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Abstract: Climate change is known to cause alterations in weather patterns and disturb the natural
equilibrium. Changes in climatic conditions lead to increased environmental stress on embankments,
which can result in slope failures. Due to wetting–drying cycles, expansive clayey soil often swells
and shrinks, and matric suction is a major factor that controls the behavior. Increased temperature
accelerates soil evaporation and drying, which can cause desiccation cracks, while precipitation
can rapidly reduce soil shear strength. Desiccated slopes on embankments built with such soils
can cause surficial slope failures after intense precipitation. This study used slope stability analysis
to quantify how climate-change-induced extreme weather affects embankments. Historic extreme
climatic events were used as a baseline to estimate future extremes. CMIP6 provided historical and
future climatic data for the study area. An embankment was numerically modeled to evaluate the
effect on slope stability due to the precipitation change induced by climate change. Coupled hydro-
mechanical finite element analyses used a two-dimensional transient unsaturated seepage model
and a limit equilibrium slope stability model. The study found that extreme climatic interactions
like precipitation and temperature due to climate change may reduce embankment slope safety. The
reduction in the stability of the embankment due to increased precipitation resulting from different
greenhouse gas emission scenarios was investigated. The use of unsaturated soil strength and
variation of permeability with suction, along with the phase transition of these earthen embankments
from near-dry to near-saturated, shows how unsaturated soil mechanics and the hydro-mechanical
model can identify climate change issues on critical geotechnical infrastructure.

Keywords: climate change; slope stability; unsaturated soil mechanics; shared socioeconomic
pathways; transient seepage; extreme precipitation

1. Introduction

Embankments and levees are critical infrastructures that are often impacted by storms
and hurricanes. Earthen embankments are used primarily as a means of transportation
networks and flood defenses. These act as lifelines for mankind as transportation facilities
and river training structures and are often the last form of defense against flooding. The
failure of such structures due to extreme climatic events can cause societal and economic
disruption [1]. Recently, a levee failed on the Pajaro River in central California that had
experienced prolonged periods of drought followed by incessant precipitation. This re-
sulted in mass evacuations and flooding, which highlights the need to study the effects of
climate change on critical civil infrastructure [2]. Several factors such as surface erosion,
softening of the soil, tensile cracking, soil desiccation, and seismicity can contribute to
the failure of a slope [3]. Researchers have illustrated that, for soil slopes, the behavior of
the deeper layers is governed by the changing water table, while the surface layers are
governed by atmospheric conditions [4]. Climate change can cause a negative effect or
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even a calamitous effect on the stability of the slope as the slopes are continuously exposed
to extreme climatic conditions [5]. It was illustrated that the critical parameters for slope
stability are the hydraulic properties, including permeability and water retention, which
are highly influenced by environmental factors [5].

Expansive soils are prevalent in arid and semiarid regions worldwide, including
Australia, Canada, China, India, South Africa, and the United States. These soils generally
display a moderate to high ability to be molded, a low to moderate level of strength,
and a high tendency to swell and shrink in volume [6,7]. The weathering by-products
of limestone material and alluvial deposits in the North Central Texas region result in
moderate- to high-plasticity clayey soils. In this region, the montmorillonite-rich Eagle
Ford Shale clay from the upper Cretaceous period is expansive in nature [8]. To mitigate
the adverse effects of these soils, different rehabilitation strategies have been employed in
the region [9–17]. Untreated forms of expansive soils typically undergo high swell–shrink
characteristics with a variation in the moisture regime. Desiccation cracking occurs within
the plastic fill materials as a result of repeated drying and wetting cycles [18]. The most
important deformation phenomenon of unsaturated soils, and especially expansive soils, is
swelling or shrinking [19]. The engineering properties of collapsible, residual, compacted,
and expansive soils, which are usually in an unsaturated state, can be better understood by
considering the impact of matric suction [20]. Expansive soils have high values of swelling
and compression indices and are subject to frequent changes in matric suction (ua − uw),
which causes additional volume changes. A structure constructed on expansive soil is
subject to heave or settlement depending on moisture suction fluctuations [20]. Hence, it is
crucial to consider the influence of matric suction when evaluating slope stability.

Desiccation cracks develop when the soil can no longer withstand the tensile stresses
caused by shrinkage [21]. During precipitation, water infiltrates the soil through these
cracks. Infiltration elevates the pore water pressure, leading to a subsequent decrease
in the shear strength of the soil, which causes failure to occur [22,23]. After prolonged
exposure to environmental factors like the wetting–drying cycle, fully softened shear
strength eventually develops in clays [24]. Surficial failures may occur abruptly and
without warning. At times, they may be accompanied by fissures or other indications of
impending failures. A slope demonstrates greater strength in the dry season due to the soil
being in an unsaturated state with negative pore water pressure and higher values of matric
suction. This can also lead to an overestimation of the factor of safety [25]. Numerous
slopes at the desiccated state fail when subjected to intense rainfall due to a decrease in
matric suction and an increase in pore water pressures. The impact of climate change may
increase the severity and frequency of these issues, which may be modeled by incorporating
the climate prediction models in the slope stability analysis. The soil–water characteristic
curve establishes the relationship between the volumetric water content of the soil and
the matric suction, which, in turn, determines the failure mechanism. The phenomenon is
influenced by the flux boundary conditions, specifically rainfall infiltration, evaporation,
and evapotranspiration at the interface between the soil and the atmosphere [26]. The
increased rainfall can cause failure in earthen structures [27,28]. In addition to the intensity
of rainfall, other factors such as the characteristics of rainfall, previous precipitation, soil
properties, and topography also play a role in the failure of a slope [29]. This issue
becomes amplified when we consider the distress in expansive soils caused by drought-
like conditions [17,30,31]. Any drought-like condition followed by intense precipitation
can cause severe damage to earthen structures, which are anticipated to be negatively
impacted by climate change [31–33]. Figure 1 shows the interaction between climatic
conditions and expansive slope and the subsequent formation of desiccation cracks due
to shrinkage–swelling, which ultimately leads to surficial failure. Climate change may
also affect agricultural productivity through higher soil erosion, which may occur due to
higher-intensity storms, floods, and the exposure of deeper layers due to the formation of
desiccation cracks in expansive soils during prolonged periods of drought. Therefore, there
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is an urgent need to study the behavior of embankments when subjected to stresses caused
by climate change.
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Incorporating Climate Change Data in Geotechnical Engineering

The advancement in climate and geotechnical modeling has enabled the measurement
of the effects of climate change on geotechnical infrastructures. Assessing the impact
of climate change on the stability of slopes and embankments involves analyzing three
intricate processes: (a) forecasting more detailed future climate data, (b) calculating pore
water pressures (PWPs) in slopes caused by changes in variables due to climate conditions,
and (c) estimating the factor of the safety of slopes based on the calculated PWPs. Coupled
hydro-mechanical finite element analysis can be used for the slope stability analysis of
expansive clay embankments. Researchers have used this method to consider the charac-
teristics of expansive clay and the presence of desiccation cracks and found an increase in
the saturated coefficient of permeability for the surface layer [34–36].

There are several climate models available to predict future climate scenarios. The
CMIP6 (Coupled Model Intercomparison Project Phase 6) presents new global climate
model data assessed in the AR6 of the IPCC (Intergovernmental Panel on Climate Change).
CMIP6 utilizes shared socioeconomic pathways (SSPs) to simulate different socioeconomic
scenarios that may be affected by urbanization, population growth, changes in gross do-
mestic product in different nations, and greenhouse gas (GHG) emissions [37]. The CMIP6
models reveal an approximately 6 ◦C temperature increase and an increase of 10–30%
precipitation over the US under the high emission scenario of SSP5–8.5 by the end of the
century, which is considered the extreme scenario [38]. The consideration of the increased
intensity and frequency of extreme precipitation due to climate change is an important
aspect of the design of future infrastructure as well as the stability analysis of existing infras-
tructure [2,39]. Robinson et al. (2017) conducted a study to examine how future excessive
precipitation will affect landslides in a region close to Seattle, Washington, in the United
States [40]. The CMIP5 climate dataset was utilized to generate a collection of current
and future intensity–duration–frequency (IDF) curves. Though the analysis focused on a
specific emission scenario and intensity duration, the findings of their research suggest that
the projected climate conditions in the future may have detrimental consequences for future
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landslides. Additionally, relying solely on historical climate data in design could result in
underestimating the potential risks involved [40]. Researchers have examined the impact
of climate change on the stability of embankments [41]. The investigators measured the
impact of predicted long-term and extreme precipitation events on the potential instability
of sandy and silty highway embankments in southern Ontario, Canada. To conduct their
analysis, the researchers employed a two-dimensional (2D) transient variably saturated
seepage finite element model to examine pore water pressures. Additionally, they utilized
a 2D limit equilibrium slope stability model to assess the stability of the model [41]. The
work was conducted using the CMIP5 climate dataset, and the climate data were changed
with the introduced shared socioeconomic pathways in CMIP6.

The impact of increased mean precipitation and extreme precipitation events due to
climate change on the slope stability of an expansive clay embankment in North Central
Texas is presented in this study. To consider the effect of climate change, four general
circulation models (GCMs) were considered and compared with the climate normals from
the National Oceanic and Atmospheric Administration’s National Center for Environmental
Information (NOAA NCEI) database. Historical and future precipitation data for 30 years of
the location were considered in the study for the climate ensemble. A combination of finite-
element-based software, SEEP/W from Geostudio version 2023.1.1, and limit-equilibrium-
approach-based software, SLOPE/W from Geostudio version 2023.1.1, was used to quantify
the stability of the slope in terms of the factor of safety. The FOS of the embankment slope
under baseline and future precipitation was analyzed and compared. The impact of
fissures and cracks was assessed by utilizing the soil water characteristic curve (SWCC) and
hydraulic conductivity function, which incorporates an elevated saturated coefficient of
permeability to accurately simulate the surface layer conditions in the in-situ condition. The
study presents a framework to effectively quantify the effect of increased precipitation due
to climate change on the existing embankment infrastructure. This study also presents a
pioneering study of climatic impact on the short-term failure of embankments of expansive
soils using the CMIP6 climate dataset, as most of the assessment of the impact of climate
change on existing infrastructure was conducted using the previous CMIP5 dataset.

2. Climate Data
2.1. Historical Climate Dataset

Baseline climate (BC) is considered the datum for the climate change impact assess-
ment for this study. The historical precipitation was used to establish the climate model
prediction suitable for the location. The 30 years of precipitation data between 1981 and
2010 were considered in the study as the baseline precipitation. The baseline data for the
comparison with four General Circulation Models (GCMs) were collected from the NASA
Earth Exchange Global Daily Downscaled Projections (NEX–GDDP) data repository. The
observed climate normal data were collected from the NOAA NCEI database for the nearest
meteorological station of the study location. The rainfall and mean air temperature data
with the daily temporal resolution are shown in Figure 2. The comparison of the average
daily rainfall for each month with the observed climate normals was conducted as shown
in Table 1. Root-mean-square error (RMSE) is a metric used to evaluate the precision of
predicted values in relation to the true value. Regression analysis is a statistical technique
used to effectively summarize observed data. The coefficient of determination, also known
as the R2 value, quantifies the degree of correlation between two variables [42]. From
Table 1, it could be interpreted that some of the GCMs are better suited for the parameters
used for comparison. Though the R2 value of the data from GFDL ESM4 is not the lowest,
it has the lowest root-mean-square error (RMSE) and low average annual precipitation
error, whereas the CESM2 dataset has a very high percentage of annual precipitation error.
Chai and Draxler (2014) demonstrated the use of RMSE for the comparison of climate
models [43]. In this study, the data from the Geophysical Fluid Dynamics Laboratory
(GFDL), USA, were selected to predict the future climate data. From the climate data, it
can be observed that the average annual precipitation was 903.8 mm for over 30 years.
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Daily precipitation of 40 mm or higher is considered a heavy precipitation event in this
study. As shown in Figure 2, over 30 years, there were 48 days with 40 mm or more daily
precipitation. In September 1999, 74.6 mm of precipitation per day was the highest amount
ever recorded in the period.
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Figure 2. Baseline climatic conditions between 1981 and 2010: (a) daily precipitation, (b) daily
mean temperature.

Table 1. Comparison of different GCMs in relation to baseline climate.

GCM Modeling Center RMSE (mm) * R2 Percentage Error (Annual)

CESM2 National Center for Atmospheric
Research, USA 14.81 0.83 15.26

ACCESS CM2 Australian Community Climate and
Earth System Simulator, Australia 13.51 0.73 9.21

GFDL ESM4 Geophysical Fluid Dynamics
Laboratory (GFDL), USA 12.68 0.77 8.50

CanESM5 Canadian Centre for Climate
Modelling and Analysis, Canada 13.63 0.64 7.69

* RMSE—root-mean-square error.

2.2. Future Climate Dataset

The future climate (FC) data for the site in Texas were collected from the NASA
NEX–GDDP [44]. Considering the inherent constraints of climate change models, it is
crucial to implement bias adjustment when applying them at the local level. These mod-
els, which work at large scales, often fail to accurately capture local climatic variations,
leading to systematic inaccuracies or biases. Improving model accuracy by aligning model
outputs with observed local climate data through bias correction is essential for making
well-informed decisions. Nevertheless, the implementation of this method necessitates
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prudence in order to prevent the introduction of additional errors. Although bias correction
enhances the accuracy of local climate model estimates, it is unable to entirely eradicate
all forms of uncertainty [45]. Downscaling techniques are utilized to tackle the low spatial
resolution data obtained from Global Climate Models. The NEX GDDP dataset includes
downscaled, bias-corrected climate scenarios from the General Circulation Models (GCMs)
in 0.25◦ × 0.25◦ resolution [45]. The data from the GFDL ESM4 model were collected for
SSP2–4.5 and SSP5–8.5 over 2031–2060 and 2071–2100. The 2031–2060 and 2071–2100 years
represent the mid-century and end of the century, respectively. The daily precipitation data
for these SSPs and periods are shown in Figure 3.
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Figure 3. Modeled future daily precipitation from GFDL ESM4 dataset: (a) SSP2–4.5 2031–2060,
(b) SSP5–8.5 2031–2060, (c) SSP2–4.5 2071–2100, and (d) SSP5–8.5 2071–2100.

As discussed earlier, SSPs are a collection of scenarios created to illustrate possible
future changes in human society. SSPs play a crucial role in predicting future levels
of greenhouse gas emissions and their effects on climate change. The SSP2 scenario is
considered to have moderate challenges to mitigation and adaptation. Environmental
systems will undergo degradation, although with some improvements, and there will be
an overall decrease in the intensity of resource and energy utilization in SSP2 [46]. The
SSP5–8.5 scenario predicts that there will be high levels of greenhouse gas emissions and
insufficient efforts to mitigate climate change. SSP5–8.5 may lead to a global temperature
increase of 4–6 ◦C above pre-industrial levels by the end of the century. The scenario also
predicts a peak radiative forcing of 8.5 W/m2 before a subsequent decrease [47]. It can be
observed from Figure 3a,c that, for SSP2–4.5, the number of extreme precipitation events
does not increase significantly with time.

2.3. Extreme Events

For most of the climate data repository, the data are often limited to daily resolution,
but the intensity of precipitation can fluctuate from minutes to hours. The precipitation
data resolution for NEX GDDP was daily. The historical extreme precipitation events were
compared to the DDF curves to address the effects of the temporal resolution of precipitation
and more plausible resolutions were chosen. An intensity–duration–frequency curve was
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converted to a DDF curve for a selected period [41]. The DDF curve for the embankment
location is shown in Figure 4 and was obtained from the National Oceanic and Atmospheric
Administration (NOAA) Atlas 14. As the 30-year climatic ensemble is considered for the
study, the return period of the extreme precipitation for the highest rainfall is considered to
be 30 years and the duration of the event is estimated using the DDF curve.
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3. Numerical Modeling and Analysis
3.1. Soil Properties

Most of the soil data was obtained from various experiments and studies conducted
by the authors and their research groups. The SWCC data of the soil are presented in
Figure 5. The SWCC was determined using the filter paper method and a chilled mirror
hygrometer. The closed-form solution proposed by the Fredlund–Xing (FX) (1994) model
was used as shown below to fit the experimental data into the SWCC curve [48]. The
hydraulic conductivity and volumetric water content in unsaturated soils are dependent
on matric suction. The air entry value (AEV) is the critical suction at which soil starts to
lose moisture with increasing desaturation. AEV is dependent on the pore spaces and pore
structure within the soil. The AEV of this soil at its maximum dry density was determined
to be 10 kPa. The saturated volumetric water content and residual volumetric water content
were computed to be 0.441 and 0.08, respectively. The unsaturated hydraulic conductivity
of the soil was determined based on experimental studies conducted on a modified suction-
controlled permeability setup. The soil sample was maintained at a specific suction state,
while the hydraulic conductivity was measured after equilibration. The steps were repeated
for different suction levels, and the HCF of the soil used in this study is shown in Figure 6.
Table 2 shows the soil properties used in the study. For compacted core soil, shear strength
parameters were measured using a direct shear test, and a torsional ring shear test was
used for the strength parameters of the surface layer.

θw = C(ψ)θs

[
1

ln{e + (ψ
a )

n
}

]m

(1)
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where θw, θs, and θr are natural, saturated, and residual volumetric water content, respec-
tively, ψ is matric suction, and a, n, and m are the curve fitting parameters. The hydraulic
conductivity function from the data in Figure 6 was fitted using the van Genuchten (1980)
model, as shown below [49].

K(h) = KsSl
e[1 − (1 − Sl/m

e )
m
]
2

(2)

where Ks is saturated hydraulic conductivity, l is the pore conductivity parameter, Se is effec-
tive saturation, and m represents the curve fitting parameter. Some of the material properties
for this study were collected from experiments conducted in several studies [18,25,50].
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Table 2. Soil properties used in the study.

Region Soil Property Value

Compacted fill/Surface layer Dry unit weight (kN/m3) 16.5

Compacted fill soil
Saturated Coefficient of Permeability, ks (m/s) 8.1 × 10−8

Cohesion, c (kPa) 38
Angle of internal friction, φ (◦) 17

Surface layer
(desiccated soil)

Saturated Coefficient of Permeability, ks (m/s) 8 × 10−5

Cohesion, c (kPa) 0
Angle of internal friction, φ (◦) 27

3.2. Geometry of the Section

In this study, the steepest part of an embankment of expansive soil was considered for
analysis. The cross-section of the slope with a steepness of 2.5 H:1 V is shown in Figure 7.
The embankment has two parts: compacted fill soil and surface layer. The surface layer
thickness of the slope is 1.1 m (3.6 ft). The slope has a height of 8.54 m (28 ft), and the
ground water table is situated at 8 m on the right side and 4 m on the left side above the base
of the embankment. A mesh convergence study was conducted on the embankment section
with a non-fissured surface layer to obtain an optimum mesh size suitable for the study.
The change in the factor of safety (FOS) with mesh size was considered. Based on the mesh
convergence study, a mesh size of 0.8 m was considered for the analysis. The mesh structure
of the embankment is illustrated in Figure 7. For better modeling of the fissured surface
layer and estimation of flow through the surface layer, the surface layer of 1.1 m is modeled
with four layers of finer mesh. The finite element analysis (FEA) model is scaled up in both
the horizontal and vertical dimensions to prevent the influence of boundary conditions.
The bottom boundary is considered to be rigid with no permissible movement in either
direction, while the two lateral boundaries are free to move only vertically. The desiccated
layer is considered for the 3 m wide shoulder provided at the top of the embankment.
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3.3. Numerical Modeling of Unsaturated Soil and Hydro-Geotechnical Behavior

A finite element transient variably saturated seepage analysis was performed using
SEEP/W software to model the temporal and spatial distribution of pore water pressures
within the embankments. The soil material model was considered to be in a saturated
or unsaturated state to account for all types of soil characteristics. The flow through the
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soil in both saturated and unsaturated conditions was simulated in Geo-slope GeoStudio
SEEP/W 2023.1.1 using Darcy’s law. In unsaturated conditions, the changing hydraulic
conductivity with matric suction or degree of saturation was considered by using the HCF
curve from Figure 6. The partial differential equation that governs the calculation of flux
for 2D transient flow is shown below:

∂

∂x

(
kx

∂H
∂x

)
+

∂

∂x

(
ky

∂H
∂y

)
+ Q = mwγw

∂H
∂t

(3)

where H is the total hydraulic head, kx and ky are the coefficient of permeability in the x
(horizontal) and y (vertical) direction, respectively, Q is the boundary flux, and mw is the
storage curve slope.

In SEEP/W, Richard’s (1931) equation was employed to accurately estimate the effect
of unsaturated flow. The equation for 2D flow through pores can be written as follows [51]:

K
∂θ

∂t
=

∂

∂xi

[
K
(

KA
ij

∂h
∂xi

+ KA
iz

)]
− S (4)

where h is the pressure head in the soil, θ is the volumetric water content, S represents
the sink term, xi are the coordinates, KA

ij is the anisotropy tensor, and K is the hydraulic
conductivity function.

The boundary conditions are illustrated in Figure 7. The flux boundary was used to
simulate the rainfall intensity and duration and applied on the slope. The top portion of the
slope is impermeable considering the presence of the pavement. No flow boundaries were
considered on either the right or left side above the groundwater table, and the base of the
profile was considered the no-flow boundary. The flux boundary for the precipitation was
considered to be in a non-ponding condition; this prevented the accumulation of rainfall
on the slope of the embankment.

At each time step of 0.5 h, SEEP/W simulated the seepage conditions, and that pore
water pressure was used for the limit-equilibrium-based software, SLOPE/W 2023.1.1
analysis, which uses the Morgenstern–Price (1965) method to determine the factor of
safety (FOS) of the slope [52]. The seepage conditions were imported from SEEP/W
using a similar grid technique. The unsaturated shear strength was determined using the
GeoStudio SLOPE/W program, which utilizes the extended Mohr–Coulomb failure model.
This model provides two methods to incorporate the influence of matric suction on the
shear strength of soil. The unsaturated shear strength is determined using two independent
stress variables: the net normal stress and the matric suction. The method proposed by
Vanapalli et al. (1996) was used to consider the unsaturated shear strength [53]. This
method can be expressed as:

τ = c′ + (σn − ua) tan φ′ + (ua − uw)

[(
θw − θr

θs − θr

)
tan φ′

]
(5)

where τ represents the unsaturated shear strength, c′ is the effective cohesion, σn represents
the total stress, φ′ is the effective angle of internal friction, (σn − ua) is the net normal stress,
and (ua − uw) is the matric suction. The strength due to suction was incorporated into
the limit equilibrium (LE) method employed by SLOPE/W. The factor of safety from the
coupled hydro-geotechnical model obtained through the integration of the FE and LE
methods was used as the indicator of the stability of the slope.

4. Results and Discussion

The impact of the changing climate on the embankment was evaluated with a variation
of FOS from slope stability analysis conducted by coupled hydro-geotechnical modeling.
Precipitation, among all other climatic parameters, has the most short-term destabilizing
effect. As the embankment was built with expansive soil, due to swelling–shrinkage
properties, desiccation cracks were found to occur. From the field data collected from the
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literature, the depth of the desiccated layer was 1.1 m. Considering the extreme events
and the effect of drought, the coefficient of permeability was considered to be significantly
higher by magnitude, as shown in Table 2. Due to rainfall infiltration, the desiccated zone
parallel to the slope became saturated. For all cases, the slope was considered to have a
desiccated surface.

The FOS results from SLOPE/W for the embankment for historical precipitation are
shown in Figure 8. Figures 9 and 10 illustrate FOS with pore water pressure distribution for
SSP2 and SSP5, respectively. The reduction in FOS can be seen for FC scenarios compared
to the historical climate. Due to the increased precipitation intensity and coefficient of
permeability of the surface layer, the FOS decreased further for extreme events. The FOS
continuously decreased with the increasing intensity of precipitation, which was due to the
reduction in the matric suction. In the “middle of the road” scenario, SSP2, the maximum
rainfall intensity and the number of extreme precipitations does not increase significantly
from the middle of the century to the end of the century. Thus, the change in FOS for the
scenario with time is much less. However, for the higher gas emission scenario, SSP5–8.5,
the decrease is significant at the end of the century as the number of extreme precipitation
events and maximum daily precipitation both increase, which also increases the duration
of future design storms significantly. The reduction in FOS for SSP5–8.5 compared to the
historical climate from Figures 8 and 10 was found to be 19.5%. Figure 8 also shows the
variation in PWP in the surface layer of the slope for historical precipitation. The higher
PWP in the desiccated layer can be observed for extreme precipitation events. From the
pore water pressure distributions for extreme events, the accumulation of percolated water
between the desiccated layer and the non-desiccated layer can be observed. The intense
precipitation and the difference between the coefficient of permeability may be the reason
behind this accumulation. From Figures 8–10, it can be observed that with an increase in
the intensity of precipitation and duration of the event, the accumulation increased. This
may have facilitated the continued surficial failure.

The effect of climate change was estimated using transient seepage and slope stability
analysis. The factor of safety of the slope was determined for each step with an interval
of 30 min for a 24 h precipitation event. The degradation of FOS with time is shown in
Figure 11. The reduction in the matric suction of the soil due to rainfall could have been
attributed to the reduction in the stability of the slope.
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It can be observed that, initially, the FOS was more than 3.5 and the value was stable
for the initial hours for every scenario. With time, rainwater permeated further inside the
embankment and reduced the matric suction, which eventually decreased the unsaturated
shear strength. The intense rainfall generated the high pore water pressure early in the
surface layer. The infiltration of rainfall in the desiccated layer caused the rapid degradation
of FOS with time, mostly after 12 h of rainfall. The accumulation of water between the
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two layers discussed earlier could be the reason behind this rapid degradation of the
stability of the slope.
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5. Conclusions

In this study, the impact of changing climate on the stability of earth embankments
built with expansive soil in North Central Texas was numerically analyzed. The main
focus of the study was to investigate the effect of the change in precipitation imparted
due to climate change and the formation of desiccated layers due to the swell–shrink
characteristics of the soil. The important observations of the study are as follows:

• Slopes built with expansive soil tend to form desiccation cracks due to swelling and
shrinkage with climatic interactions. In the study, the stability of the slope was found
to be reduced due to the formation of the desiccated surface layer.

• A 23% increase in the maximum daily precipitation and a 31.25% increase in the
number of extreme precipitation events for SSP5 at the end of the century compared
to historical precipitation between 1981 and 2010 was observed. In the future, the
intensity of precipitation is predicted to be higher, with shorter intervals between the
occurrence of extreme precipitation events.

• The stability analysis of the slope was conducted for two different SSPs: one with
moderate greenhouse gas emissions and the other one with extreme GHG emissions
with no emission control. The stability of the slope was predicted to be dependent on
the greenhouse gas emission scenarios as it directly impacts the number of extreme
precipitation events and the amount of daily precipitation.

• For both scenarios, two 30-year periods from the middle and end of the century were
considered. With progress in the future, the FOS of the slope was predicted to be
lower, and this reduction was significant for the extreme GHG emission scenario. The
possibility of surficial failure was predicted to increase significantly for extreme events.

The influence of SSP5, which is an extreme scenario, on the precipitation intensity
may be significant enough to induce the surficial surface of slopes with a desiccated top
layer for other earthen embankments as well. Additional studies need to be conducted to
understand the impact of other parameters such as temperature and solar radiation for
different scenarios of climate change to quantify the potential impact of climate change
on the resilience of earthen structures in different regions. Subsequently, sustainable
measures need to be investigated and implemented to mitigate such issues by the end of
the century. The incorporation of thermal and environmental stresses caused by climate



Geosciences 2024, 14, 37 14 of 16

change should be considered in the design of new structures, as such change is expected
to have a negative impact on earthen infrastructures like dams, levees, and pavements
throughout their lifespan.
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