; et al. Biomonitoring of several toxic metal(loid)s in different biological 

matrices from environmentally and occupationally exposed populations from Panasqueira mine 

area, Portugal. Environ. Geochem. Health 2013, 36, 255–269. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


