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Abstract: Existing methods for estimating formation boundaries from well-log data only analyze
the formation along the wellbore, failing to capture changes in the 3D formation structure around
it. This paper presents a method for real-time 3D formation boundary interpretation using readily
available well logs and seismic image data. In the proposed workflow, the mean formation boundary
is estimated as a curve following the well path. 3D surfaces are then fitted through this boundary
curve, aligning with the slopes and features in the seismic image data. The proposed method is
tested on both synthetic and field datasets and illustrates the capabilities of accurate boundary
estimation near the well path and precise representation of boundary shape changes further away
from the well trajectory. With this fully automated geological interpretation workflow, human bias
and interpretation uncertainty can be minimized. Subsurface conditions can be continually updated
while drilling to optimize drilling decisions and further automate the geosteering process.

Keywords: geosteering; particle filter; horizon auto-tracking; seismic image

1. Introduction

The oil and gas industry faces a dual challenge: drilling more efficiently while maxi-
mizing production. To address this, geosteering emerged as a critical technology, which
involves precise control and adjustment of drilling operations to navigate through sub-
surface geological formations with accuracy and efficiency [1–5]. This transformative
technology has revolutionized well drilling and reservoir management [6], resulting in
reduced operational costs, optimized hydrocarbon production, and a minimized environ-
mental footprint.

Geosteering, aiming at intersecting specific reservoir zones, can be dissected into
three key components: predrilling planning, monitoring/model updating, and in-drilling
decision-making [7]. As the cornerstone of successful geosteering, geological interpreta-
tion involves continuous measurement, interpretation, and modeling of the formation of
interest, drawing from various data sources like well-log measurements, seismic surveys,
cuttings, and coring operations [8]. More specifically, during the construction of the well,
geoscientists and drilling engineers frequently analyze the collected well logs to determine
lithology and resistivity of the formations surrounding the wellbore while drilling (well-log
interpretation) and combine the interpretation with established larger-scale area seismic
surveys to reconstruct the subsurface formation shapes (horizon tracking). The interpreted
formation shapes need to be continually updated while drilling to offer real-time insights
into subsurface conditions, which help drillers make informed geosteering decisions to
optimize the drilled well trajectory and well placement.

However, nowadays, processes in these different phases of geosteering highly rely on
human inputs, initial condition setups, and personal judgments, which can lead to subopti-
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mal and biased drilling decisions. Moreover, given the indirect and incomplete information
used in geological interpretation, uncertainties are unavoidable [9]. Recent research has
focused on probabilistic well-log interpretation techniques to address the uncertainty in
geological interpretation. One prominent approach is to interpret the well-log data via
Bayesian analysis. Traditional Kalman filters, ensemble Kalman filters, and Monte Calo
techniques have been explored to generate probabilistic near-wellbore formation shapes.
An alternative approach is to treat the interpretation as a large-scale statistical inference
problem, which is generally of high dimensionality and is computationally intensive.

In geological interpretation, the wellbore itself (and the high resolution well logs taken
in and around it) is only a minute feature in the entire subsurface volume that is of interest
to well construction operations. To be of practical use, well-log interpretation must be
interpreted in the context of a larger scale model, which in the field often comes from a
seismic survey taken over a large area [10], to accomplish the horizon tracking of subsurface
formation shapes. Algorithms have been proposed to auto-track the horizon within the 3D
seismic volume, and recently advanced data processing approaches are incorporated to
improve the tracking accuracy and efficiency.

In this paper, we delve into the prediction and reconstruction of both near-wellbore
and geological-area formation shapes, considering the uncertainty and various operational
constraints of geological interpretation and geosteering in well construction. A fully
automated workflow is proposed to combine well-log interpretation and horizon tracking
to optimize geosteering activities. The implementation of recursive Bayesian filter for
formation shape estimation is first explored. Additionally, the concept of horizon auto-
tracking (a numerical algorithm for formation horizon identification in the 3D space) is
introduced. Combing well logs and initial structural geomodels, it yields a stereoscopic
data for geosteering process. Lastly, the proposed geosteering interpretation approach is
rigorously tested, using both synthetic and field datasets, to validate its effectiveness and
reliability in geosteering applications.

2. Bayesian Well-Log Interpretation

In the well-log interpretation process, the near-wellbore formation shapes are estimated
by pattern-matching between the measured and modeled logging tool responses [8,11]. More
specifically, the response of the logging tool is firstly modeled as a function of its relative
location compared to the formation boundary, which is derived from an offset well log or a
composite of well logs (a reference or type log). By matching the well log obtained while
drilling and the established logging tool response, the near-wellbore formation shape can
be reconstructed [10].

There are multiple models to describe the well-log interpretation problem and Figure 1
below provides two examples. One example (Figure 1, left) involves tracking the tool
location, either in Cartesian coordinates or in terms of its True Vertical Depth (TVD),
inclination, and azimuth [12]. Additionally, it involves monitoring the formation’s dip
angle and the fault throw (i.e., sudden vertical displacement) at each location along the
wellbore. Another example (Figure 1, right) also employs the logging tool’s location, but
instead of considering the dip angle or fault throw, it utilizes the concept of Relative
Stratigraphic Depth (RSD) to represent the location of the formation boundary [13].

In the field operation, recursive Bayesian filtering is becoming a common approach
used to generate probabilistic geological interpretations for geosteering. One of the earliest
examples in the literature is [7], which uses the traditional Kalman filter to estimate the
distance to formation boundaries along the lateral section of a wellbore, utilizing resistivity
measurements. Resistivity is a common well-log measurement that is produced by the
resistivity tool, which uses current flow in a coil to induce current flow in the formation
under investigation to measure the formation. Various information, such as formation
porosity, water saturation, presence of hydrocarbons, etc., can be inferred from the resistivity
well logs. In [14–16], the response of a resistivity tool to the formation rock is modeled
as an electro-magnetic simulator and the ensemble Kalman filter (EnKF) is adopted to
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estimate the formation boundaries. More recent publications [13,17–19] adopted sequential
Monte Carlo techniques (i.e., particle filters) as a substitution of the Kalman filter. However,
these aforementioned interpretation techniques only estimate the distance to or shape
of nearby formation boundaries in the near-wellbore field. There is no consideration of
the formation boundaries far away from the wellbore, which limits the application of the
recursive Bayesian filtering for further steering decision optimization.
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Other recent well-log interpretation approaches use similar formation boundary mod-
els in Figure 1, but unlike recursive Bayesian filters which solve the estimation problem
sequentially, they solve a larger-scale inference problem, see [12,20,21]. Given a prior
estimate of the formation boundaries (or some representation of the boundaries) along
with new measurements taken along the wellbore, these methods infer the posterior dis-
tribution of the formation boundaries over the entire wellbore. However, due to the high
dimensionality of this problem, the proposed model representations and solution methods
are computationally intensive and do not always offer significant improvements over the
most efficient recursive Bayesian filtering methods [13].

3. Horizon Auto-Tracking

In the field, tracking of area-scale formation shape and locations starts with seismic
surveys, which are taken by shooting sound waves into the geological area of interest and
measuring the two-way wave travel time with numerous survey stations. Disparities in
rock types and properties can be identified through the reflection pattern of the sound
waves. The final seismic surveys are produced by migrating the two-way sound wave
travel time to the depth domain via wave propagation models, which are composed of
velocity building, seismic tomography, and seismic waveform inversion. Notably, the
subsurface wave propagation models are iteratively updated until the misfit between the
model predictions and the collected seismic data are minimized. One example of the
P-wave velocity model is shown in Figure 2.
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More specifically, the subsurface wave propagation model interprets the structure of
the formation as a unitless intensity across the volume of interest. As shown in Figures 2
and 3, changes in color/intensity relate to changes in the rock properties and lithology.
In practice, this structural model still requires manual interpretations to categorize the
sequences of formations and reflective boundaries in the seismic volume to identify the
faults (sudden structural discontinuities) and horizons (structural boundaries), which are
represented as 2D curves or 3D surfaces, as shown in Figure 4.
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Figure 4. Wellbore surveys (vertical lines) passing through 3D geomodel horizons (rectangular
surfaces) as well as fault geometries (polygons passing through horizons) derived from the seismic
model in the synthetic Overthrust dataset.

In the semi-automated process of horizon auto-tracking, the user usually selects a
seed or control point within the 3D volume as the starting point. Subsequently, the auto-
tracking algorithm automatically identifies well-log features near the seed point (often
an amplitude peak) and attempts to trace paths or surfaces through the 3D volume that
share similarities in these features [22]. This tracking process continues until the algorithm
encounters a discontinuity or exceeds a predefined expansion threshold. The user then
reviews and refines the generated horizon shapes and repeats this process for each horizon
of interest. More recent versions of these algorithms leverage various comprehensive
features within the 3D seismic volume, see [20,22–24] and incorporate advanced data
processing approaches like deep learning, see [25–30].

While this initial structural geomodel serves as a valuable tool for geosteering, it,
much like well logs, is insufficient on its own for guiding steering decisions. It is because
seismic inversion and depth migration are able to produce a structural model that closely
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aligns with the measured seismic survey data, but these solutions of the model are non-
unique and typically provide low resolutions. Besides, the resulting model is subject to
human interpretation and can potentially introduce further errors. Consequently, this
initial structural model is treated as an initial hypothesis regarding locations and shapes
of formation boundaries and faults. Further refinements and integration with other data
sources are necessary for optimized geosteering decisions making.

4. Methods

As discussed in the previous section, while neither well logs nor initial structural
geomodels are sufficient on their own to drive real-time geosteering optimization, together
they form the basis of real-time geosteering interpretation and decision making. The initial
structural model can be used to generate an initial planned trajectory. During the drilling
process, the well log is interpreted against one or more offset wells and is adopted to update
the formation boundary estimations. In this session, an automated 3D formation boundary
interpretation approach, combining well logs and seismic image data, is described in detail.

Similar to the work in [13,19], in this work a particle filter is used to address the
well-log interpretation problem. The states of interest are inclination θt, azimuth ϕt, TVD
zt, true stratigraphic thickness (TST) of the formation Tt, and RSD between the logging
tool and the upper formation layer st of the logging tool at the station t. The RSD is the
distance between the wellbore and the formation boundary measured in the direction of
the formation layer’s TST as shown earlier in Figure 1.

The discrete system dynamics of the tool location are computed using the wellbore
survey and minimum curvature method (MCM) to estimate the changes in the tool’s
location and orientation. MCM is used to interpolate inclination and azimuth, and TVD
between survey stations:

θt+1 = θt + uθ, t + ωθ,t, (1)

ϕt+1 = ϕt + uϕ,t + ωϕ,t, (2)

zt+1 = zt + ∆MDcos θt + ωz,t, (3)

Tt+1 = Tt + ωT,t, (4)

where ω is the additive Gaussian noise affecting the system dynamics and the subscript
indicates that each state’s dynamics function (θ, ϕ, z, and T) is associated with a different
noise term; ∆MD is the change in measured depth between points t and t + 1 along the
wellbore. The dynamics of the formation boundaries are represented using the Setchell
equation [10], which relates the change in measured depth thickness (MDT) along the
wellbore to changes in TST of the formation as follows:

TST = MDT × [cos θcos α − sin θsin αcos(ϕ − κ)], (5)

where α is the dip for the formation and κ is the strike of the formation. This relationship is
illustrated in Figure 1 (right). However, in the example shown in the figure, it is assumed
that ϕ aligns with κ, so these terms are not shown. Given a sufficiently small increment of
measured depth, the change in RSD can be approximated by the change in TST as:

st+1 = st − ∆MD[cos θtcos αt − sin θtsin αtcos(ϕt − κt)] + ωs,t. (6)

The system observation equations are given by:

mt = β1MU(st) + β0 + vm,t, (7)

where vm,t is the additive Gaussian noise affecting the system observations m at time t;
MU(st) is a mapping between RSD and the associated type log responses; β0 and β1 are
scale and shift factors, which are often necessary to account for differences between the
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type log and the MWD log caused by their calibration (or lack thereof); mt is the predicted
log response. Realizations of the filter state vector and measurement vector are:

χ
[n]
t =

[
z[n]t , θ

[n]
t , ϕ

[n]
t , s[n]t , T[n]

t

]T
, (8)

φt = [zt, θt, ϕt, mt]
T , (9)

where χ
[n]
t is the state vector of the nth particle in the filter at time t; φt is the overall

measurement vector at time t.
In [13], the authors proposed the use of expectation maximization or Gibbs sampling to

approximate β0 and β1 as static hidden states, which, however, is computationally intensive.
Here, an alternative procedure is proposed to estimate these factors. First, the wellbore
and type logs are aligned using dynamic time warping. Then, a linear transformation
(i.e., y = β1x + β0) is fit using the method of least squares to match the magnitude of
the type log responses to the MWD log responses. This provides estimates of the β0 and
β1 parameters that correct for potential shifting and scaling between the log responses.
After estimating the RSD and thickness parameters, the TVD of the upper and lower target
formation boundaries, gt and ft, respectively, can be found at each point along the wellbore
using the following equation:

gt = zt +
st

cos αt
, (10)

ft = gt +
Tt

cos αt
. (11)

The particle filtering process makes use of these system equations (Equations (1)–(4),
(6)–(9)) and sensor measurements to estimate a discrete, multi-dimensional distribution
over the state vector at each point along the wellbore. The particle filter is a parameter free,
recursive Bayesian filter [31] and achieves the estimation by maintaining a particle set or a
list of state vectors. At each iteration, the filter samples a new set of particles from the prior
state vector distribution by applying the dynamics equations to the current set of particles.
Each particle is then used to predict the next sensor measurement. The particles are then
weighted based on the prediction difference and the weights are normalized to sum of one.
This is followed by a process known as resampling in which the particle set is replaced
by a random sampling from the current distribution and the sampling probability of each
particle is equal to its normalized weight value. This new set is the posterior distribution of
particles at the current time step (i.e., the current state vector probability distribution).

In the proposed approach, Augmented Monte Carlo Localization (AMCL) and
Kullback–Leibler divergence (KLD) sampling [31] are also utilized for improvements
against classical particle filters. AMCL helps to prevent degeneracy of the particle set,
which is commonly due to repeated resampling. It randomly replaces old particles in the
set with random samples from the support of the state space (i.e., the set of feasible values
of particle states). Meanwhile, KLD sampling adaptively increases/decreases the size of
the particle set to reduce the error in the particle set’s estimation of the target distribution.
This helps to keep the filter both accurate and efficient as it always uses a sufficient number
of particles.

The particle filtering method described above provides an estimate of the RSD sep-
arating the wellbore and one or more formation boundaries. Since this analysis is only
performed using the one-dimensional log measurement taken along the wellbore, the
boundaries lie along a two-dimensional surface following the wellbore as shown in
Figure 5.
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In the 3D formation boundary estimation, boundary points estimated above by the
particle filter are used as control points for the horizon tracking algorithm [32]. A 3D surface
is approximated conforming to the structure present in the seismic image as illustrated in
Figure 6. In this process, the assumption of 2D boundary continuity produced from the
particle filter is removed and a surface that conforms to the near-wellbore interpretations
made by the particle filter and that follows the seismic formation structure further from the
wellbore is tracked. More specifically, careful consideration is required when interpreting
through faults or unconformities [33] and in this work a horizon across the entire seismic
volume is tracked using a constrained, least-squares method.
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Similar to how a grayscale picture image is a set of intensity values on a uniform
2D grid, a seismic image is a set of intensity values defined along a uniform 3D grid.
The changes in these intensity values represent the structural layout of the subsurface
formations and a surface or horizon is represented as a collection of depth z with an entry
zx,y, for every (x, y) location along the seismic grid. It is also convenient to refer to the
set of control points as another collection of depth values zc, containing the depth value
associated with each control point’s (x, y) grid location.

As shown in Figure 7, the seismic reflector slopes, denoted as p and q, also referred
to as inline and crossline dip values, are computed at each point within the seismic image
volume using the structure tensor T:

T =
〈

ggT
〉
=

⟨g1g1⟩ ⟨g1g2⟩ ⟨g1g3⟩
⟨g2g1⟩ ⟨g2g2⟩ ⟨g2g3⟩
⟨g3g1⟩ ⟨g3g2⟩ ⟨g3g3⟩

, (12)

where g1, g2, g3 represent the components of the image gradient vector computed within the
neighborhood of a point in the 3D image; ⟨·⟩ signifies a weighted sum of the contents within
the brackets. In practice, this convolution operation is often performed using Gaussian
smoothing techniques and the eigen decomposition of the structure tensor T provides an
estimate of the orientation vectors of the seismic reflector surfaces:

T = λuuuT + λvvvT + λwwwT , (13)
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where u, v,and w are the normalized eigenvectors of T; λu, λv, and λw are the eigenvalues
of T. Assuming λu ≥ λv ≥ λw ≥ 0, then u is the normal vector to the seismic reflector
surface while v and w are tangent vectors pointing along the surface. The computation of
seismic reflector slopes can be derived from the components of the u as:

p ≈ −u2

u1
, (14)

q ≈ −u3

u1
, (15)

where u1, u2, u3 are the vertical, inline, and crossline components of the vectors in u,
respectively, and the dip azimuth ψ can be calculated as:

ψ = atan2(q, p). (16)

The eigenvalues λu and λv can also be used to derive the local horizon planarity w,
which is a value between zero and one and is high near planar regions of the formation
and low near discontinuities or faults [34,35]:

w =
(λu − λv)

λu
. (17)
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In the horizon tracking algorithm, a horizon is assumed to follow the structure of the
seismic image when the derivatives dzx,y

dx and dzx,y
dy at the associated 2D coordinate (x, y)

follow the corresponding seismic reflector slopes:

dzx,y

dx
≈ p

(
x, y, zx,y

)
∀ x, y, (18)

dzx,y

dy
≈ q

(
x, y, zx,y

)
∀ x, y, (19)

where p
(

x, y, zx,y
)

and q
(
x, y, zx,y

)
denote the seismic reflector slopes p and q computed

at the 3D coordinate
(
x, y, zx,y

)
. In practical scenarios, this assumption is likely to be

violated, especially near faults or discontinuities in the seismic image. To address this issue,
the relationship described above is weighted by a measure of local planarity, denoted as
w
(

x, y, zx,y
)
. Additionally, due to the presence of noise in the seismic image, it may be

necessary to regularize the least-squares problem using a small constant, µ:
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w
(

x, y, zx,y,i
) dzx,y, i+1

dx

w
(

x, y, zx,y,i
) dzx,y, i+1

dy

µ

(
d2zx,y,i+1

dx2 +
d2zx,y,i+1

dy2

)
 ≈

w
(
x, y, zx,y,i

)
p
(
x, y, zx,y,i

)
w
(

x, y, zx,y,i
)
q
(
x, y, zx,y,i

)
0

 ∀ x, y. (20)

Based on Equations (12)–(20), the least-squares method seeks to determine the horizon
z, that adheres to the slopes within the seismic image, which can be expressed in matrix
form as follows:

(GTW2
i G + µ2LTL)zi+1 = GTW2

i ri

subject to zi+1[k] = zC[k], k = {1, 2, . . . , K}
, (21)

where G and L are the matrix representations of the finite-difference approximations of
the 2D gradient and Laplace (i.e., second-order gradient) operators, respectively; Wi is
a diagonal matrix containing the weights w

(
x, y, zx,y,i

)
; ri is a vector concatenated by

reflection slopes p
(

x, y, zx,y,i
)

and q
(
x, y, zx,y,i

)
for ∀x, y; zi+1[k] = zC[k] is the constraint

enforcing that the surface must pass through the K control points defined by the well logs;
subscripts i and i + 1 indicate the dependence of the problem on the current or ith estimate
of the horizon (zi). Every time solving the problem yields a new estimate of the surface
zi+1 and this iteration process is necessary because the weighting term Wi and reflection
slopes ri depend on the unknown vector zi.

This least-squares problem is solved iteratively from an initial guess using the pre-
conditioned conjugate gradient method until the change in the surface estimate between
iterations converges below a fixed tolerance. Preconditioned conjugate gradient is ideal for
this problem because it allows the constraints to be enforced through the preconditioner
matrix and because the system of equations being solved is large and very sparse [32]. The
initial guess is found using a nearest-neighbor extrapolation of the depth values of the
control points at each (x, y) location along the seismic image grid (i.e., the nearest control
point’s z value becomes the initial guess for the z value at each point along the (x, y) seismic
image grid).

In conclusion, with the proposed well-log interpretation and horizon tracking algo-
rithm, the geosteering interpretation workflow is illustrated in Figure 8. The workflow can
be repeated whenever new log and survey measurements become available.
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5. Test Cases and Results

In this section, the geosteering interpretation workflow described in the previous
section is evaluated on both synthetic and field datasets. The synthetic test is performed
on the Overthrust dataset [36] in which the interpretations are compared against ground
truth information. The field test is performed on the Volve dataset [37] in which the
interpretations provided by the proposed approach are compared against the geosteering
team’s interpretations over a volume of 200 × 200 × 200 m.

The following procedure is followed when testing the proposed geosteering interpre-
tation method. Firstly, an offset well log is converted to the RSD domain. The conversion
is based on the well selected by the geosteering team (i.e., the point along the well path
where the formation boundary is intersected), which is an event in the seismic model in
the synthetic test case and the upper Hugin formation boundary in the Volve test case.
Secondly, the particle filter is initiated with an estimate of the wellbore TVD and formation
boundary RSD as mean values and small standard deviations. Then, the filter is updated
in one-foot intervals along the well path, at which next well-log measurement is fed to
the filter and the probability distribution for the wellbore TVD and formation boundary
RSD. Lastly, the last 100 m of the boundary curve is used to track a horizon through the
seismic image.

5.1. Synthetic Test Case

The Overthrust dataset is a synthetic seismic survey for which both the true seismic
velocity model and the seismic image are available, which makes it a popular choice
for testing new seismic analysis workflows. For the test of the proposed geosteering
interpretation approach, a horizontal wellbore and a vertical offset well are superimposed
over a seismic event in the velocity model. As illustrated in Figure 9, both the well paths
are plotted against a slice of the seismic volume.
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Figure 9. Wellbore placements against seismic velocity model for synthetic test case in a side view
(left) and a top view (right).

In the well-log interpolation process, the velocity model is resampled along both the
well paths, where the data collected along the horizontal wellbore serves as the MWD
log and the data collected along the vertical offset well serve as the type log in this test
simulation. Besides, Gaussian noise with a mean value of zero and variance of 0.1 is
added to both sets of sampled data and the seismic event in the velocity model is used to
define a ground truth boundary. Both the simulated MWD log and type log are then fed
into the particle filter in one-foot increments and the interpolation results are shown in
Figure 10. In Figure 10 (and the following Figures 11 and A1), the mean of the boundary
prediction distribution is plotted as a black dotted line, and a set of 100 samples from
the distribution is plotted as red dots (note that the number of particles used by the filter
is not constant as it uses KLD resampling to adaptively decide how many particles to
use). The red dots represent the particle filter’s uncertainty around the mean estimate of
the formation boundary. After the boundary curve is estimated, the mean absolute error
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between the mean boundary curve and the final interpretation made by the geosteering
team is calculated.
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It can be observed from the comparison between the ground truth boundaries and
the filter’s prediction in the synthetic dataset that the proposed well-log interpretation
algorithm achieves high correlation with the MWD log and infers a reasonable estimate
of the seismic boundary. In the example shown in Figure 10, the most difficult region for
prediction is from 2600 to 3000 m (~9000 to 10,000 ft), during which the log measurement
stops being informative (i.e., the formation boundary is changing, but the investigation
depth of the “log” measurement does not pick up the change). Accordingly, the uncertainty
in the filter becomes large in this depth region. Once the log starts changing, the uncertainty
of the filter’s prediction decreases, and the filter once again starts tracking the formation
boundary. In this test case, the mean absolute error for the mean estimate of the formation
top is 11.9 m and the Pearson-R score is 0.99.
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Following the boundary estimation, the least-squares horizon tracking method is
applied to fit a surface through the interpretated boundary and following the orientations
of the seismic image. The final horizon tracking result is shown in Figure 12, where we can
observe that the identified horizon follows the changes in both the seismic velocity model
and image closely.
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5.2. Field Test Cases

The Volve field dataset is a publicly available dataset released by Equinor in 2018 [37].
The dataset contains information collected during the exploration, drilling, and production
of the Volve field off the coast of Stavanger, Norway, and contains all subsurface and
production data. The Volve field is located five kilometers north of the Sleipner Øst field
with water depths of 80 m in the block 15/9 and was in production from 2008 to 2016.
The oil was produced from sandstone in the Late Middle to Early Upper Jurassic Hugin
Formation with the reservoir located at depths ranging from 2750 m to 3120 m TVD. In this
field test case of the proposed geological interpretation workflow, the primary focus is on
the following data:

1. 3D depth-migrated seismic image
2. Geological interpretations

o Formation boundary interpretations
o 3D horizon interpretations (depth-migrated)
o Fault interpretations
o Well picks

3. Composite well-log data

More specifically, the test data adopted for the proposed geosteering interpretation are
from two wells in the Volve field dataset, namely 15-9-F-15D (a production well) and 15-9-F-
1C (a water injection well). Since ground truth formation boundaries are not available in the
Volve field dataset, the geosteering team’s interpretations are used for comparison, which
are extracted from the final well placement reports. In addition, although multiple well
logs are present in the dataset, the primary log used for this interpretation is the density
log. In well 15-9-F-15D, only the upper Hugin boundary (Figure 11) is estimated, which is
because the wellbore did not penetrate low enough for the logging tools to gather sufficient
information to estimate the base Hugin boundary.

In well 15-9-F-15D, the particle filter is run at each log measurement point, and the
results are plotted in Figure 13. It can be observed that the filter estimates closely match
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both the density log and the geosteering team’s interpretations. A similar comparison
between the proposed approach and field results in well 15-9-F-1C is plotted in Figure A1
in the Appendix A.
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A summary of the testing results for well 15-9-F-15D and 15-9-F-1C are presented in
Table 1. In conclusion, the particle filter is always able to find boundaries that correlate well
with the MWD log. However, there exist some discrepancies between the particle filter’s
estimate and the geosteering team’s interpretations. Some of the variance can be attributed
to the difference between the interpolation criterion by human and by algorithm. Another
source of deviation is that the proposed interpolation approach only uses the averaged
density log from one single offset wellbore, whereas the geosteering team’s interpretations
considered multiple offset wells along with azimuthal gamma ray, density, and resistivity
logs for each.

Table 1. Summary of interpretation results.

Test Well and Logs MAE [m] Pearson-R Score [−] Length [m]

15-9-F-1C DEN 15.8 0.93 561
15-9-F-15D DEN 9.2 0.97 1204

Following the well-log interpretation, the proposed horizon tracking method is used
to fit a 3D horizon as the formation boundary for well 15-9-F-15D. The 3D location and
shape of the fitted horizon, starting from the control points identified from the well logs, are
compared with the depth-migrated 3D horizon interpretations in the field data in Figure 14.
The fitted horizon and the horizon interpreted by the experts show good agreements over
the majority of the volume with a depth difference less than 20 m, while most of the
differences appear along the image edges.
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Figure 14. Left: 3D horizon fitted through the boundary estimate (blue) plotted against 3D horizon
from the Volve dataset (pink). Right: Heatmap of absolute depth difference between horizon in
dataset and horizon fitting result. Both results are for well 15-9-F-15D.

There are a number of factors contributing to these differences between the seismic
horizons and the fitted ones. First, the resolution of the seismic image is 12.5 × 12.5 × 4 m
in the inline, crossline, and depth dimensions, respectively, which will inherently introduce
the rounding error. Second, the geosteering team reported faults in this area that may not
have been known to the human interpreters and is also not apparent in the seismic images
used for this test. Furthermore, the crossline and inline slices of the seismic data in well
15-9-F-15D are plotted in Figure 15 and it illustrates that the least-squares horizon (the
green line) closely tracks the event in the seismic image (boundary between light/dark
color blocks). The interpretation produced by the geosteering team (the pink line) in the
field is a comprehensive estimate combining multiple data sources and does not necessarily
follow the event in the plotted seismic image. The comparison results between the final
fitted horizon and the field interpretation in well 15-9-F-1C are plotted in Figures A2 and A3
in the Appendix A.
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6. Conclusions

Bayesian well-log interpretation and horizon auto-tracking are each powerful tools for
geological interpretation. This work presents the first framework that combines these tools
into a fully automated geological interpretation workflow for geosteering optimization
and automation. By interpreting 3D surface boundaries of the formation(s) of interest, the
interpretation workflow removes the assumption of lateral continuity of the formation
structure. Through the validation on the Overthrust and Volve datasets, the proposed
algorithm illustrates the capabilities of accurate boundary estimation near the well path and
precise representation of boundary shape changes further away from the well trajectory.
The comparison between the geological interpretation reported by the geosteering team
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and that generated by the proposed algorithm indicates that human bias and interpretation
uncertainty are minimized. These interpretations allow continual updates of the subsurface
conditions while drilling and can either be used for more informed decision making by the
directional driller or entered into a geosteering optimization workflow.

However, there are some limitations to the methods presented here. The log interpre-
tation method requires careful preparation of a type log that correlates with the formation
boundary, and robust, automated generation of such data is necessary future work. In
addition, the seismic horizon tracking fits a surface to the seismic image and cannot identify
features that are not present in the seismic data (e.g., faults not evident in the seismic
image). Seismic images can also be noisy or ambiguous, so the horizon interpretation
should be accompanied by an estimate of the uncertainty in the horizon depth. Lastly, since
the particle filter is such a flexible interpretation tool, there is an opportunity to incorporate
other information into the analysis that merits further exploration.
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