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Abstract: This article investigates the role of different approaches and interpolation methods in
gridding terrestrial gravity anomalies. In this regard, first of all, simple and complete Bouguer
anomalies are considered in gravity data gridding. In the comparison results of gridding these
two Bouguer anomaly datasets, the effect of the high-frequency contribution of topographic gravi-
tation (by means of the terrain correction) is clarified. After that, the role of the used interpolation
algorithm on the resulting grid of mean gravity anomalies and hence on the geoid modeling accuracy
is inspected. For this purpose, four different interpolation methods including geostatistical Kriging,
nearest neighbor, inverse distance to a power (IDP), and artificial neural networks (ANNs) are applied.
Here, the IDP and nearest neighbor methods represent simple-structured algorithms among the
interpolation methods tested in this study. The ANN method, on the other hand, is preferred as
a complex, optimization-based soft computing method that has been applied in recent years. In
addition, the geostatistical Kriging method is one of the conventional methods that is mostly applied
for gridding gravity data in geodesy and geophysics. The calculated gravity anomalies in grids are
employed in high-resolution geoid model computations using the least squares modifications of
Stokes formula with additive corrections (LSMSA) technique. The investigations are carried out using
the test datasets of Auvergne, France that are provided by the International Service for the Geoid for
scientific research. It is concluded that the interpolation algorithms affect the gravity gridding results
and hence the geoid model determination. The ANN method does not provide superior results
compared to the conventional algorithms in gravity gridding. The geoid model with 4.1 cm accuracy
is computed in the test area.

Keywords: gravity anomalies; data interpolation; terrain correction; gravity reduction; gridding;
geoid computation; GNSS/leveling

1. Introduction

In many applications of geodesy, geophysics, geodynamics, and engineering disci-
plines, the height information of a point relative to a reference surface is essential. Ellip-
soidal height, which is the vertical distance between a point on the Earth’s surface and an
ellipsoid along the ellipsoidal normal, can be obtained anywhere and anytime, regardless
of weather conditions, using global navigation satellite systems (GNSS). However, this kind
of height cannot be utilized for the majority of engineering and surveying applications,
including drainage projects, building engineering structures, managing natural disasters,
etc., as it only has geometrical meaning and does not refer to the Earth’s gravitational
field [1–3]. Instead, the orthometric height is utilized, which indicates a natural flow of
the fluids, as it refers to the Earth’s gravitational field and is described as the distance
between the geoid and a point on the Earth’s surface [4–6]. Leveling is the conventional
measurement technique for precise determination of the orthometric heights. However,
this method is a time-consuming and expensive task in practice. In addition, it is prone
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to error accumulation, especially in large areas, and is more difficult to carry out in rough
terrain. Deformations, especially occurring in active tectonic regions, require updating
the vertical control networks that rely on leveling measurements, which is a significant
disadvantage for vertical control networks. Therefore, acquiring the orthometric height (H)
of a topography point using its GNSS-ellipsoidal height (h) and geoid height (N), which
is the distance between the geoid and ellipsoid along the ellipsoid normal at the point
(H = h − N), is an efficient method in surveying applications. In this method, the geoid
height parameter is obtained using a geoid model, and the accuracy of the orthometric
height in this transformation is directly related to the accuracy of the geoid model. In order
to obtain the orthometric heights within a few centimeters of accuracy, high-resolution
regional geoid models determined using dense and accurate terrestrial gravity data are
used [5,7–9].

The geoid is a level surface with a constant gravity potential, and it coincides with the
mean sea level after removing the effects of sea surface topography over the oceans [10].
The determination of the geoid surface relies on a boundary value problem solution rep-
resented by the Stokes formula and adopts an assumption of no masses outside of the
geoid surface. In order to fulfill this condition, the topographical masses outside of the
geoid are mathematically excluded in geoid computation theory. The implementation of
the Stokes formula requires a global coverage of terrestrial gravity observations, but having
dense terrestrial gravity observations over the entire Earth is not practically possible. The
consequence of this data deficiency in the results is minimized by integrating locally avail-
able dense terrestrial gravity data and globally available satellite gravity observations in a
modified Stokes integral formula. A stochastic modification of the Stokes integral formula
is utilized in the least squares modification of Stokes integral with additive corrections
(LSMSA) approach developed by the Royal Institute of Technology in Sweden (or shortly
the KTH approach). This approach has been used in the determination of the regional
geoid models in many studies so far, and it has yield accurate results in these studies
(see [3,7,11–31]). In addition to the KTH method, there are also different gravimetric geoid
determination algorithms used for regional gravimetric geoid modeling in the literature
(see [32–37]).

In geoid model computations using the LSMSA method, the free air gravity anomalies
in the grid form on the surface of the topography are used. These free air anomalies are re-
stored from gridded Bouguer anomalies on the geoid. For gridding terrestrial gravity data,
observed gravity values (g) are transformed into gravity anomalies (∆g) and are reduced to
the reference surface “geoid” using the Bouguer reduction procedure. In the reduction of
gravity anomalies, the gravitational attraction effects caused by topographic masses above
the geoid are simply calculated and removed from gravity observations [38,39]. According
to implemented reduction components, either simple or complete (refined) Bouguer gravity
anomalies can be calculated and applied. In simple Bouguer reduction, the topography
is identified just as the Bouguer plate (or shell), and the masses described by this plate
above the geoid are removed. Even though the simple Bouguer anomalies (SBAs) do not
include the effects of residual topographical masses deviating from the plate, complete
Bouguer anomalies consider these excess terrain effects. Thus, the CBAs are acquired by
adding the terrain corrections (TC) to the simple Bouguer anomalies. Simple or complete
Bouguer gravity anomalies are preferred to be used for gravity data interpolation and
gridding due to their low-frequency characteristics with less dependency on topographic
variations [40,41]. Several studies have investigated whether SBAs may be utilized in
gravity data interpolation and gridding instead of CBAs. While free-air anomalies (FAAs)
are affected by the aliasing effect more than simple Bouguer anomalies, complete Bouguer
anomalies are smoother and less sensitive to the negative effects of aliasing than both
anomalies, in theory. According to Abbak et al. [38], Goos and Featherstone [42], and
Kuhn et al. [43], the use of CBAs is crucial when topography is rough due to extreme
elevation variations, but SBAs can also be used in smooth regions despite the omission of
the high-frequency effect of residual topographical masses. Carrying out data gridding
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using appropriate types of gravity anomalies is crucial for the geoid determination. Inap-
propriately gridded gravity dataset may lead to a loss of the gravity signal in the input
data and hence reduce the quality of the preformed regional geoid model. As stated above,
removing high-frequency information obtained via terrain corrections prior to the gridding
can solve the aliasing problem in the input gravity grid data. On another hand, densifying
the gravity observations can also minimize this error, but this option may not always be
possible, especially in rough topographies and restricted observational areas for. Digital
elevation model (DEM) data are used for calculating the gravitational effects of topographic
masses in Bouguer reduction process [2,41,44]. Also, the geoid computation using the
LSMSA method employs DEM for calculating the terrain and downward continuation
(DWC) corrections, which are restored onto the approximate geoid height parameter ob-
tained from a global geopotential model (GGM) as the low-frequency component of the
geoid [44].

This research is carried out using gravity observations in the Auvergne test area in
France. It aims to investigate the role of interpolation methods in gridding the terrestrial
gravity anomalies and their consequences on geoid model determination. Within the scope
of the study, firstly, we test and clarify the role of the used Bouguer gravity anomaly type in
the gridding process and hence its consequence on the geoid model determination. For this
purpose, we grid the simple (SBAs) and complete (CBAs) Bouguer anomalies, employing
the geostatistical Kriging interpolation algorithm, which is a commonly used technique in
gravity field determination studies. Since the LSMSA method uses free air anomalies on the
Earth’s surface, free air anomalies in grid form are obtained by applying the Bouguer plate
and terrain correction values to the gridded Bouguer anomalies [7]. The statistics obtained
from the areal comparison of the SBA and CBA grids at grid nodes and validations of the
geoid models in the study area are used to clarify the significance of the Bouguer anomaly
type in the data gridding process.

Secondly, the effects of the interpolation techniques used in gridding the CBAs on
geoid determination are investigated in this study. Four interpolation algorithms (Kriging,
inverse distance to a power (IDP), nearest neighbor, and artificial neural network (ANN)
methods) are employed. Here, it is worth emphasizing that this investigation does not
aim to find the best interpolator but rather to clarify the role of employing a different
interpolator in gravity gridding. Among these methods, ordinary Kriging is one of the
most common two methods (the other is the Least Squares Collocation method) used
in gravity field and geoid modeling studies. These methods are generally employed
in data interpolation modules of the geoid computation software suits as in the KTH-
Geolab software for precise geoid determination [18–20], as well as GRAVSOFT geodetic
gravity field modeling programs [28,35,36]. The IDP and nearest neighbor algorithms are
two widely used interpolation methods not only in the field of gravity research but also
in various application areas where spatial data interpolation is required. Both algorithms
dominate the local characteristics in the interpolation results via weighting the data or
limiting the interpolation boundaries. Additionally, the simplicity of their formulations
is an advantage for these two algorithms from a computational practicality point of view.
In addition to these three widely used interpolation methods, we also apply an artificial
neural network for gridding the complete Bouguer anomalies as the fourth method in this
study. The ANN is a learning-based soft computing algorithm, and due to this aspect, it is
quite different from the other three algorithms tested here. We included the ANN in this
study to verify the performance of a recent generation interpolation algorithm in gravity
gridding and to compare it with the widely used conventional techniques. Subsequently,
new geoid models are acquired using free air anomaly grid datasets. A comparison of the
calculated geoid models at the grid nodes provides the areal differences among the models.
The validation of the geoid models using the GPS/leveling benchmarks in the area reveals
an absolute accuracy value for the calculated geoid models.

The conclusions drawn from this investigation indicate that in regions with plain
topography, since the terrain correction parameters remain within certain limits, either
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simple or complete Bouguer gravity anomalies can be used in gravity gridding. However,
in rough terrain, the differences between simple and complete Bouguer anomalies are
considerable; therefore, complete Bouguer anomalies should be used. In gravity gridding,
the used interpolation algorithm affects both the magnitude and distribution pattern of
the gravity values at the grid nodes and influences the geoid model computations. Using
the conventional interpolation algorithms (Kriging, the IDP, and the nearest neighbor),
the gravity value at a grid node is estimated directly using the data at the observation
points, and the contribution of the data point is formulated in the algorithm. The Kriging
method also takes the stochastic properties of the observations, employing covariances
in its algorithm. Since they have similarities in their mathematical backgrounds, their
output grids have smaller differences in magnitude. Contrary to expectations, the ANN, a
learning-based soft computing method, does not provide superiority over the conventional
methods in this study. As a result of the tests, the grid datasets obtained using the Kriging,
IDP and nearest neighbor interpolation algorithms were found to be the most compatible.
As a result of the calculations, the accuracy of the geoid models computed in the region is
4.1 cm.

The methods used in the computations are introduced in Section 2, together with
explanatory visuals and formulas. Then, the data, study area, and numerical results are
provided in Section 3 under the title of “Case Study”. In Section 4, interpretations of the
results and conclusions are provided.

2. Materials and Methods

Basic definitions and formulas of gravity anomalies and terrain reductions are given
here within the context of gravimetric geoid computations. Then interpolation techniques,
which play an important part in the gridding procedure for Bouguer anomalies, are dis-
cussed. Thereafter, least squares modifications of Stokes formula with additive corrections
(LSMSA) method is expressed using detailed formulas.

2.1. Gravity Anomalies and Terrain Correction

The observed gravity values on the topography are not suitable for interpolation since
they contain high-frequency components of Earth’s gravitational field. Thus, randomly
distributed gravity data on topography has to be reduced to the geoid surface for the
purposes of geoid determination, interpolation, and extrapolation of gravity data and
geophysical exploration studies. The geoid can be computed using Stokes integral and
gravity anomalies on the geoid are its input data in computations. The geoid height
parameter (N) is the output in this computation [7,24,38,44,45]. In other words, surface
gravity anomalies have to be downward continued to the geoid surface using a suitable
reduction schema before the geoid computation. The difference between the gravity value
at a point on the geoid surface (gPo ) and the normal gravity at its corresponding point on
the ellipsoid (γQo ) is described as the gravity anomaly on the geoid (∆g); see Equation (1)
below [10,39,41]:

∆g = gPo − γQo (1)

The need for reductions in gravity anomalies to the geoid stems from the requirement
of regular grid usage of geoid computation algorithms such as the LSMSA method. There-
fore, pointwise gravity anomalies on the Earth’s surface are transformed into simple or
complete (refined) Bouguer anomalies that have smooth characteristics for interpolation
processes [11,13]. Although the interpolation process directly affects the accuracy of the
geoid computation, the choice of the optimum interpolation techniques plays an important
role [7,46].

In geodesy, Bouguer anomalies are important to use for gridding process and data
interpolation purpose [11,13]. These anomalies are also necessary because many geoid
modeling algorithms evaluate the gravity data in grid form. Additionally, Bouguer anoma-
lies are also used to explain geological structures in geophysics disciplines [43]. In Bouguer
reduction, the topography is represented as plate (or shell), and the gravitation of all the
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masses within this plate above the geoid are calculated and removed from the observed
gravity. Here, the thickness of the Bouguer plate is HP, and it is equal to the height of topo-
graphic point P [40,41]. An illustration of a Bouguer plate is given in Figure 1 below [10,47]:
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Simple Bouguer anomalies (∆gSB) can be computed as shown in Equation (2) [39,44]:

∆gSB = gPo − γQo + δgF − δgB
= gPo − γQo + 0.1967HP

(2)

where gPo is the observed gravity at point P having orthometric height HP, γQo is the
normal gravity value calculated at point Q on the ellipsoid surface, δgB is the Bouguer
plate reduction parameter, and δgF is the free air reduction parameter. The planar Bouguer
reduction parameter is given in Equation (3):

δgB = 2πGρHP (3)

where G is the gravitational constant (G = 6.672585 × 10−11 m3 kg−1 s−2) and ρ is the
topographical mass density. In the computations, the mass density is generally assumed
to be constant as ρ = 2670 kg m−3. Hence, after substituting the constants into the above
formula, it is rewritten as in Equation (4):

δgB = 0.1119HP (4)

in the equation, δgB is in mGal and HP is in meters. The free air correction that takes the
observed gravity in free air down to the geoid using the vertical gradient of the gravity
is formulated as in Equation (5) [5,41]. However, in the equation, there is an assumption
because the normal gradient of gravity (associated with the ellipsoidal height h) ∂γ/∂h is
used instead of ∂g/∂H. But, in Hofmann-Wellenhof and Moritz [5], it is confirmed that this
equation can be used, and it gives sufficient precision for many practical applications (see
p. 134 in [5]).

δgF = − ∂g
∂H

H ∼
= −∂γ

∂h
HP = 0.3086HP (5)

Complete Bouguer anomalies (∆gCB) are calculated by adding another correction
term named terrain correction (δgTC) to simple Bouguer anomalies, which removes the
gravitational effect of residual topographical masses deviating from the Bouguer plate (see
Figure 1), as formulated in Equation (6) [39,47]:

∆gCB = gPo − γQo + δgF − δgB + δgTC= ∆gFAA − δgB + δgTC (6)

In Equation (6), ∆gFAA is the free air anomalies and is expressed as in Equation (7):

∆gFAA = gPo − γQo + δgF (7)
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The summation of the Bouguer reduction (δgB) and terrain correction (δgTC) parame-
ters is called terrain reduction.

The normal gravity (γ0) computed on the reference ellipsoid is calculated using
Somigliana formula in Equation (8) [8,43]:

γ0 = γe
1 + ksin2φ√
1 − e2sin2φ

(8)

where φ is geocentric latitude, γe is the normal gravity at the equator (φ = 0), k is the
normal gravity constant, and the eccentricity e is formulated as e2 = 1 − b2

a2 , where a and
b are the semi-major and semi-minor axes of the reference ellipsoid, respectively. The
GRS80 (Geodetic Reference System 1980) ellipsoid parameters are used in this study for the
computation of normal gravity; see Table 1 for the parameters [48]:

Table 1. GRS80 (Geodetic Reference System 1980) reference ellipsoid parameters.

Constant Parameters Definitions GRS80

a Semi-major axis 6,378,137.0000 m
b Semi-minor axis 6,356,752.3141 m

γe Normal gravity at equator 9.7803267715 ms−2

γp Normal gravity at pole 9.8321863685 ms−2

GM Geocentric gravitational constant 3,986,005 × 108 m3 s−2

e2 First eccentricity 0.00669438002290
k ( bγp

aγe
− 1) 0.001931851353

f Flattening ( a−b
a ) 0.00335281068118

The formula of terrain correction (δgTC ) is given in Equation (9) [2,49]:

δgTC = G
x

σ0

z∫
HP

ρ(x, y, z)(z − HP)

ℓ3(xP − x, yP − y, z − HP)
dzdσ (9)

where HP is the topographic height at the computation point, z corresponds to the height
of the running point, σo is the integration area, and ρ is the density of the topographical
masses. The distance ℓ between the computation point and the running point can be
calculated as shown in Equation (10):

ℓ =

√
(xP − x)2 + (yP − y)2 + (HP − z)2 (10)

In this study, terrain corrections are computed using the TC module of the GRAVSOFT
geodetic gravity field computation software [50,51], and the geoid models are calculated us-
ing the ITU-LSMSA geoid computation software produced by Istanbul Technical University
Gravity Research Group (ITU-GRG).

We utilize the planar Bouguer reduction formulas in the tests since the computation
area has a reasonable size and planar approach, satisfying the objectives in this research.
However, instead of a planar approach, the gravitation of the topographic masses can also
be formulated in a spherical approximation using Bouguer reduction. The Bouguer shell
correction (δgs

B) in the spherical approach is formulated as shown in Equation (11):

δgs
B = 4πGρHP (11)

The terrain corrections in the spherical Bouguer reduction are calculated using global
topography data, which is a significant burden. Detailed formulation of the spherical
Bouguer reduction schema can be found in Kuhn et al. [43]. Comparative results of
planar and spherical approaches in the Bouguer reduction with discussions are given in
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Abbak et al. [38], Vanicek et al. [52,53], Erol et al. [54], Hackney and Featherstone [8], and
Tziavos and Sideris [41].

Digital elevation model (DEM) data is used in terrain reduction. The height infor-
mation used in the computation of the Bouguer plate correction and terrain correction
parameters are obtained from a high-resolution digital elevation model of the study area.
Hence, the resolution and accuracy of the used DEM data affect the accuracy of the gridding
process [40–42,55]. In addition, the DEM data are used in the computation of the downward
continuation effect in geoid modeling using the LSMSA method (see in Section 2.3) [44,56].
In this study, we use high-resolution global shuttle radar topography mission (SRTM)
digital elevation model data with 3 arc-second spatial resolution [57]. The SRTM DEM
data are freely available from U. S. Geological Survey [58]. The horizontal position of the
DEM grids is in the WGS84 datum, and its height data bases are on the EGM96 global
geoid surface. The vertical accuracy of the SRTM3 DEM data is reported as ~9 m over the
Earth [57,58]. This accuracy is confirmed with the local validation results from different
countries such as the Himalayan site of India [59], Croatia [60], and Turkey [61].

2.2. Interpolation Algorithms

As stated in the previous sections, Bouguer anomalies are employed in the gridding
process due to their smooth features, whereas free air anomalies have a higher correlation
with the topographical changes [39]. For the gridding process of simple or complete
Bouguer anomalies, interpolation algorithms including geostatistical Kriging, inverse
distance to a power (IDP—also called IDW), nearest neighbor, and artificial neural network
(ANNs) are carried out in this study [62,63]. Thus, the basic characteristics of these methods
are described here [64,65].

2.2.1. Nearest Neighbor

The nearest neighbor interpolation algorithm (also known as point-sampling in some
cases) is quite simple to implement and is commonly used in spatial data gridding problems.
Rather than calculating an average value based on some weighting criteria as in the IDP
method, this algorithm selects the value of the nearest point and does not consider the
values of the other neighboring points. In data gridding using the nearest neighbor method,
the nearest data point to the grid node to be estimated is searched for and used [66–68].

2.2.2. Inverse Distance to a Power (IDP)

This deterministic method is based on a weighted average of the observed values (data
points) considering the closeness. The observations closer to the points to be interpolated
have higher weights. This method is very fast and useful when the observed values are
distributed irregularly or sparse; however, the formation of bull’s eye can occur [63,69].
Modifying the smoothing parameter can resolve this problem. IDP can be formulated as
shown in Equations (12) and (13) [66,70]:

Ẑj =

n
∑

i=1
ZiPi

n
∑

i=1
Pi

(12)

Pi =
1

hk
ij

and hij =
√

dij
2 + δ2 (13)

where Ẑj is the interpolated data, Zi is the observed data, Pi is the weight of Zi, n is the
number of observations, dij is the distance between the interpolated and observed value,
hij is the effective separation distance between the interpolated point (j) and the observed
point (i), δ is the smoothing parameter, and k is the power parameter (k = 1, 2 or 3).

The power parameter controls how fast the weights decrease as they approach the
interpolated value. In other words, the influence of locations far from the estimation
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points during interpolation decreases with increasing weighting power. Usually, the power
parameters are chosen within a range of one to three [63,71]. In our study, the power
parameter is chosen as 2. The uncertainty factor can be applied to sample data using the
smooth option on the software. By increasing the smoothing parameter, the effects of
specific observations on gridding process can be decreased [66].

2.2.3. Kriging

This commonly used geostatistical gridding method, which can be exact or smooth, is
based on spatial variance as a distance-dependent function and is applicable to all kinds
of datasets. In contrast to IDP and nearest neighbor, Kriging has the slowest computation
speed and performs with a smoother display [66,71].

The observed point’s spatial continuity or roughness can be described using the
variogram. There are numerous variogram models on the Surfer that identify the spatial
relationship mathematically, such as exponential, Gaussian, linear, logarithmic, nugget
effect, power, quadratic, rational quadratic, spherical, wave, cubic, and penta-spherical.
The choice of the drift type identifies the discrimination of ordinary and universal Kriging.
If the drift type is chosen as linear or quadratic, the Kriging is termed universal. Otherwise,
no drift indicates an ordinary Kriging that presumes a constant unknown mean over the
specified area [66].

Another separation can be practiced as point and block Kriging that are applicable to
both ordinary and universal Kriging approaches. The points at the grid nodes are calculated
using point Kriging, whereas the averages of the blocks are computed using block Kriging
by using blocks that are centered on the nodes [65,66,72]. The basic equation of ordinary
Kriging is as follows [73,74]:

Ẑj =
n

∑
i=1

ZiPi (14)

where Pi is the weight, Zi is the observed data, and Ẑj is the interpolated data. In the
computations, we use ordinary Kriging with a linear variogram model. The Kriging type is
the point Kriging.

2.2.4. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a widely used soft computing algorithm that
was designed by imitating the human nervous system. The algorithm can be trained using
sample data and estimates the target value using network connections based on weights.

The algorithm can be used in many fields such as the automotive industry, banking,
amusement sector, aerospace, and so on. Moreover, it can also be used for the calculation
of geodetic deformations, prediction of sea level changes, and estimation of the orientation
parameters of Earth [75–80].

The algorithm runs with the “nnstart” command on MATLAB, and “nntool” is not
available for versions later than R2022a [81]. There are various ANN techniques built
into the MATLAB software such as radial basis, generalized regression, NARX, hopfield,
feed-forward backpropagation, Elman backpropagation, etc. [75,82,83]. Here, the feed-
forward backpropagation technique is used with the “trainlm” function, which specifies
the Levenberg–Marquardt approach. Additionally, the “tansig” transfer function and
“learngdm” adaption learning function with 2 layers and 200 neurons are chosen to special-
ize the method (see Figure 2). In contrast to the Levenberg–Marquardt approach, which
is fast but requires a high memory capacity, there are also two other common methods
named Bayesian regularization (trainbr) and scaled conjugate gradient (trainscg). See
Demuth et al. [75] for further information.

The network geometry of feed-forward backpropagation consists of neurons within
parallel layers that are classed as input, hidden, and output layers. The data are presented to
the network via the input layer, whereas the desired output values to be obtained are stored
in the output layer. The hidden layer is where all the calculations are performed [77,84].
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Figure 2. Architecture of the artificial neural network algorithm in MATLAB (w: weights, b: bias).

In this study, the ANN tool is applied to pointwise complete Bouguer anomalies to
obtain gridded data to generate free air anomalies, which are the main component of the
gravimetric geoid computation. Using 244,009 pointwise complete Bouguer anomalies
(CBAs), the training process is performed on 15% test and 15% validation points. Then,
the CBAs on 173,641 grid nodes are estimated by simulating the trained network. The
illustrations that reflect the regression and performance of the training based on Levenberg–
Marquardt method are given in Figure 3 (Network: 200, max fail: 6, epoch: 300).
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2.3. Gravimetric Geoid Determination Using the LSMSA Method

The geoid undulation can be computed based on the gravity anomaly using the Stokes
formula [2,10,13]:

N =
R

4πγ

x

σ

S(Ψ)∆gdσ (15)

where S(Ψ) is the Stokes function, Ψ is the geocentric angle, ∆g is the gravity anomaly, dσ is
the infinitesimal surface element of the unit sphere, R is the mean Earth radius, and γ is the
normal gravity on the reference ellipsoid. The aforementioned equation requires gravity
information on the entire globe that is not practically possible. Therefore, the method needs
to be used in a limited region by neglecting gravity data in remote zones [7,13,22]. This
limitation causes a truncation error, and a stochastic solution called the modified Stokes
formula with additive corrections (LSMSA) is applied to overcome the truncation problem.
The least squares modification of Stokes integral with additive corrections (LSMSA) method
(also called the KTH method) was developed by the Royal Institute of Technology (KTH)
in Sweden. In this method, the predicted global mean square error of the formula is
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minimized using the least squares concept with the contributions of GGM and terrestrial
gravity data (see equation below) [13–20,23,85]:

N̂ =
∼
N + δNtop

com + δNDWC + δNatm
com + δNell (16)

where N̂ is the geoid undulation and
∼
N is the approximate geoid height. In the equation,

δNtop
com is the combined topographic correction, δNDWC is the downward continuation effect,

δNatm
com is the combined atmospheric correction, and δNell is the ellipsoidal correction. All

together, these correction parameters are called additive corrections. Further information
regarding their formulations can be found in references [13,14,86–88]. The approximate

geoid height
∼
N can be computed as follows:

∼
N =

R
4πγ

x

σ0

SL(Ψ)∆gdσ +
R
2γ

M

∑
n=2

bn∆gn (17)

where SL(Ψ) is the modified Stokes function, L is the maximum degree of modified har-
monics (GGM expansion degree), M is the upper limit of the GGM, σ0 is the spherical cap,
bn is a modification parameter, and ∆gn is the gravity anomaly obtained from the GGM.
For the computation of SL(Ψ), the following formula can be used:

SL(Ψ) =
∞

∑
n=2

2n + 1
n − 1

Pn(cosΨ)−
L

∑
n=2

2n + 1
2

snPn(cosΨ) (18)

where Pn(cosΨ) is a Legendre polynomial and sn is the stochastic modification parameter.
According to Abbak et al. [22], Abbak and Ustun [11], and Sjöberg [14], the bn parameter
can be formulized in three ways: biased (bn = sn), unbiased (bn = sn + QL

n), and optimum

(bn =
(sn+QL

n)cn
(cn+dcn)

). In this above formula, dcn is the error degree variance, QL
n is truncation

coefficient, and cn is signal degree variance [13].
The LSMSA method described so far is applied in our study area using ITU-LSMSA

software. The choice of the optimum parameters for the computation of the geoid models
using the LSMSA method is crucial. These parameters are integration cap size (Ψ0), the
global geopotential model expansion degree (M), and the upper bound of the Stokes func-
tion (L) [1,7,89]. The lack of gravity data can be resolved using high-degree GGMs; however,
this increases the harmonic coefficient errors in the resultant geoid height parameter. There-
fore, special attention should be paid to select an optimal expansion degree of GGM [11,13].
Here, the optimum integration radii (Ψ0), expansion degree of GGM (M), error variance
(C), and biased/unbiased/optimum bn parameter choices are investigated for the study
area. The decision regarding the optimal computation parameters in geoid modeling is
based on a trial-and-error based test procedure. Therefore, all the geoid models computed
with varying parameters are compared with each other. As a GGM, which is the demon-
stration of Earth’s gravitational field using spherical harmonic coefficients, XGM2019e is
preferred [8]. The XGM2019e model coefficients are freely available from ICGEM [90], and
an application using the XGM2019e model can be found in Tocho et al. [91]. The XGM2019e
global geopotential model is up to degree and order 2190. Zingerle et al. [92] provides a
comparison of the XGM2019e with its high-resolution counterparts: the EIGEN-6C4 and
EGM2008 models [93].

3. Case Study

In this section, firstly, we introduce the study area and test data. Then, the results of
the numerical studies are presented. In the numerical test results section, firstly, the effects
of simple and complete Bouguer anomalies on the geoid computation are investigated. The
optimum parameters used in the LSMSA gravimetric geoid calculation are determined
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afterwards. As the last topic of this section, the influences of interpolation methods on the
geoid determination when gridding complete Bouguer anomalies are analyzed.

3.1. Study Area and Data

The Auvergne test region covers a 6◦ × 8◦ area. The dense and high-accuracy grav-
ity observations measured in Auvergne are shared as the test dataset for gravity field
modeling studies by the Institut Geographique National (IGN) in Bureau Gravimetrique
International (BGI) database. These data are freely available to researchers in order to test
geoid computation techniques. In the dataset, there are 244,009 gravity points within the
coordinates in latitudes of 43◦ N–49◦ N and longitudes of 1◦ W–7◦ E. The approximate
spatial density of the gravity observations corresponds to 1 point in every 1.3 km. This
approximate distance between the gravity observations in the area is considered when
determining the grid spatial resolution during the data gridding process. The accuracy of
the gravity data is reported as ~2 mGal [94].

In addition to the gravity observations in the Auvergne test area, 75 GPS/leveling
points are also available for validations of the calculated geoid models. However, the
GPS/leveling points are distributed in a limited area in the center of Auvergne, and these
control benchmarks cover the area between the coordinates in latitudes 45◦ N–47◦ N, and
longitudes 1.5◦ E–4.5◦ E. Their orthometric heights in the National Leveling Network
(NGF-IGN69) datum and ellipsoidal heights in the ITRF datum are provided with a ~2 cm
accuracy in the dataset. The topographical heights of the GPS/leveling benchmarks change
from 206.8 m to 1235.5 m [28,46,95]. Figure 4a shows the topography of the Auvergne
test area and the distribution of the 75 GPS/leveling benchmarks in the area [57,96]. The
distribution of gravity points in the area is shown in Figure 4b [96].
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Figure 5 shows the steps that were followed in the numerical tests in this study.

3.2. Simple and Complete Bouguer Anomalies in Gravity Gridding

In the first part of the numerical tests, the role of the Bouguer anomaly type in gravity
gridding is investigated. Both simple and complete Bouguer anomaly datasets in the grid
form are also examined in the geoid determination in the test area, and the differences
between the gridded gravity datasets and calculated geoid models using them are compared
and interpreted using the derived statistics and maps.
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Complete Bouguer anomalies (CBAs) are computed by adding the terrain correction
to the simple Bouguer anomalies (SBAs) according to Equation (6). For the computation
of terrain corrections (TCs) using Fortran-based GRAVSOFT geodetic gravity field com-
putation software, 3′′ and 30′′ resolution SRTM DEMs are used, and the adopted inner
and outer radii of integration are r1 = 40 km and r2 = 100 km, respectively. The most
time-consuming part in obtaining the CBAs is terrain correction computations, which take
8 h using a Razer Blade 14 Laptop that has Intel (R) Core™ i7-6700HQ 2.60 GHz Processor,
16 GB RAM, and a 64-bit Windows 10 operating system. In order to acquire the gridded
free air anomalies (FAAs) for the geoid computation, terrain corrections are estimated once
again on the grid nodes using the same computation parameters for the Bouguer reduction
process (∆gGRID

FAA = ∆gGRID
CBA + δgGRID

B − δgGRID
TC ). Figure 6a maps the terrain corrections at

the gravity points that are used for computing the CBAs before gridding the data. Then,
the calculated CBAs are gridded with a 1 arc-minute spatial resolution. When deciding the
spatial resolution of the grid, the density of the original gravity observations is considered.
This is because, in the original dataset, the gravity points given every 1.3 km correspond to
a distance of approximately 1 arc minute. After gridding the CBAs, the free air anomalies in
grid form are calculated. In order to restore the free air anomalies from the CBAs, the terrain
corrections are calculated for the grid nodes. Figure 6b shows the grid terrain corrections
with a 1 arc-minute resolution. Table 2 gives the statistics of the terrain corrections both at
the gravity points (Point TC) and at the grid nodes (Grid TC) as well as the change in the
topographic heights in the area based on the SRTM 3 DEM data.



Geosciences 2024, 14, 85 13 of 30

Geosciences 2024, 14, x FOR PEER REVIEW 13 of 31 
 

 

corrections both at the gravity points (Point TC) and at the grid nodes (Grid TC) as well 
as the change in the topographic heights in the area based on the SRTM 3 DEM data. 

  
(a) (b) 

Figure 6. Terrain corrections at gravity points used for computing the complete Bouguer anomalies 
before gridding the gravity data (a) and terrain corrections at grid nodes having 1 arcminute grid 
spacing used to restore free air anomalies from the complete Bouguer anomalies (b). 

Table 2. Statistics of terrain corrections at the gravity points (point TC) and at the grid nodes (grid 
TC), and the topographic heights in the area based on the SRTM 3″ DEM data. 

 Max Min Mean Median Std RMSE 
Point TC (mGal) 56.533 −0.317 1.043 0.476 2.153 2.392 
Grid TC (mGal) 118.221 −0.327 1.718 0.371 4.086 4.432 

3″ DEM (m) 4745.649 −33.506 378.900 230.454 433.149 575.485 

Considering the statistics given in Table 2, the topographic heights reach ~4750 m 
from sea level. The terrain corrections in the area vary between −0.317 mGal and 56.533 
mGal at the pointwise data. When the TC values are calculated for the grid nodes, they 
are between −0.327 mGal and 118.221 mGal, with a 4.086 mGal standard deviation. In the 
table, the root mean square error (RMSE) values are also given (RMSE = 𝜇 + 𝜎 , where 𝜇: mean, and 𝜎: standard deviation). 

Figure 7a,b show the maps of the SBAs and CBAs that are calculated at the gravity 
observation points and then gridded using the Kriging interpolation algorithm with 1 arc-
minute spacing. 

  
(a) (b) 

Figure 7. Simple Bouguer anomalies (SBAs) calculated at gravity points and interpolated at 1 arc-
minute spacing grid nodes using Kriging (a). Complete Bouguer anomalies (CBAs) calculated at 
gravity points and interpolated at 1 arc minute spacing grid nodes using Kriging (b) (unit: mGal). 

Figure 6. Terrain corrections at gravity points used for computing the complete Bouguer anomalies
before gridding the gravity data (a) and terrain corrections at grid nodes having 1 arcminute grid
spacing used to restore free air anomalies from the complete Bouguer anomalies (b).

Table 2. Statistics of terrain corrections at the gravity points (point TC) and at the grid nodes (grid
TC), and the topographic heights in the area based on the SRTM 3′′ DEM data.

Max Min Mean Median Std RMSE

Point TC (mGal) 56.533 −0.317 1.043 0.476 2.153 2.392
Grid TC (mGal) 118.221 −0.327 1.718 0.371 4.086 4.432

3′′ DEM (m) 4745.649 −33.506 378.900 230.454 433.149 575.485

Considering the statistics given in Table 2, the topographic heights reach ~4750 m from
sea level. The terrain corrections in the area vary between −0.317 mGal and 56.533 mGal at
the pointwise data. When the TC values are calculated for the grid nodes, they are between
−0.327 mGal and 118.221 mGal, with a 4.086 mGal standard deviation. In the table, the
root mean square error (RMSE) values are also given (RMSE =

√
µ2 + σ2, where µ: mean,

and σ: standard deviation).
Figure 7a,b show the maps of the SBAs and CBAs that are calculated at the gravity

observation points and then gridded using the Kriging interpolation algorithm with 1 arc-
minute spacing.
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Figure 7. Simple Bouguer anomalies (SBAs) calculated at gravity points and interpolated at 1 arc-
minute spacing grid nodes using Kriging (a). Complete Bouguer anomalies (CBAs) calculated at
gravity points and interpolated at 1 arc minute spacing grid nodes using Kriging (b) (unit: mGal).

The difference map of the SBA and CBA values is also given in Figure 8, corresponding
to the terrain corrections between the CBA and SBA values as given in Equation (6). The



Geosciences 2024, 14, 85 14 of 30

surface pattern of the difference map is naturally similar to the given terrain correction
maps in Figure 6.
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Table 3 gives the statistics of the SBA, CBA, and their differences. Considering the table,
it is seen that the SBAs change between −204.830 mGal and 56.373 mGal with a 31.640 mGal
standard deviation, whereas the CBAs are between −172.656 mGal and 57.271 mGal
with a 27.905 mGal standard deviation. Their differences are between −0.439 mGal and
55.590 mGal, with a 4.879 mGal standard deviation. These statistics are consistent with the
terrain correction statistics at the points given in Table 2.

Table 3. Statistics of the SBAs and CBAs calculated at gravity points and interpolated at 1 arc-minute
spacing grid nodes using the Kriging method, and their differences.

Unit: mGal Max Min Mean Median Std RMSE

SBA 56.373 −204.830 −34.170 −28.652 31.640 46.569
CBA 57.271 −172.656 −32.238 −28.097 27.905 42.638

Difference 55.590 −0.439 1.932 0.396 4.879 5.247

According to these comparison statistics, a significant difference between the SBAs and
CBAs is found. On the other hand, when the difference map is considered, the differences
between the SBAs and CBAs are clear at the mountainous part of the test area. However, in
plain topography, their differences seem to be ignorable. This result arises from the fact that
the terrain correction parameter increases significantly with topographic heights. Obtaining
the difference between the calculated terrain corrections at the grid nodes and the derived
terrain corrections by subtracting the interpolated SBAs from the CBAs emphasizes the
role of the interpolation process in gravity field mapping. In the following step, we inspect
whether the choice of Bouguer anomaly type affects the geoid modeling or not. Thus, we
calculate the free air anomalies from the gridded SBA values and gridded CBA values,
respectively. The free air anomaly datasets in grid form are used as inputs in the geoid
model computations using the LSMSA approach.

Figure 9a,b show the free air anomalies in the grids calculated from the SBA map (in
Figure 7a) and CBA map (in Figure 7b), respectively. In Figure 10, a difference map of these
two free air anomaly grids is given. The descriptive statistics of these grid free air anomaly
datasets and their differences are given in Table 4. The table shows that the difference
between two free air anomaly grids is 37.167 mGal and −86.721 mGal extremums. Figure 10
shows the locations where these extreme differences occur between the two grid datasets.
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Table 4. FAA gridding statistics of simple and complete Bouguer anomalies.

Unit: mGal Max Min Mean Median Std RMSE

FAA (via SBAs) 345.683 −126.313 8.245 1.888 29.463 30.595
FAA (via CBAs) 258.962 −129.942 8.458 1.948 29.867 31.042

Difference 37.167 −86.721 0.213 0.016 2.103 2.114

Thereafter, two different gravimetric geoid models are computed using these free air
anomaly grids. In the geoid model computations using the LSMSA method, the adopted
computation parameters are as follows: the spherical harmonic expansion degree of the
geopotential model is M = 780, the error variance value is C = 4 mGal2, the type of modifi-
cation is used as bn = biased, and the radius of integration is Ψ0 = 0.25◦. In the following
text, a section (Section 3.3) explaining the selection process of the optimum parameters for
the LSMSA geoid model computation method is given. Figure 11a,b shows the geoid maps,
which are calculated using the free air anomalies derived from the SBA’s grid and CBA’s
grid, respectively. The geoid models are calculated in 1 arc-minute spacing grid form. In
Figure 12, the map shows the differences between these two geoid models. As seen from
the difference maps given in Figures 10 and 12, the geoid height differences exhibit a similar
distribution pattern to the free air anomaly differences, and the differences increase with
topographical heights. Table 5 gives the statistics of the calculated geoid models as well
as the statistics of their differences. In the first two lines of the table, the statistics of the
two models seem to be similar, having the same mean and standard deviation. Although
in this view, the difference statistics show that the two models actually differ from each
other with −19.5 cm and 27.3 cm minimum and maximum values, respectively.
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Table 5. Statistics of geoid models calculated using free air anomalies derived from the SBAs and
CBAs grid data.

Unit: m Max Min Mean Median Std RMSE

SBA based GEOID 55.743 45.268 49.616 49.567 2.021 49.657
CBA based GEOID 55.470 45.267 49.616 49.567 2.021 49.657

Difference 0.273 −0.195 0.000 0.000 0.008 0.008

In addition to the comparison of the two geoid models, they are also individually
validated at GPS/leveling benchmarks in the area. The validation of the geoids relies on
Equation (19):

∆N = NGPS/Lev − NGeoid (19)

In the equation, the geoid height (NGPS/Lev) obtained from GPS-height (h) and or-
thometric height (H) at a benchmark (NGPS/Lev = h − H) is compared with the geoid
height derived from the geoid model (NGeoid). In the validations, the NGeoid parameter
is interpolated from the geoid model using the inverse distance to a power algorithm.
Table 6 gives the validation statistics of the geoid models. According to these statistics,
both models have the same absolute accuracy based on the standard deviation of the geoid
height differences at the benchmarks, and this accuracy is 4.1 cm. The difference between
the two geoid models is not visible in the GPS/leveling validation results. This is natural
because the GPS/leveling control benchmarks are distributed in a limited area in the region
and this area does not represent the topographical changes. Because of this disadvantage
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of the independent validation dataset, the differences between the two geoid models at the
high topographical parts do not affect the validation statistics.

Table 6. Validation statistics of performed geoid via SBA and CBA grids.

Unit: m Max Min Mean Median Std RMSE

∆N SBA 1.161 0.973 1.059 1.064 0.041 1.060
∆N CBA 1.162 0.972 1.059 1.064 0.041 1.060

3.3. Optimum Parameters for the LSMSA Geoid Calculation Method

The geoid model computation results using the LSMSA method depend on the used
computation parameters and determining the optimum parameter set, which gives the
most accurate geoid model bases on a trial-and-error procedure. In this study, in order
to determine the optimum computation parameters, we run the trial-and-error process
using free air anomaly grids derived from the complete Bouguer anomalies using the
Kriging interpolation approach. Each trial is made using a different parameter set, and the
computed geoid model is validated at the GPS/leveling benchmarks. The comparison of
the absolute accuracies of the solutions eventually leads to a determination of the optimum
parameter set.

At first, the geoid models are calculated using varying harmonic expansion degrees
of geopotential model (M) from 180◦ to 780◦ and changing the cap size for the assigned
values of Ψ0 = 0.10◦, 0.25◦, 0.50◦, 0.75◦, and 1.00◦, respectively. In this first attempt, the
error variance (C = 4 mGal2) and bn parameters (bn = optimum) are keept unchanged. The
validation results of the calculated geoid models are given in Table 7.

Table 7. Standard deviations of the geoid heights differences from the validations of geoid models
calculated using varying M and Ψ0 computation parameters.

Unit: m M = 180 M = 240 M = 300 M = 360 M = 420 M = 480 M = 540 M = 600 M = 660 M = 720 M = 780

Ψ = 0.10◦ 0.261 0.109 0.096 0.083 0.078 0.076 0.076 0.076 0.076 0.076 0.075
Ψ = 0.25◦ 0.174 0.146 0.142 0.139 0.131 0.112 0.102 0.085 0.072 0.067 0.065
Ψ = 0.50◦ 0.183 0.188 0.134 0.100 0.092 0.091 0.091 0.091 0.087 0.082 0.079
Ψ = 0.75◦ 0.197 0.142 0.117 0.107 0.121 0.115 0.110 0.106 0.109 0.111 0.112
Ψ = 1.00◦ 0.197 0.158 0.153 0.172 0.175 0.166 0.167 0.183 0.188 0.195 0.192

The test results given in Table 7 reveal the optimum values for a harmonic expansion
degree of M = 780 and a cap size (integration radius) of Ψ0 = 0.25◦. With these two pa-
rameters and bn = optimum acceptance, the most appropriate error variance (C) value is
inspected. The inspection results, reported as the means and standard deviations of the
geoid height differences at the GPS/leveling points, are given in Table 8.

Table 8. Standard deviations of the geoid heights differences based on the validations of the geoid
models calculated with varying error variance C parameters.

Unit: m Max Min Mean Std RMSE

C = 1 mGal2 1.113 0.803 0.987 0.065 0.989
C = 4 mGal2 1.113 0.802 0.987 0.065 0.989
C = 9 mGal2 1.113 0.801 0.986 0.066 0.989
C = 16 mGal2 1.113 0.801 0.986 0.066 0.988

The validation statistics show that the effects of the error variance parameter on the
geoid model accuracy are not as significant as the previous two parameters. Since all the
solutions have similar performances, the error variance C = 4 mGal2 is chosen as suitable
based on the reported accuracy of the terrestrial gravity data.

Finally, the modification type (bn) as biased, unbiased, or optimum is decided. Table 9
gives the validation results of the calculated geoid models. In the obtained results, the
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biased solution is selected for use. Thus, in the following tests, to clarify the role of the
interpolation algorithm in gravity data gridding, geoid computations are carried out using
computation parameters including a harmonic expansion degree of M = 780, a cap size of
Ψ0 = 0.25◦, an error variance C = 4 mGal2, and a biased solution.

Table 9. Standard deviations of the geoid heights differences from the validations of geoid models
calculated for different modification choices (bn).

Unit: m Max Min Mean Std RMSE

biased 1.162 0.972 1.059 0.041 1.060
unbiased 1.113 0.815 0.991 0.063 0.993
optimum 1.113 0.802 0.987 0.065 0.989

3.4. Effect of Gravity Data Interpolation Method in Geoid Model Computation

The last part of the numerical tests in this study aims to explain the role of the
interpolation algorithm in gravity gridding for preparing the Bouguer gravity anomaly
maps and input gravity grid for geoid model computations. Based on previous tests, we
agreed on the type of Bouguer gravity anomalies to use in this section. Based on the
obtained results in Section 3.2, we use complete Bouguer gravity anomalies in this section,
since the test area has a miscellaneous topographical pattern, and in the mountainous
part, the differences between the SBAs and CBAs are significant. Figure 13a shows the
complete Bouguer gravity anomalies at the gravity points reduced to the geoid surface.
This map shows the CBAs before gridding with any interpolation algorithm. In the tests,
these data are gridded with 1 arc-minute spacing (corresponding to the approximate
spatial density of the gravity observations on the topography) using the ordinary Kriging,
inverse distance to a power (IDP), nearest neighbor, and artificial neural network (ANN)
algorithms. Among these methods, Kriging is a commonly used method in gravity field
and geoid determination and is provided to users as an integrated computation module
of the geoid model computation software. The gravity field and geoid modeling are
based on measurements, and errors are unavoidable in the content of these measurements.
These errors need to be minimized in the modeling process by employing an appropriate
stochastic strategy. Kriging predicts the value of a function at a given point by computing
the weighted average of the data in the neighborhood of a given point. However, the
Kriging algorithm makes use of the Gauss–Markov theorem to consider the estimated
value and its error independently and to provide a best linear unbiased estimator at an
unsampled location (interpolation point) based on the adopted assumption of covariances.
This advantage of the Kriging algorithm makes it a commonly used method in gravity field
prediction studies.

The inverse distance to a power and nearest neighbor algorithms are also the most
widely used approaches in spatial data-based applications because they are practical and
fast algorithms that provide an adequate accuracy for most cases. In terms of formulation,
these two methods are similar, but IDP is an advanced version of the nearest neighbor
method. IDP allows for the inclusion of more observations than only the nearest observation.
The value at the grid node is calculated from a linear combination of the neighboring
stations. The weight of each data point is determined by the distance, which may not be
linear depending on the assigned power.

The artificial neural network (ANN) algorithm is the last method that is tested in
this section. This algorithm is based on a mathematical architecture and adopts a “feed
forward–back propagation” optimization-based processing strategy. Due to these aspects,
it is quite different from the first three methods tested here. The mathematical base of this
method makes it more complicated and includes a number of computational parameters
that must be determined in order to obtain optimal results. In the ANN interpolation in this
study, we use the Levenberg–Marquardt training method since it is highly recommended in
the neural network literature. We utilize trial-and-error tests in order to decide the optimal



Geosciences 2024, 14, 85 19 of 30

numbers of neurons and iterations for training. In the result, 200 neurons and 300 iterations
are found to be optimal in these computations.
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ods seem to generate similar grids, and there are no significant differences among the 
grids. However, to verify whether the generated grids are really identical, we calculated 
the differences in the IDP, nearest neighbor, and ANN grids from the Kriging grid, which 
is assumed as the control dataset. Since Kriging is a widely used algorithm in gravity field 
calculation studies, we assign this algorithm as the control method. 

Figure 13. Complete Bouguer gravity anomalies at gravity points reduced to the geoid surface (before
gridding) (a). Map drawn with a 1 arc-minute resolution CBA grid calculated using the Kriging
interpolation algorithm (b).

Figure 13b shows the map drawn using the 1 arc-minute resolution CBA grid calcu-
lated using the Kriging interpolation algorithm.

Figure 14a–c shows the Bouguer gravity anomaly maps, which are drawn using the
CBA grid data calculated using inverse distance to a power, nearest neighbor, and artificial
neural network interpolation algorithms, respectively.

Geosciences 2024, 14, x FOR PEER REVIEW 20 of 31 
 

 

  
(a) (b) 

(c) 

Figure 14. Bouguer gravity anomaly maps drawn using 1 arc-minute resolution CBA grids calcu-
lated using: inverse distance to a power (a), nearest neighbor (b), and artificial neural network (c). 

Table 10. Grid statistics belonging to the complete Bouguer anomalies (CBAs) based on the used 
interpolation algorithms. 

Unit: mGal Max Min Mean Median Std RMSE 
Kriging 57.282 −172.616 −32.234 −28.095 27.901 42.632 

IDP 55.503 −172.575 −32.310 −28.028 27.676 42.543 
Nearest Neighbor 56.650 −173.173 −32.290 −28.087 27.866 42.652 

ANN 55.196 −159.404 −32.538 −27.853 27.779 42.783 

Figure 15a–c show the differences in the Kriging grid from the IDP, nearest neighbor 
and, ANN grids, respectively. When the grid difference maps are considered, it is seen 
that although the basic statistics are close, the generated grids with each algorithm repre-
sent different surface patterns. Additionally, the distribution of the grid differences be-
tween the datasets varies. Regarding this situation, the Kriging grid and nearest neighbor 
grid have the maximum consistency, both dataset fit better in the plain topography, and 
their differences increase as the topography rises. In Figure 15a, the grid differences be-
tween the Kriging and the IDP methods exhibit a seemingly homogeneous distribution 
over the area. The magnitude of their differences increases throughout the mountainous 
part of the area. In Figure 15c, the grid differences between the Kriging and the ANN 
methods represent a wavy pattern and an almost homogeneous distribution over the en-
tire area. Based on this map, we do not recognize any correlation between the distribution 
of grid differences and the topography. Regarding the distribution pattern of grid differ-
ences in this map, we can say that the Kriging grid has a minimum consistency with the 
ANN grid among the datasets. Table 11 gives the statistics of the grid differences. Accord-
ing to these statistics, the Kriging grid fits the IDP and nearest neighbor grids with 1.3 

Figure 14. Bouguer gravity anomaly maps drawn using 1 arc-minute resolution CBA grids calculated
using: inverse distance to a power (a), nearest neighbor (b), and artificial neural network (c).



Geosciences 2024, 14, 85 20 of 30

Table 10 gives the statistics of the CBAs grid datasets calculated using each interpola-
tion algorithm. In terms of the basic statistics given in the table, the interpolation methods
seem to generate similar grids, and there are no significant differences among the grids.
However, to verify whether the generated grids are really identical, we calculated the
differences in the IDP, nearest neighbor, and ANN grids from the Kriging grid, which is
assumed as the control dataset. Since Kriging is a widely used algorithm in gravity field
calculation studies, we assign this algorithm as the control method.

Table 10. Grid statistics belonging to the complete Bouguer anomalies (CBAs) based on the used
interpolation algorithms.

Unit: mGal Max Min Mean Median Std RMSE

Kriging 57.282 −172.616 −32.234 −28.095 27.901 42.632
IDP 55.503 −172.575 −32.310 −28.028 27.676 42.543

Nearest Neighbor 56.650 −173.173 −32.290 −28.087 27.866 42.652
ANN 55.196 −159.404 −32.538 −27.853 27.779 42.783

Figure 15a–c show the differences in the Kriging grid from the IDP, nearest neighbor
and, ANN grids, respectively. When the grid difference maps are considered, it is seen that
although the basic statistics are close, the generated grids with each algorithm represent
different surface patterns. Additionally, the distribution of the grid differences between
the datasets varies. Regarding this situation, the Kriging grid and nearest neighbor grid
have the maximum consistency, both dataset fit better in the plain topography, and their
differences increase as the topography rises. In Figure 15a, the grid differences between
the Kriging and the IDP methods exhibit a seemingly homogeneous distribution over the
area. The magnitude of their differences increases throughout the mountainous part of
the area. In Figure 15c, the grid differences between the Kriging and the ANN methods
represent a wavy pattern and an almost homogeneous distribution over the entire area.
Based on this map, we do not recognize any correlation between the distribution of grid
differences and the topography. Regarding the distribution pattern of grid differences in
this map, we can say that the Kriging grid has a minimum consistency with the ANN
grid among the datasets. Table 11 gives the statistics of the grid differences. According
to these statistics, the Kriging grid fits the IDP and nearest neighbor grids with 1.3 mGal
and 1.6 mGal standard deviations, and regarding the mean values of grid differences, there
is no significant offset between these datasets. However, when the grid differences in
Kriging and the ANN are considered, these two datasets deviate from each other, with a
5.3 mGal standard deviation and a 0.3 mGal offset between them. Therefore, these statistics
confirm the visual interpretation of the grid difference maps. In each comparison, the
grid difference maps exhibit a large difference localized in the southeast corner of the map
sheets. The reason for this local discrepancy may be the low performance of the Kriging
algorithm in that local area. That part corresponds to a coastline and lack of data at the
sea part (southeast of the Auvergne test area), which may not be handled properly by the
Kriging algorithm.

Table 11. Statistics of CBA grid differences between the Kriging grid compared to the IDP grid,
nearest neighbor grid, and the ANN grid.

Unit: mGal Max Min Mean Median Std RMSE

KRIGING vs.
IDP 13.646 −26.880 0.076 0.009 1.314 1.316

Nearest Neighbor 45.066 −34.711 0.056 0.006 1.618 1.619
ANN 100.999 −37.245 0.304 0.082 5.310 5.318

In the following tests, we analyze the consequences of the differences between the
CBA grids on the geoid model determination using the LSMSA method. In order to carry
out the geoid model computations with free air anomaly grids on the Earth’s surface, we
continue the CBA grids upward based on Equations (6) and (7). In the result, the free air
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anomaly grids, which are respectively obtained from the Kriging, IDP, nearest neighbor,
the ANN complete Bouguer anomaly grids, are given in Figures 16b and 17a–c. In order
to provide a comparison, the free air anomaly values at the gravity points (without any
gridding) are also provided in Figure 16a. Table 12 provides the statistics of the free air
anomaly grid datasets.
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Table 12. Statistics of free air anomaly grids obtained from Kriging, the IDP, nearest neighbor and the
ANN CBAs grids, respectively.

Unit: mGal Max Min Mean Std RMSE

Kriging 258.962 −129.942 8.458 29.867 31.042
IDP 266.128 −128.788 8.382 29.822 30.978

Nearest Neighbor 266.037 −132.073 8.402 29.884 31.042
ANN 256.155 −128.766 8.154 30.018 31.106

In order to investigate the relationships between the free air anomaly grid datasets in
further detail, their differences are calculated. To keep the inspection and interpretation
part concise, again, one dataset (Kriging-based grid dataset) is assumed as the control data,
and the grid differences between it and the other sets are generated. Figure 18 shows the
free air anomaly grid difference maps. As a result of a careful inspection of the maps, the
similarities between these maps and their corresponding CBA grid difference maps in
Figure 15 are recognized. The statistics of the free air anomaly differences between the grid
datasets are given in Table 13. Also, these statistics are identical to the statistics given in
Table 11. This conclusion is explained by Equation (6). While calculating the free air grid
differences between the two datasets, the restored Bouguer reduction (δgB) and terrain
correction (δgTC) parameters that are considered when calculating the free air anomalies
according to Equation (6) are canceled because of the subtraction operation. Thus, the free
air anomaly difference becomes equal to the complete gravity anomaly difference at a grid
node in this comparison. Due to this result, we conclude that although the interpolation
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process is applied to the CBAs in gridding, it affects the free air anomaly grids as well.
Thus, we expect to see the consequences of differences in free air anomaly grids on the
geoid model determination results.
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Table 13. Statistics of free air anomaly differences between the Kriging-based grid and the IDP-based
grid, nearest neighbor-based grid, and the ANN based-grid, respectively.

Unit: mGal Max Min Mean Median Std RMSE

KRIGING vs.
IDP 13.646 −26.880 0.076 0.009 1.314 1.316

Nearest neighbor 45.066 −34.711 0.056 0.006 1.618 1.619
ANN 100.999 −37.245 0.304 0.082 5.310 5.318

In the final step of the numerical tests, we calculate four geoid models using the free
air anomaly grid datasets as the input data and the determined computation parameters
in Section 3.3 using least squares modification of stokes integral with additive corrections
geoid determination method. These geoid models are generated in grid form with a 1 arc-
minute spatial resolution. Figure 19 shows the map of each geoid model. The geoid heights
provided by these models vary between 45.2 m and 55.4 m, with a 49.6 m mean and 2.0 m
standard deviation. These statistics are intentionally given in decimeter precision because
the given statistics for the calculated models (see in Table 14) differ in the centimeter digit,
which is deemed significant from a practical applications point of view.
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Table 14. Statistics of geoid models calculated using free air anomaly grids from the Kriging, the IDP,
nearest neighbor, and ANN interpolation methods.

Unit: m Max Min Mean Std RMSE

Kriging 55.470 45.267 49.616 2.021 49.657
IDP 55.450 45.266 49.616 2.021 49.657

Nearest neighbor 55.462 45.267 49.616 2.021 49.657
ANN 55.451 45.264 49.616 2.021 49.657

Figure 20 shows the difference maps between the calculated geoid models. In the
previous steps of the numerical tests, the Kriging interpolation method is the reference
method, and the derived values from each interpolation technique are compared with this
reference method. Based on a similar opinion, the calculated geoid models with each free
air anomaly dataset are compared to the geoid model calculated with the Kriging based
free air anomaly grid.

Considering the difference map given in Figure 20a and its corresponding statistics in
Table 15, a highly improved fit between the geoid models calculated with free air anomaly
grids using Kriging and IDP methods is recognized. These two models fit with a 0.4 cm
standard deviation of geoid height differences an almost 0.0 cm mean. The geoid height
differences between them vary from −8.4 cm to 5.8 cm, which is quite reasonable.

Figure 20b depicts the geoid height differences between the geoid models based on
the Kriging and nearest neighbor free air grids. Both the Figure 20b and the given statistics
in Table 15 show that these two geoid models fit with a 0.4 cm standard deviation of
geoid height differences, which vary between −10.1 cm and 14.2 cm. In these results,
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while the IDP and nearest neighbor geoid models fit the Kriging geoid surface with a
standard deviation of less than 1 cm, the ANN-based geoid model does not have a similar
compatibility with the Kriging geoid. Their geoid height differences vary between −11.9 cm
and 7.8 cm, with a 1.58 cm standard deviation. Figure 20c shows the distribution pattern of
the geoid height differences based on the ANN and Kriging grids.
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Table 15. Geoid height difference statistics between the Kriging-based geoid model and the IDP-based,
nearest neighbor-based, and ANN-based geoid models.

Unit: cm Max Min Mean Std RMSE

KRIGING
vs.

IDP 5.810 −8.420 −0.006 0.384 0.384
Nearest neighbor 14.240 −10.050 −0.001 0.408 0.408

ANN 7.830 −11.940 −0.001 1.580 1.580

The area-based comparisons of the geoid models explain the spatial variations in
the model differences and provide information regarding the areal consistency between
the compared models. It provides a relative measure of the quality of a calculated geoid
model with respect to another geoid model assumed as a reference. In addition to these
area-based relative assessments, we also validated the geoid models using independent
75 GPS/leveling benchmarks (see Figure 4a) in the area. Table 16 compares the validation
statistics of the models. According to the standard deviations of the geoid height differences
at the GPS/leveling benchmarks, the accuracy of the calculated geoid models is 4.1 cm
(it is 4.5 cm for geoid model including the ANN-based free air anomalies). The 1.059 m
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mean value of the geoid height differences corresponds to the datum difference between
the GPS/leveling surface and the geoid model surface. The most essential handicap of
the GPS/leveling control dataset is that the benchmarks cover a very limited part of the
study area, and their distribution is insufficient to represent the rough topographical region
where the geoid models are expected to deteriorate in accuracy. Since the only available
independent control dataset is this 75-point set, the evaluation of the geoid models could
be carried out to a limited extent.

Table 16. Validation statistics of the performed geoids.

Unit: m Max Min Mean Std RMSE

Kriging 1.162 0.972 1.059 0.041 1.060
IDP 1.164 0.974 1.059 0.041 1.060

Nearest neighbor 1.163 0.972 1.059 0.041 1.059
ANN 1.165 0.967 1.060 0.045 1.061

4. Conclusions

Gravity data gridding is a crucial process in gravity field mapping and geoid deter-
mination applications. Terrestrial gravimetry provides precise gravity observations on
the topography, which are gradients of the Earth’s gravity potential and essential input
data in geoid determination. The gravity observations on the Earth’s surface have a high-
frequency character, since they contain information regarding the gravitational effects of
topographical masses underneath the Earth’s surface. In order to use these observations in
gravity field mapping and geoid modeling, they need to be reduced to the geoid surface as
the geopotential surface to be modelled. In addition to fulfilling the requirements for geoid
determination, we reduce the gravity data to the geoid for data interpolation and gridding.
A number of reduction formulas exist in the literature, and Bouguer gravity anomalies are
employed in gravity interpolation and gridding.

This article is dedicated to clarifying certain issues regarding gravity gridding in
gravity field mapping and geoid determination purposes. First of all, we inspected the
effects of simple and complete Bouguer anomalies in gravity gridding. The test area has a
miscellaneous topography, and it is seen that using simple or complete Bouguer anomalies
in data gridding in the plain topographical part does not produce significant differences in
the grid values. However, differences up to 55 mGal occur in grid values in the southeastern
part of the area, where topography rises to ~4750 m. The grid differences between the
simple and complete Bouguer anomalies result in up to 27.3 cm geoid height differences
between the models calculated using the LSMSA method.

The impact of the interpolation method on gravity gridding is the second topic inves-
tigated in this study. In this regard, the complete Bouguer anomalies are gridded using the
Kriging, inverse distance to a power, nearest neighbor, and artificial neural network meth-
ods. The first three methods have widespread use in spatial data interpolation applications.
They estimate the interpolation point’s value, employing the data points with their esti-
mated weights. On the other hand, artificial neural networks are a last-generation method
that employs a function whose parameters are determined by a training process. For the
training of the system, the dataset is divided into training and test data. The iteratively
trained system reveals the improved functional parameters, which are employed in the
determination of the values at the grid nodes. Instead of directly employing the data points,
it runs the determined function in interpolating the values at the grid nodes, resulting in a
smooth appearance in the generated grid. Additionally, each run of the computation algo-
rithm adopts a randomly selected training dataset and weights, outputting a different grid
dataset each time. In this algorithm, the number of neurons and iterations are two critical
parameters that should be decided carefully based on a trial-and-error procedure.

Based on the test results, it is concluded that the used interpolation method produces
differences in the magnitudes and distribution patterns of the grid values. In order to
estimate the maximum differences in the grid values depending on the used interpolation
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algorithm, we compared the generated Bouguer anomaly grid datasets with respect to the
one generated using the Kriging method. The Bouguer anomaly differences reach up to
40 mGal on land between the grids derived from the ANN and Kriging methods. The
standard deviation of these differences at grid nodes is 5.3 mGal. The differences between
the geoid models calculated from these two datasets are 11.9 cm at most, with a 1.6 cm
standard deviation. The validation results of these two geoid models at 75 GPS/leveling
control benchmarks reveal a 4.1 cm accuracy for the Kriging method and a 4.6 cm accuracy
for the ANN. In conclusion, the choice of interpolation algorithm significantly impacts
both the gridding of gravity data and the accuracy of the geoid model created using the
LSMSA method with the interpolated grid. Progress in data acquisition techniques and
sensor technologies in recent decades provides opportunities for determining the geoid
models with a sub-centimeter accuracy. The remarkable progress in data precision has
rendered every stage crucial in modeling approaches that will impact the computation
result. Therefore, using complete Bouguer anomalies and an appropriate interpolation
algorithm in gravity gridding for precise determination of the Earth’s gravity field and
geoid is recommended.
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60. Varga, M.; Bašič, T. Accuracy Validation and Comparison of Global Digital Elevation Models over Croatia. Int. J. Remote Sens.

2015, 36, 170–189. [CrossRef]
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