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Abstract: This study reports a fractal analysis of one-year radon in groundwater disturbances from
five stations in China amidst the catastrophic Wenchuan (Mw = 7.9) earthquake of 12 May 2008
(day 133). Five techniques are used (DFA, fractal dimensions with Higuchi, Katz, Sevcik methods,
power-law analysis) in segmented portions glided throughout each signal. Noteworthy fractal areas
are outlined in the KDS, GS, MSS data, whilst the portions were non-significant for PZHS and SPS.
Up to day 133, critical epoch DFA-exponents are 1.5 ≤ α < 2.0, with several above 1.8. The fractal
dimensions exhibit Katz’s D around 1.0–1.2, Higuchi’s D between 1.5 and 2.0, and Sevcik’s D between
1.0 and 1.5. Several power-law exponents are above 1.7, and numerous are above 2.0. All fractal
results of the KDS-GS-MSS are further analysed using a novel computerised methodology that locates
the exact out-of-threshold fractal areas and combines the outcomes of different methods per five, four,
three, and two (maximum 13 combinations) versus nineteen Mw ≥ 5.5 earthquakes of the greater area.
Most coincidences using different techniques are before the great Wenchuan earthquake and after the
earthquake. This is not only with one method but with 13 different methods. Other interpretations
are also discussed.

Keywords: DFA; fractal dimension; Katz; Higuchi; Sevcik; spectral fractal analysis; radon in
groundwater; earthquakes; 7.9 Mw Wenchuan earthquake; China

1. Introduction

When it comes to severe natural disasters, earthquakes stand out since they may
result in great losses of lives and property. Residents of large cities may experience severe
effects from the massive quantity of energy produced during an earthquake, especially
if the epicentre of the earthquake is near. Catastrophic earthquakes are unavoidable as
natural phenomena but are highly challenging to foresee [1]. Consequently, the search for
trustworthy seismic precursors is one of the greatest difficulties of science, and significant
efforts have been made for many years in this area [2–9]. The issue of earthquake prediction
is still open [10]. Earthquakes are inherently complex; thus, several techniques and multi-
level strategies are required for prediction [7]. In regions where severe earthquakes are
possible, associated predictions call for a gradual downscaling of time, location, and
magnitude [2]. Along with the electromagnetic disturbances in ULF, LF, HF, and VHF
frequencies, which can indicate approaching earthquakes [4,9], radon-222 (hereafter, radon)
is a long-established precursor of impending seismic activity [2,7,11]. Radon is an inert
gas created by the radioactive decay of the 238U series with a half-life of 3.86 days. When
it disintegrates, it dissolves in soil pores and liquids before moving on to the surface,
subsurface water, and atmosphere. Because radon can travel long distances in water and
soil, it can be detected far from its generation location, and due to this, it is very significant
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in earthquake-related studies [1]. As the above reviews mention [2,7,11], there is a great
number of papers reporting pre-seismic changes in radon in soil gas, groundwater, wells,
thermal spas, and atmosphere. As a result, there is a substantial body of studies examining
the relationship between the emission of radon and seismic activity [10].

The motivation of the present research is to investigate whether the abnormal be-
haviour of groundwater radon may be due to the catastrophic Wenchuan (Mw = 7.9)
shallow (depth = 19 km) earthquake, which occurred on 12 May 2008 (calendar day;
hereafter, day 133) along the Longmenshan fault (31.0° N, 103.4° E) in Sichuan Province,
China [12,13] (Figure 1). This quake was the most destructive one in China since 1976
and the second most devastating seismic shock of this century after the great Sumatra
earthquake of 2004 [14]. The groundwater data consist of one-year measurements re-
ceived from China between 1 January 2008 and 31 December 2008 by five different stations
(Figure 1) with epicentral distances between 105.6 km and 526.0 km (Table 1). The possible
connection between the variability in geochemical signals and the seismicity due to the
Wenchuan earthquake can help to delineate the underlying geophysical processes since the
data include information about the subsurface dynamics. Detrended fluctuation analysis,
the use of fractal dimensions (FDs) with different methodologies, and power-law fractal
analysis are very reliable fractal analysis methods [1,15,16]. These methods can recognise
the underlying scaling and long-range features that are characteristic for the unavoidable
occurrence of earthquakes even in noisy and non-stationary time series.

Figure 1. Location of the epicentre of the Wenchuan earthquake, showing the radon in groundwater
monitoring stations together with elevation data and significant geological faults. The location of the
presented area within China is shown in the inserted sub-figure at the bottom right. The codes of
stations are given in Table 1. Coloured gradient is the altitude elevation in m.
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Table 1. Radon in groundwater station data. The numbers and coding of the stations are those globally
adopted in China, and the names refer to the actual locations. Distance is the epicentral distance.

Station Code Station Name Latitude Longitude Distance (km)

KDS Kangding station 30.12 102.17 152.2
GS Ganzi station 31.61 100.01 325.5

MSS Mingshan station 30.1 103.1 105.6
PZHS Panzhihua station 26.51 101.74 526.0
SPS Sonpan station 32.65 103.6 182.5

2. Materials and Methods
2.1. Experimental Aspects
2.1.1. Earthquake Activity

The Wenchuan earthquake occurred along the Longmenshan fault (LMSF), which is
parallel to eastern Tibet and the Sichuan Basin in the northeast and southwest directions
(Figure 1) and is about 500 km long and 40–50 km wide [17]. According to Liu et al. [12],
the Wenchuan-Maowen, Yingxiu-Beichuan, and Guanxian-Jiangyou faults, as well as
a number of thrust faults produced by the compression of the eastern Tibetan Plateau
and the Yangtze Craton, dominate the LMSF zone. Only one significant seismic event
(Mw = 6.1) occurred in the LMSF zone before the Wenchuan earthquake, and that was
in 1989 [17]. The LMSF zone was dormant until 2008 [12]. The 290 km long segment
of the LMSF that was ruptured by the Wenchuan earthquake propagated independently
270 km to the NE and 20 km in the SW direction. The co-seismic surface rupture was
80 km. According to Liu et al. [12], the Wenchuan earthquake was caused by a shift in
the LMSF’s dip angle (30°–50° SW to 60°–70° NE) and fault motion (SW thrusting motion
to NE strike–slip motion). Within 7 days following the mainshock, a series of aftershocks
occurred, increased by 5.3 and 10 times more than the standard and relocated catalogues,
respectively, [18]. The Wenchuan earthquake disaster resulted in 69,225 fatalities, 374,640 in-
juries, 17,939 unaccounted-for persons, and over 5 million displaced people.

It is important to emphasise that earthquakes of this magnitude and intensity trigger
very important primary and secondary effects, some of which may contribute to the
examination of important warning elements [19,20]. Primary effects, such as the surface
fault of the Wenchuan earthquake, are associated with changes in concentrations of He, H2,
CO2, CH4, O2, N2, Rn, and Hg in soil gas [21]; total electron content anomalies [22]; and
well water levels [17]. Primary and secondary effects comprise the need for the introduction
of an alternative ESI-07 intensity scale [19,23] and rupture imaging using teleseismic P
waves [14].

2.1.2. Measurement Setup

Over the past 50 years, China has developed and established a structured network to
track radon levels in groundwater for seismic studies. Almost all of China’ s provinces are
represented in this network, which is made up of stations with a variety of instruments.
The network is operated, maintained, and expanded with financial support from the China
Earthquake Administration. The supplied radon series may be hourly (high sampling
rate—HSR) or daily (low sampling rate—LSR), depending on the sensors deployed at each
station. Table 1 lists the LSR stations as Ganzi, Mingshan, Panzhihua, and Sonpan, whereas
the only HSR station is Kangding.

To measure the concentration of radon in groundwater, two instruments are used
at China’s stations. Groundwater is sampled and degassed via bubbling at LSR stations.
Then, using a specialised apparatus with the code FD-125, it is directed into an ionisation
chamber or ZnS (Ag) detector where the concentration is determined by ionisations or
scintillations. For the HSR Kangding station, groundwater is forced via a de-gasser and
a gas-collecting device into a ZnS (Ag) detector, where radon is detected by a specialised
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instrument coded SD-3A with an hourly sample interval [24]. The accuracy for HSR and
LSR measurements is 0.1 Bq/L.

As reported elsewhere [21,25–28], the recorded radon in groundwater concentra-
tions is consistent with the crustal deformative process and/or with the stress diffusion
procedure at depths that are able to squeeze deep-seated geofluids towards the surface.
Therefore, the related time series include useful information to investigate their potential
pre-seismic behaviour.

3. Mathematical Aspects
3.1. Fractal and Long Memory

Numerous natural physical systems can be explained by fractals. Usual fractal be-
haviour is often seen when the whole system, or a part of it, is translated, rotated, or
stretched in space. Depending on the mathematical description of the changes, the system
is characterised either as self-affine or self-similar. Self-affine and self-similar natural sys-
tems are fractals in the consensus that any component of them is a little or big copy of the
total, but at various scales. As a result, fractal systems may be investigated by targeting their
scaled parts. Additionally, the scaling properties of a fractal system are closely associated
with the long memory [29–32] and complexity of the system [30,33–36]. Because fractal
behaviour, long memory, and complexity are interconnected concepts, examining one of
them will usually result in the other. For example, examining a system’s complexity will
help to determine its long memory and vice versa [1,37,38]. All of these characteristics can
show whether a system’s past, present, and future are strongly connected.

The direct methods are effective for calculating a system’s fractal features [16,37].
The techniques of Katz, Higuchi, and Sevcik are used in this paper because they offer direct
estimates for fractal dimension computations [1,39]. Power-law dependencies are also
present in fractal systems with long memory and complexity. DFA and power-law analysis
are useful tools for the delineation of the related connections [1,37]. These techniques are
used in this paper, as well, because of this. By the use of the associated Hurst exponent, all
approaches may be compared. These techniques are going to be thoroughly explained in
the sections that follow. The Hurst exponent is introduced first, followed by a robust DFA,
techniques for the direct calculation of fractal dimensions, and, finally, power-law analysis.

3.2. Hurst Exponent

A metric known as the Hurst exponent (H) may be used to identify long-lasting
connections in both time and space [40,41]. The time evolution of fractal phenomena,
as well as the roughness of the related time series, can be identified using the Hurst
exponent [1,42,43]. Various research topics have been investigated with the use of Hurst
exponent, such as hydrology [40,41], astrophysics and applications [44,45], processes of
capital markets [46–49], noisy observations of traces in traffic [50–52], seizures prior to
epilepsy [53–55], climatic dynamics [56], and precursory time series before impending
earthquakes [1,7,8,57].

The Hurst exponent value offers important details about the time series [1,37,39–41,58–61]:

(i) If 0.5 < H ≤ 1, then the series has a positive long-range autocorrelation. A series’
high value is followed by a series’ low value, and vice versa. High Hurst exponents
suggest persistent interactions that are predicted to occur in the series’ far future;

(ii) If 0 ≤ H < 0.5, then the low values follow high values in the time series, and
vice versa. There is an ongoing exchange between low and high values for low H
values in the time series’ future (this is known as anti-persistency);

(iii) If H = 0.5 associated processes are random, then the time series are
totally uncorrelated.

3.3. Detrended Fluctuation Analysis (DFA)

Long-range power-law connections as well as erratic oscillations observed in time
series appear prior to earthquakes [1,15,62,63]. DFA is a reliable method for spotting long-
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range power-law relationships in noisy, brief, non-stationary signals [1,64]. DFA has been
successfully employed in different scientific domains such as the study of changes in the
weather and climate [65–68], DNA sequences [69,70], heart dynamics [71–74], urban air
pollution [37,39,61], pre-earthquake recordings of radon in soil [25,26], and electromagnetic
variations in ULF, kHz, and MHz ranges [1,75–79].

Theoretically, DFA can show if a temporal signal has concealed long-range link-
ages that result in a self-similar process. Calculating the scaling exponent of the inte-
grated time series allows one to discover these long-term relationships in the initial time
series [1,39,57,66,70,71,80–83].

3.3.1. Application of DFA

The initial time signal is first integrated. The integrated signal’s fluctuations, F(n), are
then identified within a window of size n. The integrated time series’ scaling exponent
(self-similarity parameter), α, is then calculated by fitting the linear log(F(n)) − log(n)
transformation via least squares. The log(F(n))− log(n) line may display one crossover at
a scale n, where the slope exhibits an abrupt change, two crossovers at two different scales,
n1 and n2 [57], or not even show a crossover at all, depending on the system dynamics.

The DFA of a one-dimensional temporal signal, yi (i = 1, . . . , N), can be implemented
by the following procedure [1,39,57]:

(i) The initial time series is, first, integrated:

y(k) =
k

∑
i=1

(y(i)− 〈y〉) (1)

The entire average value of the time series is denoted in Equation (1) by the symbol
<. . . >, and k stands for the various time scales.

(ii) The integrated time series, y(k), is then separated into equal, non-overlapping bins
of length n.

(iii) The function y(k) that represents the trend in the bin is then fitted. Simple linear
trends or polynomials of second order or higher order may be used. Here, the linear
function is used. This linear function’s y coordinate is denoted by the notation
yn(k) in each box n.

(iv) The local linear trend, yn(k), is then subtracted from the integrated time series,
y(k), which is detrended in each box of length n. The detrended time series, yn

d(k),
is determined in this manner and for each bin as follows:

yn
d(k) = y(k)− yn(k) (2)

(v) The integrated and detrended time series’ fluctuations’ root mean square (rms) is
then computed for each bin of size n as follows:

F(n) =

√√√√ 1
N

N

∑
k=1

{
y(k)− yn

d(k)
}2 (3)

where F(n) are the rms fluctuations of the detrended time series, yn
d(k).

(vi) For various sizes (n) of the scale boxes, the method steps (i)–(v) are repeated. This
reveals the specific sort of connection between F(n) and n. If there are long-term
relationships in the time series, then F(n) and n have an exponential relationship.

F(n)∼nα (4)

The DFA scaling exponent α of Equation (4) assesses the strength of the time series’
long-term relationships.
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(vii) A linear association between logF(n) and log(n) is found via the logarithmic
transformation of Equation (4). A strong linear connection suggests that the
accompanying variations are long-lasting and, consequently, have a long memory.
The square of Spearman’s (r2) is used in this paper to measure the accuracy of the
linear fit. Good linear fits are defined as having r2 ≥ 0.95 or above [1,15,39,57,84].

3.3.2. Sliding Window DFA

The following six-step procedure was followed in order to implement the sliding
window DFA:

(a) The time series was segmented into windows of 64 samples. This segmentation
approximately yields a two-month series’ part for the PZHS, SPS, GS, and MSS
LSR stations, which record one measurement per day. The 64-sample window was
also employed for fractal analysis of the data from three monitoring stations of
urban air pollution with precisely the same measurement recording rate, namely,
one measurement per day [39]. In a recent paper for the PZHS, a 256 segmentation
DFA was employed [25], whereas, for radon in soil measurements, an approach
of 128-sample window was utilised [85]. Nevertheless, since the windows are
shifted 1 sample forward (sliding window technique), the whole signal is analysed,
except from a 64-sample window, which was the final one. On the other hand,
the 64-sample windowing yields a 64 h window for the HSR station of KDS, i.e.,
an analysis of about 2.5 days. Despite this differentiation, it is noteworthy that
for a radon station in Pakistan, with the same recording rate as the one for KDS,
a 64-window analysis was also utilised [16]. DFA from the data of KDS was analysed
with 64 sample windows for consistency.

(b) Every window was fitted using the least-squares fit of logF(n) vs. log(n) in accor-
dance with Equation (4). The data were fitted to a straight line without seeking
cross-overs, as in the related literature [1,25,39], with the restriction that the slope of
the fit displays a square of Spearman’s correlation coefficient above or equal to 0.95.

(c) The window was advanced by one sample, and the steps (a) and (b) were repeated
until the signal’s end.

(d) DFA slopes, α, were plotted against time, and the associated plot data were exported
to ASCII output files for further use.

3.4. Fractal Dimension Analysis
3.4.1. Katz’s Method

To determine the fractal dimension, D, according to Katz’s method, the transpose
array, [s1, s2, . . . , sN ]

ᵀ, of the series, si, i = 1, 2, . . . , N, is first determined, where si = (ti, yi)
and yi are the measured series values at the time instances, ti [86,87].

The value pairs (ti, yi) and (ti+1, yi+1) correspond to the two following points of the
time series (si and si+1), for which the Euclidean distance is:

dist(si, si+1) =

√(
t2
i − t2

i+1

)
+
(

y2
i − y2

i+1

)
(5)

The distances in Equation (7) add up in a curve, the total length of which is as follows:

L =
i=N

∑
i=1

dist(si, si+1) (6)

This curve will stretch in the planar to d, if it does not cross itself, where d is represented
as follows:

d = max(dist(si, si+1)), i = 2, 3, . . . , N (7)
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By combining Equations (5)–(7), the Katz fractal dimension, D, becomes the following:

D =
log(n)

log(n) + log(d/L)
(8)

where n = L/a and a is the average value of the distances of the points.

3.4.2. Higuchi’s Method

To calculate the fractal dimension, D, of a time series

y(1), y(2), y(3), . . . , y(N) (9)

recorded at intervals i = 1, 2 . . . N, a new sequence, yk
m, is constructed as follows [88–90]:

yk
m : y(m), y(m + k), y(m + 2k), . . . , y(m +

[
N −m

k

]
k) (10)

The length of the curve associated with the time series is given by [88]:

Lm(k) =
1
k

[ N−m
k ]

∑
i=1

y(m + ik)− y(m + (i− 1)k)


 N − 1[

N−m
k

]k

 (11)

In both equations, m and k are integers that specify the time interval between the
series’ samples and are connected by the formula m = 1, 2 . . . k, where [. . . ] is the Gauss
notation, namely, the bigger integer part of the included value.

By inserting the normalisation factor

N − 1[
N−m

k

]k (12)

the average value, 〈L(k)〉, of the lengths of Equation (13) exhibits a power law of the
following form:

〈L(k)〉 ∝ k−D (13)

The Higuchi’ s fractal dimension, D, is finally calculated by the slope of the linear
regression of the logarithmic transformation of 〈L(k)〉 versus k, where k = 1, 2, . . . , kmax.
It must be noted that the time intervals are k = 1, .., kmax for kmax ≤ 4, i.e., k = 1, 2, 3, 4
for kmax = 4 and k =

[
2(j−1)/4

]
, where j = 11, 12, 13 . . . , for k > 4 (kmax > 4). Again, [. . . ]

is the Gauss notation [87].

3.4.3. Sevcik’s Method

The fractal dimension of a time series according to the method of Sevcik [91] is
approximated from the Hausdorff dimension, Dh, as follows [87]:

Dh = lim
ε→0

[
− log(N(ε))

log(ε)

]
(14)

where N(ε) is the number of segments of length ε that add up to a curve that is associated
with the time series. If the length of the curve is L, then N(ε) = L/2ε [87] and Dh is
the following:

Dh = lim
ε→0

[
− log(L)− log(2ε)

log(ε)

]
(15)
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By applying a linear transformation twice, the N points of the curve, L, can correspond
to a unit square of N × N cells of the normalised metric space. With this transformation,
Equation (15) provides the Sevcik’s fractal dimension [87,91]:

Dh = lim
N→∞

[
1 +

log(L)− log(2ε)

log(2(N − 1))

]
(16)

The calculation improves as N → ∞.

3.4.4. Computational Methodology of Fractal Dimension

The next methodology was followed to calculate the fractal dimensions :

(i) As in Section 3.3.2, the time series was segmented into windows of 64 samples.
As mentioned, this segmentation approximately corresponds to, for the LSR sta-
tions (PZHS, SPS, GS, and MSS), a two-month signal. The 64-sample windowing
was also employed in the fractal dimension calculation (with the same meth-
ods) from the data of the three LSR urban pollution stations with identical rates
of measurements, i.e., one measurement per day [39]. As also mentioned in
Section 3.3.2, for the HSR station KDS, the 64-sample segmentation corresponds to
approximately 2.5 days. In a previous fractal dimension analysis (with the same
methods), a 256-window approach was implemented for the PZHS [25]; however,
in a very recent fractal dimension analysis with an identical methodology for an
HSR radon station in Pakistan with the same rate of measurements as the one for
KDS (one measurement per hour), a 64-window approach was utilised [16]. Finally,
as in Section 3.3.2 and for consistency with the windowing of the other stations,
a 64-sample window was chosen here as well for the KDS station.

(ii) The fractal dimensions of each method were calculated as follows:

• For the Katz’s method: The fractal dimension is the D of Equation (8) for
n = 64 and a = 1 collected sample per measurement interval (1 day for PZHS,
SPS, GS, and MSS and 1 h for the KDS) since a corresponds to the distance
between the points of the series that constitute the parameter L [1,16,39].

• Higuchi’s method: Equal to the slope, D, of the first-order least-squares fit
of the logarithmic transformation of Equation (13), namely, the relation of
log(〈L(k)〉)versus log(k), for kmax = 16. In the aforementioned analysis for
the urban air pollution stations [39], kmax = 4, whereas in the analysis of
radon in Pakistan [16] and of the electromagnetic disturbances of the Ileia
station, Greece, the approach kmax = 16 was used. Based on the two latter
papers, kmax = 16 was also selected here.

• Sevcik’s method: Equal to the Hausdorff dimension of Equation (16) (D = Dh)
for N = 64, namely, equal to the number of samples in each window, which
constitutes parameter L.

(iii) Each window was forwarded one sample (sliding window technique), and proce-
dures (i)–(ii) were iterated until the end of the time series.

(iv) Time evolution plots of the fractal dimensions in accordance with the Katz’s,
Higuchi’s, and Sevcik’s methods were generated, and the partial data were ex-
tracted to ASCII files for further use.

3.5. Power-Law Analysis

The fractal power-law approach is another robust technique to identify the hidden
long-lasting trends that are connected with the long-term links between space and time and
are detectable before earthquakes [1,15,57,76,84,92–96]. As with all fractal-based techniques,
power-law analysis describes the main core of fractality, namely, the existence of a power-
law. Another reason is that the earthquake-generating systems progress gradually to
self-organised critical (SOC) states exhibiting fractal evolution in space and time [95]. There
have been approaches of fractal power-law analysis based on the Fourier transform [95,96].
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The advantageous use of wavelets instead of the Fourier transform has been pointed out in
several publications (e.g., [75,97–99]).

A time series’ power spectral density, S( f ), will follow a power law, if the series is a
temporal fractal.

S( f ) = a · f−β (17)

In Equation (17), β is the power-law exponent that quantifies the strength of the power-
law connection, a is the amplification of the spectral density, and f is the frequency of a
transform. According to several publications, this transform was chosen to be the wavelet
one based on the Morlet bases and, specifically, f to be the central frequency of the Morlet
wavelet [1,15,75,84,92,97–99].

The logarithmic transform of Equation (17) gives the following:

log S( f ) = log a + β · log f (18)

Since Equation (18) is a straight line, the values of β and a can be determined by fitting
the corresponding data with the least-squares method. As with Section 3.3.2, the goodness
of fit of the least-squares fit is quantified by the square of Spearman’s (r2) coefficient under
the constraint r2 ≥ 0.95. The technique has been also described in other publications
as spectral fractal analysis or spectral power-law fractal analysis. Hereafter, the phrase
“power-law analysis” will be used.

Computational Methodology of Power-Law Analysis

Following the logic of Sections 3.3.2 and 3.4.4, the next steps were followed to imple-
ment the power-law analysis:

(a) The time series was separated into 128-sample windows. This is a double window
size in comparison to the other two methods. This is performed because power-
law analysis does not work well with small-sized windows. For the LSR stations
(PZHS, SPS, GS, and MSS), this segmentation corresponds to a 4-month signal
and, roughly, a 5-day signal for the KDS. In previous publications, a 128-sample
window was employed in β parameter estimations [85] for recordings of similar
recording rates, whilst in others, a 512-sample window [99] with a recording rate of
one measurement every 10 min was employed.

(b) The power spectrum, S( f ), based on the Morlet wavelet, as well as the central
Morlet frequency, f , were calculated in each segment.

(c) The parameters log S( f ) and log f were fitted via least squares. Exponents, β, and
power amplification, α, were computed for every window under the constraint that
Spearman’s r2 ≥ 0.95.

(d) Steps (a) through (c) were iterated to the end of the time series. At each itera-
tion, the window was shifted one sample forwards. As with the other techniques,
the whole time series was covered except the last window.

(e) The β and log a data were tabulated and saved in ASCII format for further use.

3.6. Further Issues
3.6.1. Formation of Analysis Classes

Two classes are formed to further organise the analysis results:

(a) Class I: This class comprises windows that are associated with DFA least-squares
log–log fits with a Spearman’s coefficient of r2 ≥ 0.95 and, simultaneously, a scaling
exponent between 1 < α < 2, i.e., modelled by the fBm class [84].
Class I segments:

• With anti-persistency (1.35 < α < 1.5)–persistency (1.5≤α < 2) changes, some
are of precursory worth [15,57,84,92,99].

• With persistent behaviour (1.5≤α < 2), they are characterised by others as
footprints of impending seismic activity (e.g., [7,8] and the references therein).
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(b) Class II: This class includes time series segments with DFA’s r2 < 0.95 (i.e., they
do not adhere to the prominent fBm class) or 0 < α < 1 (i.e., they adhere to the
fractional Gaussian noise (fGn) class).
Significantly, Class II segments:

• They are of low precursory worth and low predictability [1,15,57,84,85,92,99].
• They are complements of Class I segments.

3.6.2. Comparisons of the Fractal Results

As shown in previous papers [1,57,84,85], the best approach to compare the results of
all fractal methods is through the Hurst exponent.

For Class I segments, the Hurst exponent (H) is calculated as follows (e.g., [1,84] and
the references therein):

(1) From DFA’s α exponent as:
H = α− 1 (19)

(2) From fractal dimension (D) as:
H = 2− D (20)

(Berry’s equation)

(3) From power-law β as:
H = 0.5 · (β− 1) (21)

It should be emphasised that deviations from the straightforward linear connection of
Equations (19)–(21) can be seen in the in situ data [1,15,57,84]. The relationship between the
fractal analysis parameters remains linear, possibly of a slightly different form, as indicated
in the aforementioned works.

3.7. Meta-Analysis

The so-called meta-analysis [1,61] is implemented by combining the outcomes from
the ASCII files of all five methods, namely, DFA; Higuchi’s, Katz’s, and Sevcik’s fractal
dimensions; and power-law analysis. A two-step process is followed:

(a) (Step 1): According to user-defined thresholds, each ASCII output results file is
computationally scanned for out-of-threshold values. The ASCII files carrying
the fractal dimension values are searched for under threshold values, whilst the
ASCII files containing DFA’s exponents and the power-law beta values are searched
for over threshold values. New ASCII step 1 files are generated that contain the
out-of-threshold values.

(b) (Step 2): Under the restriction that each segment’s first sample date is arbitrarily
considered as the date of the whole segment, the step 1 ASCII files are computa-
tionally filtered to find areas with common dates. The above computational process
results in the full coverage of all dates, except the one of the last window. The whole
procedure is iterated over the results of all possible combinations of the following:

• DFA versus fractal analysis or versus at least two fractal dimension calculation
techniques (six combinations);

• Fractal analysis versus at least two fractal dimension calculation techniques
(four combinations);

• One fractal dimension calculation technique versus the other two
(three combinations).

Through the above repetitive process, 13 unique combinations of techniques per 5,
4, 3, and 2 are produced. This is very important because it is practically equivalent to
the coupling of different mono-fractal methods, and this fact provides a synthetic view
of the results of the fractal techniques, increasing the scientific evidence regarding the
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underlying nature of the identified fractal disturbances. This has been pointed out in recent
publications [1,15,37,39,61,84].

4. Results and Discussion

Figures 2–6 present the variation in the DFA exponent, α, over time with respect to
the evolution of the associated square of the Spearman’s correlation coefficient versus the
measured disturbances of radon in groundwater. As can be observed from these figures,
the DFA scaling exponent profile is entirely distinct from the one of the time series. This
has been noted in earlier works as well [1,15,25,27,37,39,57,84]. The reason relies on the fact
that DFA manages to locate effectively hidden forms in time series, even in non-stationary
ones [62,64,100]. Numerous α exponents are within the Class I range (Section 3.6.1). This
means that the corresponding 64-sample windows are successive fBm ones (r2 ≥ 0.95), and
this has been acknowledged as a notable sign of pre-seismic activity [15,57,84,85,92,99].

The specific details of each station show interesting information. At first, Figure 2 is a
noteworthy case of completely different DFA exponents and signal profiles for the KDS.
By inspecting this figure, a first period can be observed starting from window 1 (day 1) up
to window 2100 (approximately day 93). During this period, the DFA scaling exponents, α,
are enhanced with 1.5 ≤ α < 2.0 (0.5 ≤ H < 1.0, Equation (19)), whereas, most significantly,
several exponents are above 1.8 (0.8 ≤ H < 1.0, Equation (19)). All of these are successive
fBm segments since the corresponding Spearman’s coefficient in each window is r2 ≥ 0.95.
These successive fBm segments exhibit persistence since the Hurst exponents are above 0.5,
whilst a number of them show great persistent behaviour (0.8 ≤ H < 1.0). As mentioned in
Section 3.6.1, the references therein, and those in this section, the successive fBm segments,
and especially those with great persistent behaviour, correspond to radon in groundwater
areas with a high potential of association with seismic activity. In addition, in Figure 3,
a very interesting period can be observed between windows 50 and 100 (approximately
between day 60 and day 121), with DFA exponents 1.5≤ α < 2.0 (0.5≤ H < 1.0) and several
above 1.8 (0.8≤H < 1.0) for the GS. There is a similar case for the MSS. A corresponding
high DFA period (1.5 ≤ α < 2.0, several exponents higher than 1.8) is between windows
70 (day 85) and 115 (day 139). What makes these three cases of great significance is that
the above periods with high DFA exponents are rather synchronous. They are parallel in
time, and there are similar periods in these three stations. Indeed, the period for KDS is
from day 1 to day 93, the period for GS is between day 60 and day 121, and the period for
MSS is from day 85 to day 115. Importantly, these periods correspond to strong persistency
since several Hurst exponents are in a range of 0.8 ≤ H < 1.0. They also correspond to the
Class I category, exhibiting strong fBm behaviour. The significance of identifying strong,
persistent fBm behaviour has been emphasised in several publications [1,15,39,84,97,99]
as a footprint for ensuing earthquakes. The interpretations of these precursory footprints
in these publications are based on an asperity model [101], according to which it is the
roughness of fBm profiles, their relative motion, and their association with micro-crack
branching and acceleration that explain why especially persistent fBm behaviour is a
noteworthy sign of precursory activity during the preparation of earthquakes. These
findings are very important and have to be emphasised, especially because the DFA results
of the other two stations (PZHS and SPS) have almost all areas with low DFA exponents,
mostly in the Class II category or at the lowest part of the Class I category. The latter fact
shows, very clearly, that the PZHS and SPS disturbances are of low precursory value, if not
totally insignificant. From the above DFA evidence, it can be highlighted, from a time
perspective, that the important time periods identified (KDS from day 1 to day 93, GS from
day 60 to day 121, and MSS frrom day 97 to day 130) comprise pre-earthquake signs of
the great Wenchuan earthquake, which occurred on day 133. According to the literature
(see reviews [2,8]), the KDS-GS-MSS time window is within the precursory window range
of radon precursors. Particularly, when the high magnitude (Mw = 7.9) is accounted for,
the above time window extends well before the earthquake’s occurrence (even from day 1).
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Figure 2. Results of DFA. KDS (ID = 3). Window of 64 samples and step of 1 sample. From bottom to
top: (bottom) radon in groundwater time series; (middle) Spearman’s correlation coefficient of the
goodness of the linear fit of F(n) versus n in every 64-sample window; (top) the scaling exponent, α

(DFA slope). The horizontal axis is from the beginning (1 January 2008) to the end (31 December 2008)
of measurements. The measurement sampling rate is 1 h−1. For the window segmentation, please
refer to the text.

Figure 3. Results of DFA. GS (ID = 82). Window of 64 samples and step of 1 sample. From bottom to
top: (bottom) radon in groundwater time series; (middle) Spearman’s correlation coefficient of the
goodness of the linear fit of F(n) versus n in every 64-sample window; (top) the scaling exponent,
α (DFA slope). The horizontal axis is from the beginning (1 January 2008) to the end (31 December
2008) of measurements. The measurement sampling rate is 1 day−1. For the window segmentation,
please refer to the text.
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Figure 4. Results of DFA. MSS (ID = 83). Window of 64 samples and step of 1 sample. From bottom
to top: (bottom) radon in groundwater time series; (middle) Spearman’s correlation coefficient of the
goodness of the linear fit of F(n) versus n in every 64-sample window; (top) the scaling exponent,
α (DFA slope). The horizontal axis is from the beginning (1 January 2008) to the end (31 December
2008) of measurements. The measurement sampling rate is 1 day−1. For the window segmentation,
please refer to the text.

Figure 5. Results of DFA. PZHS (ID = 143). Window of 64 samples and step of 1 sample. From bottom
to top: (bottom) radon in groundwater time series; (middle) Spearman’s correlation coefficient of the
goodness of the linear fit of F(n) versus n in every 64-sample window; (top) the scaling exponent,
α (DFA slope). The horizontal axis is from the beginning (1 January 2008) to the end (31 December
2008) of measurements. The measurement sampling rate is 1 day−1. For the window segmentation,
please refer to the text.
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Figure 6. Results of DFA. SPS (ID = 149). Window of 64 samples and step of 1 sample. From bottom
to top: (bottom) radon in groundwater time series; (middle) Spearman’s correlation coefficient of the
goodness of the linear fit of F(n) versus n in every 64-sample window; (top) the scaling exponent, α

(DFA slope). The horizontal axis is from the beginning (1 January 2008) to the end (31 December 2008)
of measurements. The measurement sampling rate is 1 h−1. For the window segmentation, please
refer to the text.

The differentiation between the KDS, GS, and MSS and the PZHS and SPS becomes
more important when the differentiations in the distance and the underlying geology are
taken into consideration. Under the aspect of distance, a potential claim for the PZHS
could be that its long epicentral distance (526.0 km) makes it difficult to show significant
DFA disturbances. This claim, however, is unsupported when it is considered that the
PZHS has shown previous precursory DFA variations for earthquakes with epicentral
distances above 533 km [25]. In support, the GS shows precursory DFA variations despite
being 325.5 km from the epicentre, especially when the SPS did not show precursory DFA
results even though it was located closer (182.5 km) and at a comparable distance with
the other two stations (KDS and MSS), which both showed significant DFA outcomes.
This is an important observation that has to be outlined. As has been pointed out in the
above references [1,15,39,84,97,99], the preparation area of earthquakes includes special
preferable precursory paths. Moreover, the selectivity effect that has been proposed and
utilised for precursory activity (e.g., [102–105]) suggests that during seismic preparation,
there are selective paths that are followed by the disturbed activators. The selection of
certain paths has been demonstrated for MHz electromagnetic variations [57,106] and
radon precursors [57,107] and has also been expressed in reviews on the subject [2,5,7,8,11].
In this sense, the geological path from a station to the earthquake’s epicentre gains special
meaning. Hence, it is very important that the GS and KDS are located on the same big fault.
More importantly, the MSS is also on the prolongation of this GS-KDS path and is, surely,
in line with the Wenchuan’s epicentre. This may be supported by the above information
that the high elevation of the underlying geology, in association with the big fault on which
the GS-KDS-MSS operate and the proximity of the KDS to the Wenchuan epicentre, may
explain why these stations are very sensitive to recording radon disturbances with hidden
traces of significant precursory values.

This is reinforced by the fact that the SPS-PHZS are on a completely different fault line,
despite being on a common fault with the KDS. The fact (as mentioned above) that KDS is
also in line with the other two stations (GS and MSS) and near the earthquake’s epicentre
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makes the recordings of this station even more important. The huge magnitude (Mw = 7.9)
and the low depth (19 km) that resulted in a huge energy release, in association with
the geologically sensitive background and the proximity of the KDS to the earthquake’s
epicentre, may explain why post-activity was observed only in this station. Indeed, there is
a great period from approximately window 3000 (approximately day 133) up to window
6100 (approximately day 271) in Figure 2 where the DFA scaling exponents, α, are much
higher than 1.5, with several above 1.8 (0.8 ≤ H < 1.0). These DFA variations were
identified just after the great Wenchuan earthquake (day 133), and this is the first time
that such post activity has been found. The reader should note here that there is also an
extended period near sample 2000 (approximately day 88) and a shorter one near sample
8200 (approximately day 363) of completely non-successive (r2 < 0.95) segments. This
latter period provided false DFA exponents above 2, and for this reason, they were cut
off from the figure. The small period around 8200 is a Class II one. Except for these two
non-precursory cases, there are also scattered Class II exponents of low-precursory value.
These are non-successive (r2 < 0.95) fBm segments or fGn segments. Finally, with regards
to the pre-seismic signs, from a geological perspective, these are in line with the literature
findings since, according to the reviews for radon and electromagnetic precursors [2,4–9],
the epicentre’s distance of precursory activity of KDS-GS-MSS is in accordance with the
reported ones. In conclusion, based on the visual observations from the DFA results,
the reader should refer to the following points: (a) DFA outlines hidden trends not (usually)
observed from the signal; (b) the time window of the identified activity is sufficient to
accept it as precursory; (c) the distance and the pathway provide some explanations for
the identification in three out of five stations; and (d) most importantly, even for the robust
DFA method, visual observation is not enough, and a combination of different methods
is necessary in order to find the precursory time periods with enhanced importance and
combined evidence [1,37,39,61]. All of these will be presented later in the text, together
with the combined evidence.

Figures 7–11 demonstrate the temporal evolution of the fractal dimensions calcu-
lated using Katz’s, Higuchi’s, and Sevcik’s methods. There are noticeable differences
found. The three methods’ computed values for the fractal dimension show variations
as well. All discrepancies are due to the varied calculation techniques used by the three
fractal dimension techniques. This has been acknowledged in recent publications [1,15,39].
As pointed out, the methods of Katz and Higuchi estimate higher fractal dimensions than
the ones of Sevcik. As general trends, the Katz’s fractal dimensions are around 1 and 1.1
(0.9 < H < 1, Equation (20)), the ones of Higuchi’s method are roughly between 1.5 and 2
(0 < H < 0.5, Equation (20)), and those of Sevcik’s method are, approximately, between 1
and 1.5 (0.5 < H < 1.0, Equation (20)). However, what is important is not the value range
but the abrupt decrease in the calculated fractal dimensions. For this reason, the details of
every sub-figure in Figures 7–11 have great importance, especially in association with the
results of the DFA method.

In reference to the KDS and in the first 200 windows (from day 1 to day 8) of Figure 7,
a noteworthy decrease can be observed in Sevcik’s fractal dimension between 1 and 1.4
(0.6 < H < 1.0) and in Higuchi’s D between 1 and 2 (0 < H < 1.0). Katz’s method
estimates, unexpectedly, higher fractal dimensions between 1.0 and 1.2(0 < H < 0.8)
in this area. Simultaneously, there is an increase in groundwater radon. This is a rare,
serendipitous finding that has been reported in other publications [2,8]. Abrupt drops in
Higuchi’s fractal dimension are observed, next, between windows 1900 (day 84) and 2200
(day 97). The drops in Sevcik’s fractal dimension are between windows 1800 (day 79) and
2000 (day 88). The Sevcik’s fractal dimensions between windows 2000 and 2200 are above
2, and for this reason, they were cut off, being considered errors in calculations. Once
again, the Katz’s fractal dimensions are, peculiarly, higher around window 1800. With
regards to the GS, a significant decrease in Higuchi’s fractal dimension can be spotted in
Figure 8 between window 40 (day 48) and window 110 (day 133). The decrease in Sevcik’s
fractal dimension is roughly synchronous and of the same profile as the one of Higuchi’s,
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although milder and with a smaller duration, between windows 60 (day 73) and 110 (day
133). The fractal dimensions of the MSS (Figure 9) also exhibit decreased profiles through
the calculations with Higuchi’s and Sevcik’s methods. These decreases in D values can
be observed between windows 70 (day 85) and 140 (day 170). In summary, here, the key
periods from the fractal dimension calculations for the KDS are between days 1 and 8 and
between days 84 and 97. For the GS, the period is between day 48 and day 110, and for the
MSS, the period is between day 85 and day 170. Since the Wenchuan earthquake occurred on
day 133, the fractal dimension variations of KDS and GS can be considered, most probably,
pre-seismic. The same is valid for the day 85–day 133 variations of the MSS. These findings
reinforce the claims expressed in the discussion of DFA above since the fractal dimension
calculation techniques are completely different from the ones of DFA. Moreover, two fractal
techniques show these tendencies and, significantly, in comparable time intervals. These
facts further support the necessity of using different fractal techniques in parallel. This has
been emphasised in recent publications [1,15,61,84]. However, as with the DFA outcomes
of the KDS, there is a wide period between windows 3000 (day 133) and 6100 (day 271)
during which the fractal dimensions from Higuchi’s and Sevcik’s methods exhibit very
significant variations. This period is the same as the corresponding one discussed for the
DFA results and refers to post-seismic variations. Additional post-seismic variations are
addressed here via Higuchi’s and Sevcik’s fractal dimension from the MSS between day 133
and day 170. The reader should note here that as with the outcomes of DFA, SPSS, as shown
in Figure 11, does not show certain D patterns. Despite the fact that DFA did not provide
trends in DFA profiles for the PZHS, the corresponding Higuchi’s fractal dimension shows
a small decrease between windows 200 and 250.

Figure 7. Results from fractal dimension analysis. KDS (ID = 3). Window of 64 samples, 16 sub-
categories of Higuchi’s method, and step of 1 sample. From bottom to top: (a) the radon in groundwa-
ter time series and the fractal dimensions according to the algorithms of (b) Katz (KFD), (c) Higuchi
(HFD), and (d) Sevcik (SFD). The horizontal axis is from the beginning (1 January 2008) to the end
(31 December 2008) of measurements. The measurement sampling rate is 1 h−1. For the window
segmentation, please refer to the text.
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Figure 8. Results from fractal dimension analysis. GS (ID = 82). Window of 64 samples, 16 sub-
categories of Higuchi’s method, and step of 1 sample. From bottom to top: (a) the radon in groundwa-
ter time series and the fractal dimensions according to the algorithms of (b) Katz (KFD), (c) Higuchi
(HFD), and (d) Sevcik (SFD). The horizontal axis is from the beginning (1 January 2008) to the end
(31 December 2008) of measurements. The measurement sampling rate is 1 day−1. For the window
segmentation, please refer to the text.

Figure 9. Results from fractal dimension analysis. MSS (ID = 83). Window of 64 samples, 16 sub-
categories of Higuchi’s method, and step of 1 sample. From bottom to top: (a) the radon in groundwa-
ter time series and the fractal dimensions according to the algorithms of (b) Katz (KFD), (c) Higuchi
(HFD), and (d) Sevcik (SFD). The horizontal axis is from the beginning (1 January 2008) to the end
(31 December 2008) of measurements. The measurement sampling rate is 1 day−1. For the window
segmentation, please refer to the text.
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Figure 10. Results from fractal dimension analysis. PZHS (ID = 143). Window of 64 samples,
16 sub-categories of Higuchi’s method, and step of 1 sample. From bottom to top: (a) the radon in
groundwater time series and the fractal dimensions according to the algorithms of (b) Katz (KFD),
(c) Higuchi (HFD), and (d) Sevcik (SFD). The horizontal axis is from the beginning (1 January 2008)
to the end (31 December 2008) of measurements. The measurement sampling rate is 1 day−1. For the
window segmentation, please refer to the text.

Figure 11. Results from fractal dimension analysis. SPS (ID = 149). Window of 64 samples, 16 sub-
categories of Higuchi’s method, and step of 1 sample. From bottom to top: (a) the radon in groundwa-
ter time series and the fractal dimensions according to the algorithms of (b) Katz (KFD), (c) Higuchi
(HFD), and (d) Sevcik (SFD). The horizontal axis is from the beginning (1 January 2008) to the end
(31 December 2008) of measurements. The measurement sampling rate is 1 h−1. For the window
segmentation, please refer to the text.

Figures 12–16 show the results from the power-law method. This method is one of the
wider used techniques and has been considered as one of the most powerful to identify
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the hidden patterns in time series [43,75–77,92,95,98,99,106,108–115]. Hence, when certain
trends are found with the power-law method, there is strong evidence for the underlying
long memory of the associated geosystem. At first, as with the outcomes of the DFA and
fractal dimension methods, the time evolution of the power-law exponent, β, differs from
the one of the time series. However, in order to discuss the interesting results of each
figure, the following information should be taken into consideration for the successive
fractal segments:

1. If 1.0 < β ≤ 3.0, then the associated time series is a temporal fractal and follows the
Class I category:

• If 1.0 < β < 2.0, then the time series follows anti-persistent paths;
• If 2.0 < β < 3.0, then the time series follows persistent paths.

2. If −1.0 ≤ β < 1.0, then the time series is of low predictability and follows the Class II
category:

• If β = 1.0, then the fluctuations in the related processes are not growing and,
hence, a stationary system describes the series;

• If β = 2.0, then the underlying dynamics are random and the related system has
no memory.

Figure 12. Results from fractal analysis: KDS (ID = 3). Window of 128 samples and step of 1 sample.
From bottom to top: (bottom) radon in groundwater time series; (middle) Spearman’s correla-
tion coefficient of the goodness of the linear fit of Equation (18); (top) time evolution of power-
law β exponent. Blue areas represent the successive (r2 ≥ 0.95) fractal windows. Red areas are
non-successive windows. The horizontal axis is from the beginning (1 January 2018) to the end
(31 December 2018) of measurements. The measurement sampling rate is 1 h−1. For the window
segmentation, please refer to the text.
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Figure 13. Results from fractal analysis: GS (ID = 82). Window of 128 samples and step of 1 sample.
From bottom to top: (bottom) radon in groundwater time series; (middle) Spearman’s correla-
tion coefficient of the goodness of the linear fit of Equation (18); (top) time evolution of power-
law β exponent. Blue areas represent the successive (r2 ≥ 0.95) fractal windows. Red areas are
non-successive windows. The horizontal axis is from the beginning (1 January 2018) to the end
(31 December 2018) of measurements. The measurement sampling rate is 1 day−1. For the window
segmentation, please refer to the text.

Figure 14. Results from fractal analysis: MSS (ID = 83). Window of 128 samples and step of
1 sample. From bottom to top: (bottom) Radon in groundwater time series; (middle) Spearman’s
correlation coefficient of the goodness of the linear fit of Equation (18); (top) Time evolution of
power-law β exponent. Blue areas represent the successive (r2 ≥ 0.95) fractal windows. Red areas
are non-successive windows. The horizontal axis is from the beginning (1 January 2018) to the end
(31 December 2018) of measurements. The measurement sampling rate is 1 day−1. For the window
segmentation, please refer to the text.
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Figure 15. Results from fractal analysis: PZHS (ID = 143). Window of 128 samples and step of
1 sample. From bottom to top: (bottom) radon in groundwater time series; (middle) Spearman’s
correlation coefficient of the goodness of the linear fit of Equation (18); (top) time evolution of
power-law β exponent. Blue areas represent the successive (r2 ≥ 0.95) fractal windows. Red areas
are non-successive windows. The horizontal axis is from the beginning (1 January 2018) to the end
(31 December 2018) of measurements. The measurement sampling rate is 1 day−1. For the window
segmentation, please refer to the text.

Figure 16. Results from fractal analysis: SPS (ID = 149). Window of 128 samples and step of
1 sample. From bottom to top: (bottom) radon in groundwater time series; (middle) Spearman’s
correlation coefficient of the goodness of the linear fit of Equation (18); (top) time evolution of
power-law β exponent. Blue areas represent the successive (r2 ≥ 0.95) fractal windows. Red areas
are non-successive windows. The horizontal axis is from the beginning (1 January 2018) to the end
(31 December 2018) of measurements. The measurement sampling rate is 1 h−1. For the window
segmentation, please refer to the text.
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In Figure 12, for the KDS, as with DFA and the fractal dimension calculation techniques,
a first period is observed up to window 2200 (approximately day 120) with scattered suc-
cessive fractal windows with 1.7 < b < 2.2. These fractal epochs correspond to predictable
Class I segments with an interchange between persistency and anti-persistency. According
to several publications (e.g., [99]), this is a sign of precursory activity. Interestingly, this
epoch is almost identical to those identified with DFA and the three fractal dimension
techniques, and this is very important. Figure 13 for the GS shows a first period between
windows 1 and 40 (day 1 to day 58) and windows 50 and 90 (day 73 to day 131). Both these
periods have areas with b > 2 (Class I, persistent) and can be considered as precursory
of the great Wenchuan earthquake. The last period at the end of the analysed windows
shows b < 1.6 and, as with DFA and fractal dimension techniques, has low predictability
and is, hence, of low precursory value. This combined finding provides more evidence.
In Figure 14, for the MSS, there are two periods, between window 30 (day 43) and window
60 (day 87) and between window 70 (day 102) and window 110 (day 160). Although these
periods are anti-persistent, they are within the middle part of the predictable value range
of the Class I category. Since the periods match with those of the other techniques, there is
a probability that they might be signs (pre and post) of the great Wenchuan earthquake.
As with the DFA and fractal dimension techniques, there is a great post-seismic region
within the same period. It is very important that the findings of the techniques match
even for the two other stations, the PZHS and SPS. Both showed no successive fractal
window. This fact reinforces the findings of the DFA and Higuchi’s and Sevcik’s methods
for the MSS.

Evaluating the results presented so far, there is a period up to day 133 (the day of
occurrence of the great Wenchuan earthquake) that can be systematically identified in all
fractal analysis results, that is, from all methods for the KDS, GS, and MSS, whereas the
PSZH and SPS do not show any such noteworthy period. These fractal epochs are discussed
and considered pre-seismic signatures of the great Wenchuan earthquake. The recognition
of signs in the KDS, GS, and MSS and the lack of systematic signs in the PSZH and
SPS can be attributed to the different geological paths, in association with the theory of
asperities and the selectivity effects in earthquake-related research. It is also extensively
discussed that finding periods of over- or under-threshold fractal values is significant,
but most significant is the synthetic finding of common over- or under-threshold areas with
different techniques (meta-analysis, Section 3.7). When, and if, such common locations are
discovered, the scientific arguments for the existence of a seismic warnings concealed in
the time series increases, making these claims stronger. It is, therefore, very important to
apply meta-analysis to the fractal results of the KDS, GS, and MSS so as to enhance the
presented evidence. Meta-analysis for the PSZH and SPS results is unnecessary since the
corresponding signs are not enough. On the other hand, an earthquake as great as the
Wenchuan is expected to be associated with other earthquakes. Moreover, other earthquakes
in the overall area might also explain the warnings, and there is a possibility that the
presumed post-seismic signs might also be the pre-seismic activity of other earthquakes in
the area, and this is the first time such a view is mentioned in this paper. For this purpose,
the data on earthquakes of 2008 with Mw ≥ 5.5 were accessed from USGS over an area
greater than the inserted one in Figure 1 [116]. The latter reference presents online the
selected area together with data on 19 earthquakes and a map representing it on Chinese
terrain. The data on these 19 earthquakes are presented in Table 2, whereas Figure 17
presents the earthquakes in a Google Earth Map after creating the corresponding map
kml file from USGS and importing it to Google Earth. In this way, Figure 17 presents the
earthquakes alternatively in comparison to the USGS map [116].
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Figure 17. Location of the earthquakes of 2008 with Mw ≥ 5.5 over an area greater than the one
inserted in Figure 1. This figure was created with Google Earth using a kml file from USGS. Greater
circles are earthquakes with greater magnitude Mw. The biggest circle near Sichuan is the great
Wenchuan earthquake. The 19 presented earthquakes are shown in Table 2.

Table 2. Earthquakes of 2008 with Mw ≥ 5.5 in China for the area presented in Figure 17. The last
event (i/i 19) is the great Wenchuan earthquake

i/i Year Month Day Hour Minute Second Mw Latitude Longitude Depth (km)

1 2008 8 31 8 31 10 5.6 26.232 101.97 10
2 2008 8 30 8 30 53 6.0 26.241 101.889 11
3 2008 8 21 12 24 30 6.0 25.039 97.697 10
4 2008 8 5 9 49 17 6.0 32.756 105.494 6
5 2008 8 1 8 32 43 5.7 32.033 104.722 11
6 2008 7 24 9 30 9 5.7 32.747 105.542 10
7 2008 7 23 19 54 44 5.5 32.752 105.498 4
8 2008 5 27 8 37 51 5.7 32.71 105.54 10
9 2008 5 25 8 21 49 6.1 32.56 105.423 18

10 2008 5 17 8 25 48 5.8 32.24 104.982 9
11 2008 5 16 5 25 47 5.6 31.355 103.351 3
12 2008 5 13 7 7 8 5.8 30.89 103.194 9
13 2008 5 12 20 8 50 5.6 31.413 103.889 21.7
14 2008 5 12 11 11 2 6.1 31.214 103.618 10
15 2008 5 12 9 42 24 5.5 31.527 104.092 10
16 2008 5 12 6 43 14 5.8 31.211 103.715 10
17 2008 5 12 6 42 8 5.7 31.342 104.682 10
18 2008 5 12 6 61 56 5.7 31.586 104.032 10
19 2008 5 12 6 28 1 7.9 31.002 103.322 19

In the consensus expressed above, the final step of the related analysis should include
the following: (a) the above 19 earthquakes (Wenchuan included); (b) the fractal results
and the discussion on threshold setting presented in Figures 2–16; and (c) the logic of
connecting the fractal methods expressed in Section 3.7. To achieve this, Figure 18 presents
combined plots for each station. This multi-figure conceals all the important findings. Simi-
lar representation has been adopted in other publications as well [1,25,37,39]. The subplots
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are mixed and have several symbols. For this reason it is crucial to delineate the significant
information given:

(a) All over- or under-threshold results of all fractal methods (step 1, meta-analysis)
for the KDS, MSS, and GS. The threshold results of each station are combined per
2, 3, 4, and 5 methods (step 2, meta-analysis; a total of 13 combinations) versus all
19 earthquakes of Table 2 and Figure 17.
As mentioned in the previous paragraph, it is important not only to identify foot-
prints using one or more techniques (already conducted here) but more importantly
to link the different techniques focusing on similar aspects of the problem at hand.
To achieve this:

(1) The exact over- or under-threshold dates were located computationally from
the fractal outputs of each station (step 1, meta-analysis). These dates are year,
month, day, and hour for the HSR and KDS, and year, month, and day for the
MSS and GS. This is conducted through a serial search.

(2) The common threshold dates from all different techniques were found through
an incremental computational search. The outputs used are from all methods
and with up to 13 different combinations of these. All outputs were generated
through special software and were stored in a computer for use.

(3) The earthquake data from USGS [116] were transformed into an adequate
ASCII file for the generation of the final plot.

(b) Wherever the symbols of different methods coincide in time, this means that the
signs of seismicity are provided by more than one method. If all 13 methods coincide,
this means that the evidence is maximised. The more the techniques point to similar
findings, the more rigid the evidence is. It should be emphasised to the reader that
this coinciding is conducted on the step 1 results, that is, on the fractal outputs.

In the above sense and starting from the combined findings of lesser importance,
it can be observed from sub-figure a of Figure 18 that there are several windows of the
combination of DFA versus Higuchi’s and Sevcik’s methods (�, the plot needs to be zoomed
to show the details) that are in the period of all 19 earthquakes. The fact that there are
three techniques that show this behaviour makes these fractal disturbances noteworthy.
However, it is not possible to discriminate whether these disturbances are post-seismic
activity of the great Wenchuan earthquake or pre-seismic activity of another one in the
area, and this is a limitation of the present methodology. On the other hand, observing the
data of Table 2 carefully, it can be seen that earthquakes 13–18 are practically the seismic
sequence of the Wenchuan earthquake since all occurred on the same day as earthquake 19.
Especially 16–18 happened at the same hour. Moreover, earthquakes 11 and 12 are also
within the post sequence of the Wenchuan earthquake because they occurred just one
(11) and two (12) days after. Moreover, all earthquakes from 8 to 19 occurred in the same
month (April 2008). These peculiar facts complicate discriminating the above concurrent
findings using the three techniques as post- or pre-seismic. This is not the case for the three
co-occurrences of the combinations of the fractal dimension methods (pentagon—yellow,
namely, Sevcik’s versus Katz’s, and Higuchi’s methods (three techniques); pentagon—blue,
viz. Katz’s versus Higuchi’s and Sevcik’s methods (three techniques); and green �, namely,
Higuchi’s versus Katz’s and Sevcik’s methods (three techniques)). These occurred prior
to events 7, 6, and 5 but could be prior to 4, 3, 2, and 1 as well (decreasing time distance
between fractal disturbance and earthquake occurrence) (all these sub-figures need to be
zoomed as well).

The most significant finding of this paper is left for the last section. It can be clearly
observed in all sub-figures that the vast majority of coincidences are prior to the great
Wenchuan earthquake (19) and its synchronous post-earthquakes (10–19). This is the most
important observation that the reader should emphasise. It is not only one method but all
13 methods that coincide. Moreover, during this preparation phase of the great Wenchuan
earthquake, there are far more coincidences for even three or fewer techniques as well (such
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as red � in sub-figure b, namely, power-law analysis versus Katz’s and Sevcik’s methods
(three techniques), and yellow �, that is, DFA versus Higuchi’s and Sevcik’s methods
(three techniques)). In the most emphatic manner, it is here declared that all these fractal
disturbances (importantly, with results from the meta-analysis) are, most possibly, due to
the great Wenchuan earthquake. This is the most important finding of this paper, which we
leave for last to emphasise. It is the great magnitude of the Wenchuan earthquake, its post-
seismic activity, and the novel combining–linking of several different fractal techniques
that have managed to allow such an important finding to be outlined.

(a) (b)

(c)

Figure 18. Overview of the full computational meta-analysis results by all thirteen selected combi-
nations of fractal methods per five, four, three, and two methods. Data from (a) KDS, (b) GS, and
(c) MSS. Symbols: “+” (black): DFA versus all methods (5 techniques—DFA, Power law analysis,
Katz’s, Higuchi’s, and Sevcik’s methods); “�” (red): DFA versus all fractal dimension techniques
(4 techniques); “∗” (green): power-law analysis versus all fractal dimension techniques (4 techniques);
“.” (blue): DFA versus Higuchi’s and Katz’s methods (3 techniques); “�” (yellow): DFA versus
Higuchi’s and Sevcik’s methods (3 techniques); “♦” (magenta): DFA versus Katz’s and Sevcik’s
methods (3 techniques); “O” (cyan): power-law analysis versus Higuchi’s and Katz’s methods (3 tech-
niques); “O” (black): power-law analysis versus Higuchi’s and Sevcik’s methods (3 techniques); “�”
(red): power-law analysis versus Katz’s and Sevcik’s methods (3 techniques); “�” (green): Higuchi’s
versus Katz’s and Sevcik’s methods (3 techniques); “D” (yellow): Sevcik’s versus Katz’s and Higuchi’s
methods (3 techniques); “D” (blue): Katz’s versus Higuchi’s and Sevcik’s methods (3 techniques); “+ ’
(magenta): DFA versus power-law analysis (2 techniques). Horizontal axis is in actual dates.

As final remarks of this paper, it should be noted that the overall approach of combin-
ing different fractal techniques by employing thresholds on the final ASCII outcomes is a
significant novelty of this paper that should be emphasised. Moreover, according to the
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references of this work, there are only a few papers that report different methods in evi-
dencing possible anomalies associated, most probably, with seismic activity. This is also a
significant novelty. In addition, this approach has also worked well with air pollution PM10
time series [37,39,61]. This latter fact makes the methodology and interpretations useful for
other scientific areas as well and is very promising for the continuation of this work.

5. Conclusions

This study investigated the fractal patterns hidden in one-year radon in groundwater
disturbances derived from five stations in China before and after the devastating Wenchuan
(Mw = 7.9) shallow (depth = 19 km) earthquake that occurred on 12 May 2008 (day 133).
The data were analysed with five distinct fractal techniques (DFA; fractal dimensions with
Higuchi’s, Katz’s, and Sevcik’s methods; and power-law analysis). Sliding windows of
step 1 were utilised in segmented portions glided throughout each signal. Via literature-
based thresholds, several notable areas were found in the fractal variations of the KDS,
GS, and MSS data, whilst non-significant fractal portions were found in the signals of
PZHS and SPS. Up to day 133 (12 May 2008), several critical epochs were located in the
signals of KDS, GS, and MSS. Specifically, the DFA exponents during these epochs were
1.5 ≤ α < 2.0 (0.5 ≤ H < 1.0), whereas several exponents were above 1.8 (0.8 ≤ H < 1.0).
The fractal dimension epochs exhibited Katz’s fractal dimensions around 1.0 and 1.2
(0.8 < H < 1), Higuchi’s dimensions between 1.5 and 2 (0 < H < 0.5), and Sevcik’s
dimensions between 1 and 1.5 (0.5 < H < 1.0). Several power-law b exponents were
above 1.7, and numerous were above 2.0. All these are in agreement with precursory
fractional Brownian motion signal parts. The differentiations between the KDS-GS-MSS
and the PZHS-SPS ones could be attributed to the geological background with the theories
of asperities (fractional Brownian motion profile relative roughness) and selectivity. As a
systematic last action, all results of KDS-GS-MSS were analysed using a novel, two-step,
fully computerized methodology that located the exact out-of-threshold fractal areas and
combined the outcomes of the different methods per 5, 4, 3, and 2 (maximum 13 common
combinations) in association with the 19 earthquakes of Mw ≥ 5.5 in the greater area.
The vast majority of the different combinations of techniques showed coincidences prior
to the great Wenchuan earthquake and its synchronous post-earthquakes. This important
finding was justified not only with one method but also, in many cases, with all 13 different
methods. Critical epochs after the Wenchuan earthquake could be attributed to other
earthquakes in the area, whereas a post-seismic view can also be accepted. The combined
results, in association with the great earthquake’s magnitude and small depth, make the
findings of this paper promising for earthquake-related studies.
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