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Abstract: In this study, we use GIS and other analytical platforms to analyze the landslide distribution
pattern in the July 2018 heavy rain disasters in the southern part of Hiroshima Prefecture in Japan
in conjunction with chronological XRAIN (eXtended Radar Information Network) radar-acquired
localized rainfall data in order to better understand the relationship between rainfall characteristics
and landslide probability. An analysis of event rainfall from the July 2018 disasters determines that
landslide-inducing rainfall started from 8:30 AM on 5 July and continued until 7:30 AM on 7 July,
accumulating to up to 368 mm in total precipitation, and that there were two intensity peaks, one
around 7:30 PM on 6 July, and another one around 4:30 AM on 7 July. These two events are associated
with particularly high landslide activity, which indicates that landslide activation is related to peak-
intensity rainfall combined with accumulated continuous precipitation. The XRAIN data were also
used together with landslide reports to calculate the intensity–duration (i.e., I-D) rainfall threshold
for the area. The mean annual precipitation in the whole study area ranged between 2025 mm and
3030 mm, with an average value of about 2300 mm. The spatial distribution of rainfall throughout
the sampled years indicates that rainfall is remarkably localized, with higher values concentrated on
elevated areas. However, it was also observed that the maximum precipitation volumes are not so
closely related to landslide occurrence, and the highest landslide activity was found in intermediate
precipitation class zones instead. Correlating the localization patterns of event precipitation and
mean annual precipitation using Pearson’s correlation coefficient, we found an r value of 0.55, which
is considered a moderate correlation between the two datasets (i.e., event precipitation and mean
annual precipitation).

Keywords: the July 2018 heavy rain disasters; landslides; southern Hiroshima; XRAIN data; rainfall
pattern; rainfall threshold

1. Introduction

Landslide disasters occur very frequently worldwide, causing substantial human
loss and property damage [1–4]. Such events are predisposed by various physical factors
inherent to the slope in question, such as geology, geomorphology, steepness, drainage
system, and others [5,6], but the major triggering factor in most of the cases is rainwater
infiltration [7]. Most of the landslide disasters around the world happen during the rainy
seasons of the respective region, such as around January in South America [8] or July in
Japan [9]. The problem of rainfall-induced landslides in Japan was exemplified during the
July 2018 heavy rain-induced disasters in west Japan. One of the most heavily affected
areas was the city of Kure, in Hiroshima Prefecture (Figure 1).
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lines into the city (except maritime ways) were cut off, and 760 houses were damaged (e.g., 
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Figure 1. Study area around Kure, Hiroshima Prefecture, Southwest Japan, illustrating topographical
elevation and landslide occurrences in July 2018 disasters. Source: [10,11].

During the disasters, landslides and massive floods were caused by heavy rains in an
event officially referred to as “Heavy Rains of July 2018”. In the course of about 10 days,
from 28 June to 8 July, rainfall records reached as high as 1800 mm on the island of Shikoku
and 1200 mm in the Tokai region. Many cities recorded more than 400 mm of rainfall over
the course of 72 h [12].

In Hiroshima Prefecture, one of the most affected areas was Kure City, with 10 people
became deceased due to landslides during the disasters. Additionally, most transportation
lines into the city (except maritime ways) were cut off, and 760 houses were damaged (e.g.,
Figure 2).
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Figure 2. A typical aerial picture of the aftermath of multiple landslides occurred in the July 2018
heavy rain-induced disasters in Kure City, Hiroshima Prefecture. Source: [13].

The southern part of Hiroshima Prefecture is occasionally affected by heavy rain-
induced landslides and flood disasters. Other than the July 2018 event analyzed in this
study, other heavy rain-induced landslide disasters were recorded in July 1967 [14], June
1999 [9,15–17], and August 2014 [18]. A common factor for these landslide disasters is
that they occurred during periods of continuous heavy rain between June and August.
Although some predisposed factors (geology, soil condition, slope geometry, etc.) present
significant relevance for the occurrence of a slope failure, a triggering factor is always
necessary to spark the final break of stability and, consequently, mass movement [19]. The
most common trigger in most landslide-affected areas around the world is an increase in
soil water saturation, led by unusually heavy rainfall [15,19–25].

It is also suspected that long-term antecedent rainfall may be related to landslide
activation [26], and that rocks and soil that have been weathered due to high precipitation
rates might be more susceptible to landslide activation. Moreover, the recurrence of certain
rainfall localization patterns has been noted in various areas of the world, a phenomenon
that is usually attributed to the regional topography and subsequent circulation of air
around the mountains [27–32]. This aspect is expected to be especially remarkable in a
study area such as Kure City (and the majority of Japan’s coastline), with its rugged terrain
and abrupt altitude variability. Therefore, it is expected that event precipitation localization
patterns might be similar to long-term precipitation patterns, making it so that knowing
the mean annual precipitation patterns for long-term data may allow for knowledge of
future landslide-activation-specific rainfall events.

In view of the need for thorough analysis studies of rainfall patterns and their rela-
tionship and relevance with landslide disasters to produce more efficient hazard and risk
mapping methods, this analytical work aims to investigate rainfall data in the study area of
Kure City (Southern Hiroshima Prefecture, Southwestern Japan) in the context of the July
2018 landslide disasters, using innovative XRAIN (eXtended RAdar Information Network)
radar-acquired rainfall data. In Hiroshima, XRAIN started its activities in 2016, roughly two
years before the landslide disasters of July 2018. Yokoe et al. [33], when using XRAIN data
to investigate the same July 2018 heavy rain disasters in Southern Hiroshima, evidenced
the quantitative accuracy of XRAIN radar data to capture and measure precipitation values
in point data when compared to conventional rain gauge methods, with the exception of
rainfall intensity exceeding 80 mm/h. Marc et al. [34] correlated radar-acquired rainfall
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data in Japan with a specific landslide event and discussed how long-term rainfall and
event rainfall localization patterns correlate to slope failure occurrence. They show that
rainfall anomalies in a specific rainfall event are closely relatable to landslide activation,
thus evidencing the importance of long-term rainfall analysis. Likewise, Moriyama and
Hirano [35] use XRAIN data to investigate the relationship between maximum three-hour
cumulative rainfall and landslide occurrence, evidencing that slope failure activation occurs
in peak rainfall timing. Cremonini and Tiranti [36] exemplified a case study allying radar
and gauge rainfall measurement methods for forecasting and early warning systems for
landslide disasters, showing that radar data, though susceptible to quantitative error due
to miscalibration and other technical difficulties, are viable for the detection of landslide
hazards. Other uses of XRAIN data include investigation of the development of small-scale
guerilla rain clouds [37], detailed rainfall measurement methods for forecasting [38], and
snowfall precipitation measurement methods [39].

This study aims to correlate landslide occurrence (during the July 2018 disasters)
with rainfall volume distribution in search of localization patterns, as well as investigate
whether long-term mean annual precipitation localization patterns (in this case, from
2016 to 2021) both before and after the analyzed landslide event may be co-relatable with
precipitation localization patterns of specific rainfall-induced landslide events (in this case,
July 2018). The identification of such localization patterns in different time windows may
evidence the effectiveness of XRAIN radar-acquired mean annual precipitation data as a
landslide conditioning factor in landslide hazard and risk mapping, as well as lead to a
better understanding of the effects of rainfall in landslide activation and probability, which
may contribute to better strategies in landslide disaster prevention methods.

2. Materials and Methods

The rainfall-induced landslide GIS inventory referent to the July 2018 disasters was
provided by the Geospatial Information Authority of Japan [10]. The landslides were
mapped from aerial photographs of the analyzed areas taken by the Geospatial Information
Authority of Japan directly after the July 2018 disasters, from 9 to 16 July 2018. Since the
whole of the study area was entirely encompassed by the surveyed frame, the landslide
distribution of the event is complete and unbiased.

The utilized DEM is provided by the Geospatial Information Authority of Japan [11]
and was acquired with airborne laser survey with 0.2′′ interval (5 m resolution) and has 0.3
m vertical accuracy. Other miscellaneous GIS data were also provided by the Geospatial
Information Authority of Japan [11].

Other details regarding the study area and the utilized database and analysis methods
are presented in the following sections.

2.1. Study Area

The area analyzed in this research comprises a 390.5 km2 rectangle around the mu-
nicipality of Kure in Southern Hiroshima (Figure 1). Stranded between the Hiroshima
Mountains in the north and the Seto Inland Sea to the south, the city was a small shipbuild-
ing town that experienced rapid growth in the first half of the 20th century, which forced
urbanization in areas at or adjacent to the mountainous terrain.

The mountains are mostly composed of volcanic rocks, namely rhyolites and gran-
ites/granodiorites from the Hiroshima Group [40]. When weathered, these rocks erode
into a soil commonly referred to as Masado, which is known to be highly permeable and
brittle when wet, configuring a material prone to slope failure during rainfall events [25].
This setting, common around the country’s coastline, makes the city a potential high-risk
area for landslide disasters.

The Seto Inland Sea (to which Kure is adjacent) has little rainfall compared to the
surrounding oceanic coastal areas in Japan, like the Sea of Japan and the Pacific Ocean.
Although a substantial part of the oceanic precipitation clouds is blocked either by the
Chugoku Mountains northward or the Shikoku Mountains southward, and the region is
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relatively dry [41], heavy rainfall is particularly concentrated in mountainous areas. In
Kure, the average annual precipitation ranges from 1000 to 1600 mm, characterizing a
relatively mild rainy zone. Mountain areas around the Seto Inland Sea, however, reach
annual average precipitation of 2000 mm to 3000 mm. The period of the year with the
heaviest rainfall occurs between June and July every year when the average precipitation
reaches 227 mm in a month [42].

2.2. XRAIN Radar-Acquired Rainfall Data

XRAIN radar technology started to be utilized in Japan in the year of 2014, operated by
the country’s Ministry of Land, Infrastructure, Transport and Tourism. The technology used
in the measurements differs from common radar rainfall data since it uses Multi-parameter
(MP) radars, which allows for more accurate measurements of rainfall volume.

Although not as quantitatively accurate as regular rain gauge measurements, radar-
based rainfall measurement methods have the advantage of being performed over a bi-
dimensional “planar” area, where each pixel in the area’s grid represents a specific value,
whereas rain gauge methods extrapolate the value of a single measurement station over
extensive regions. This means that radar-acquired data allow for rainfall distribution
analysis on a larger scale.

In landslide hazard assessment studies, rainfall data usually comprise mean annual
precipitation data collected via rain gauge stations. Typically, each station is referent to a
whole municipality and is located near city centers. In the case of the study area, Japan’s
Meteorological Agency (JMA) has a measurement station in downtown Kure, with the
other nearest stations being at Kurahashi, 16 km southwards, and at Hiroshima, about 18
km northwest.

Slope failure assessment and analysis using rainfall data have been widely performed
in the literature, including for the study area of this work [9,16]. However, rain gauge
stations gather information on the scale of whole municipalities, which may not be repre-
sentative of the actual spatial distribution of precipitation in a degree of detail considered
ideal for various methods of slope failure assessment. In the case of Kure City, for example,
since the nearest rain gauge measurement station is located about 16 km south of the
Kure station, mean rainfall data would have, at best, 16 km of accuracy. In reality, rainfall
intensity values may vary in the order of less than hundreds of meters, especially in areas
with rugged mountainous terrain or coastal regions. However, recent advancements in
radar technology, such as XRAIN (eXtended RAdar Information Network), provided by
the Data Integration and Analysis System [43], have allowed for instant measurement of
rain intensity in much more detailed scales of spatial distribution.

XRAIN data are represented in 287 × 230 m pixel grids, where each pixel value repre-
sents the rainfall intensity in mm/h for the referred location at the time of measurement,
which occurs every 1 min. The data are obtainable in the Data Integration and Analysis Sys-
tem (DIAS) platform, which is operated by the University of Tokyo and sponsored by the
Ministry of Education, Culture, Sports, Science and Technology (MEXT). The measurement
spacing can be set as 1, 5, 10, 15, 30, and 60 min.

Although XRAIN raw data express rainfall intensity, precipitation volume can be
estimated by the calculation of intensity during a specified period either by averaging
the measurements over that period and multiplying it by the number of times that the
measurement interval is repeated in it, or simply by summing the intensity values in the
case of a 1 h interval analysis with no missing measurements.

In this work, the XRAIN data were downloaded as .zip packed .csv files spaced in
5-min, 30 min, or 1 h intervals. The .csv files comprise tables with cells spatially organized
so that each cell represents a 287 × 230 m pixel in a north-oriented grid representing the
designated area, and each cell value expresses the rainfall intensity in mm/h at the time of
measurement. For the study area, each of the files comprised of a 97 × 67 grid with 4999
pixels. XRAIN data collection for the area of the Chugoku region (where Kure is situated)
started in 2016, so the range of collected data spans from 2016 to 2021, summing up to more
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than 60,000 .csv files. These files were combined in single worksheets in Microsoft Excel for
calculations, analysis, and then conversion into ArcGIS shapefiles.

2.3. Data Analysis

After proper conversions, the data were jointly analyzed in ArcGIS Pro for localization
and spatial distribution inspections and in Microsoft Excel for other statistical analysis and
data visualization.

The investigation methods include determining average precipitation throughout the
analyzed time windows (from the year 2016 to 2021) for the whole study area, as well as its
spatial distribution. With the use of XRAIN data, precipitation is calculated by acquiring
hourly rainfall intensity for each cell of the study area throughout the analyzed period, with
a one-hour interval between each intensity measurement in the case of annual precipitation.
The hourly rainfall was then converted to precipitation data by multiplying the intensity
values by the number of hours in the desired period (e.g., 8760 for a common year). The
general flow and steps of the research are illustrated in Figure 3.
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2.3.1. Localization Patterns

The reason why accumulation data were analyzed in the format of one year is that
meteorological patterns tend to repeat themselves in the cycle of a year. It is expected that
rainfall localization and quantification will generally recur after the interval of a year, while
the same is not expected in monthly or semiannual intervals. The repetition of rainfall
localization patterns over the years evidences the tendency of certain areas to receive
more precipitation and, thus, be more susceptible to landslides, both in the sense of soil
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and rock weathering by rainfall and also in the sense of slope failure triggered by soil
saturation during high precipitation events. Thus, it is considered that annual rainfall
analysis is appreciated in looking for localization patterns, even in years previous and
subsequent to when the case study landslide disaster event occurred. This hypothesis
is judged by visualizing these localization patterns in map view along with the actual
landslide occurrence points of the July 2018 disasters.

The relationship between localized precipitation and landslide occurrence was fur-
ther explored by calculating landslide density based on precipitation class zones. The
precipitation class zones vary for each analysis period, depending on the localization and
quantity of precipitation for the analyzed period. For each analysis (total rainfall from 2016
to 2021 and event rainfall between 5 and 7 July 2018), five precipitation zones (very low,
low, medium, high, and very high) and their boundaries were determined by calculating
five equal intervals based on the total precipitation value of the analyzed period. The
landslide density for each zone is determined with the use of the “Spatial Join” analysis
tool in ArcGIS.

In order to investigate the differences and similarities between the annual rainfall
patterns and to understand the triggering of slope failures in the July 2018 disasters, along
with the map visualization of localized precipitation in the same fashion as the annual
rainfall analysis, a timeline of rainfall intensity in the study area was constructed during
the 2-day period of rainfall pertaining to the July 2018 disasters. This was carried out by
arranging 30 min interval XRAIN rainfall intensity measurement data from the whole study
area in a 47 h (period of continuous rainfall during the disasters) span with 30 min accuracy.
The timing of rainfall intensity was then compared to disaster documentation, as well as
localization patterns along the area.

2.3.2. Intensity–Duration Rainfall Threshold

Empirical slope failure thresholds are based on the statistical analysis of previous
rainfall history that has not resulted in landslides. These thresholds are usually expressed
by plotting lines in Cartesian, semi-logarithmic, or logarithmic coordinates, where values
above the line are considered prone to slope failure occurrence. In empirical slope failure
thresholds, the use of data reflecting rainfall conditions that did not result in slope failure
triggering is also necessary for efficient sampling [22]. Extensive research and attempts
of empirically based threshold models evidence that the threshold values cannot globally
represent the situation for slopes and climate settings in any part of the world, which leads
to the necessity of developing different models depending on the geographical situation or
at least co-relatable settings [44].

Intensity–duration (ID) thresholds are the most widely adopted type of threshold
analysis and are considered efficient for making a relationship between the intensity of
event rainfall and the accumulation of precipitation from the start of rainfall to the failure
event. ID thresholds are usually expressed as a line plotted over Cartesian coordinates with
logarithmic values, where rainfall duration until the event is represented by the horizontal
(X) axis and event rainfall intensity is represented on the vertical (Y) axis. The threshold
lines are usually expressed in the form of the power law equation:

I = c + α× Dβ (1)

where I is rainfall intensity, D is rainfall duration, and c, α and β are parameters based
on the study area. Since ID thresholds always exhibit situations where higher intensity
requires less duration for landslide activation, β is always a negative value, characterizing
a negative power law. According to the collection of threshold values summarized by
Guzzetti et al. [22], the majority of the ID threshold equations across the bibliography
exhibit c = 0, α between 4 and 176.4, and β between −2 and −0.19.

The intensity–duration threshold analysis always makes use of a defined duration
range, given by the duration between the first analyzed landslide event and the last (first
event duration < D < last event duration). Local threshold values usually have smaller
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ranges due to the narrower sampling data available for analysis, which is also reflected in
higher threshold values.

2.3.3. Event Precipitation and Mean Annual Precipitation Comparison

In order to investigate whether there is a correlation between spatial and localization
patterns of rainfall when comparing event precipitation (in this case, along the 48 h between
5 and 7 July of 2018, when the landslide disasters of that event occurred) and long-term
precipitation (for the years between and including 2016 and 2021, when XRAIN data were
available for the study area), relative precipitation values for event precipitation and mean
annual precipitation and their differences were calculated, and Pearson’s product-moment
correlation coefficient (PPMCC) was employed to compare these two datasets.

What is here defined as relative precipitation is the percentage relative to the maxi-
mum precipitation which the sample cell represents for a given period. This results in a
normalized value representing the relative precipitation of XRAIN precipitation cells in the
study area, allowing for a quantitative comparison of rainfall localization patterns between
different time periods (i.e., event precipitation over 47 h and mean annual precipitation
between 2016 and 2021). Thus, the relative precipitation difference is obtained simply by
subtracting the mean annual precipitation from the relative event precipitation, both in
percentage values. A negative relative precipitation difference value indicates that event
precipitation was less intense than the usual mean annual precipitation in that cell, while a
positive value indicates that it was more intense, and a value near 0% suggests that there
was no big deviation of localized precipitation in that area and that there is a good fit
between the two datasets.

The PPMCC value, represented by r, is a measure of linear correlation between two
sets of data, given by the ratio between the covariance of two variables and the product of
their standard differences [45]. A value closer to 1 represents a good fit between compared
datasets. It is given by the following formula:

r = ∑ (x− x)(y− y)√
∑(x− x)2∑(y− y)2

(2)

where x and y are the sample means for each dataset, which in the case of this study are
the collection of XRAIN-measured precipitation pixels for the event precipitation and the
long-term mean annual precipitation, both normalized to percentage values. Only pixels
above land were considered in the calculation.

3. Results and Discussion
3.1. Event Rainfall: 5 to 7 July 2018 Precipitation

Inspection of XRAIN chronological data of the time before and leading to the landslide
disasters at Kure City shows that Kure was experiencing a rest of substantial rainfall since
7 AM of 4 July, when Category 1 Typhoon Prapiroon (TY 1807) was weakening into a
low-pressure area as it advanced to northeastern Japan, leaving the city to mildly good
and sunny weather. The weather was mostly clear for about 25 h until 8:30 AM of 5 July,
when heavy rainfall clouds approaching from the southwest landed on Honshu, laying
the city into a continuous heavy rainfall situation for about 2 days, a condition which
would eventually lead to landslides in the night of 6 July and early morning of 7 July, after
which the heavy rainfall finally ceased, and the weather was relatively clear for the whole
following day.

Analysis of rainfall data of the event for the study area shows that in the period
of 47 h between 5 July 8:30 AM (start of rainfall) until 7 July 7:30 AM (end of rainfall),
landslide density based on the five equal interval precipitation classes show peak landslide
activity in high precipitation classes (16 landslides per km2 in the 403.10 mm to 434.45 mm
precipitation zone), though there is a significant decrease in landslide activity in maximum
precipitation zones, with 10 landslides per km2 in the 434.45 mm to 465.79 mm precipitation
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zone (Figure 4). It is supposed that maximum precipitation zones are not related to peak
landslide activity because these zones are related to peak topographical areas, a relationship
which will be further discussed in the following sections of this study.
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Figure 4. Localized accumulated precipitation between 5 July 8:30 AM and 7 July 7:30 AM in the
study area (top) and accompanying bar graphs of landslide density per precipitation class (bottom).
Precipitation classes were divided according to equal intervals in total precipitation volume. Values
above each bar in the graph represent the number of landslides in the respective zone.

Analysis of average rainfall values for the whole study area allows for chronological
interpretations in the case of an isolated event. Taking this approach, it was noted that
the average rainfall in the study area was 7.8 mm/h, and the total cumulative rainfall was
368 mm. There were two peaks of rainfall intensity, one around 7:30 PM of 6 July (35 h into
the event) with an intensity of 47 mm/h, and another at 4:30 AM of 7 July (44 h into the
event) when rainfall intensity reached 40 mm/h (Figure 5).
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Figure 5. Graph illustrating the history of rainfall over the course of 47 h from 5 July 8:30 AM to 7
July 7:30 AM in the study area.”

The reports from the disasters point to high landslide activity in Kure around 19:40
PM on 6 July and then again around 5 to 6 AM on 7 July [13]. These two main landslide
occurrence reports will hereinafter be called “subevent 1” and “subevent 2”, respectively.
Checking the XRAIN rainfall intensity timeline in Figure 5, it is noticeable that these two
subevents coincide directly with the rainfall intensity peaks around 7:30 PM on 6 July and
4:30 AM on 7 July. This evidences that, as expected, landslide triggering is related to peak
intensity event rainfall, and that—since the rainfall intensity in subevent 2 is lower than in
subevent 1—the intensity threshold for landslide activation is lower when there is longer
duration cumulative rainfall. This dynamic will be further explored in the form of rainfall
threshold calculations in the following subsection.

3.2. Intensity–Duration Threshold for Southern Hiroshima

The reports published by the Hiroshima Prefectural Government [13] concerning the
disasters describe nine specific landslide events throughout Southern Hiroshima. One of
the events was not considered in the analysis for displaying outlining values. The events
and their details are displayed in Table 1.

Although some of the events occurred outside the study area of Kure City proposed
in this analysis, they were used to construct an intensity–duration threshold for Southern
Hiroshima Prefecture by plotting the points in a logarithm cartesian coordinate system
where the horizontal axis represents duration until failure and the vertical axis represents
rainfall average intensity until failure. The threshold and its formula are represented by the
resultant power line. The calculated intensity–duration threshold for Southern Hiroshima
is represented by the equation I = 133.44 × D−0.841. For purposes of comparison with
various other thresholds for different areas of the globe, the calculated threshold line is
shown alongside the threshold collection provided by Guzzetti et al. [22] in Figure 6. It is
noticeable that the resultant threshold is located slightly above the average in the Guzzeti
et al. [22] collection (Figure 6). The proportionally inverse relationship where less rainfall
intensity is needed for landslide activation as the rainfall duration increases is clearly
observed in the calculated threshold.
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Table 1. Landslides events of the July 2018 Southern Hiroshima disasters reported by Hiroshima
Prefecture Civil Engineering and Construction Bureau Erosion Control Division [13].

Location Event Time Duration Until Event (h) Average Intensity (mm/h)

South Kuchida, Asakita Ward, Hiroshima
City 6 July 2018 18:40 34:10 7.66

7-chome, Yanohigashi, Aki Ward,
Hiroshima City 6 July 2018 19:10 34:40 7.22

Tenno, Kure City 6 July 2018 19:10 34:40 6.78

Koyaura, Sakamachi, Aki District 6 July 2018 19:15 34:45 7.73

5-chome, Kawakado, Kumano-cho,
Aki-gun 6 July 2018 19:50 35:20 7.52

5-chome, Minatomachi, Takehara City 6 July 2018 21:30 37:00 6.43

6-chome, Kihara, Mihara City 7 July 2018 0:40 40:10 6.43

Sakuramachi, Onomichi 7 July 2018 7:10 46:40 6.73
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3.3. Long-Term Rainfall: Mean Annual Precipitation

Although this research work takes into account a landslide inventory referent ex-
clusively to the July 2018 disasters and not a complete landslide inventory for all of the
analyzed mean annual precipitation years (2016–2021), a correlation of MAP and specific
landslide events was investigated in order to explore the relevance of long-term recurring
antecedent rainfall and landslide occurrence, as also pointed out by Pennington et al. [26].

Upon inspecting the annual precipitation in the study area throughout the years 2016
to 2021, it was noted that mean rainfall accumulation amounts to an average of 2300 mm
per year, with a peak value of 3030.29 mm and a minimum value of 2025 mm. The average
accumulation values for each of the inspected years are 2954.8 mm for 2016, 2108.7 mm for
2017, 2456.3 mm for 2018, 1847.9 mm for 2019, 2383.3 mm for 2020, and 2852.49 mm for
2021. These results can be visualized in Table 2.

Table 2. Spatial minimum, maximum, and average values of annual precipitation volumes between
the years of 2016 and 2021 for the study area of Kure City, in Southern Hiroshima, acquired with
XRAIN data.

Year/Period Minimum (mm) Maximum (mm) Average (mm)

2016 2336.9 3440.2 2620.3
2017 1861.0 3268.1 2125.4
2018 2166.7 3116.1 2467.9
2019 1503.3 2505.8 1852.7
2020 2067.8 3285.2 2383.3
2021 2039.3 3052.6 2352.5

2016–2021 2025.5 3030.4 2300.3

Although these values differ from the Japanese Meteorological Agency’s [12] mean
annual rainfall results of 1646.5 mm between 2016 and 2021 for Kure’s rain gauge measure-
ment station, it is noticeable that the precipitation history from 2016 to 2021, according to
the analyzed XRAIN data, follows the exact same timeline as the JMA values for these years:
1925 mm for 2016, 1359.5 mm for 2017, 1757 mm for 2018, 1215 mm for 2019, 1660 mm for
2020, and 1962 mm for 2021. The JMA rain gauge values for Kure City every year seem
to be lower than the XRAIN radar mean annual values. This may be explained by the
specific localization of the rain gauge measurement sampling area: JMA’s measurement
station for Kure City is located in downtown Kure near the port, a low topographical area
near sea level. As further discussed in this study, heavy rainfall usually accumulates in
areas of elevated topography. Since the XRAIN-based mean annual rainfall calculation
takes into consideration the whole study area, including mountainous regions of elevated
topography, it is expected that that value would be higher than the one measured at the
rain gauge measurement station in a lowland area.

Concerning localization aspects of the annual rainfall accumulation, all years present
very similar spatial patterns where peak values are concentrated around Mt. Noro, at the
central east part of the area, and subordinately Mt. Enofuji, at the central west part of
the area. Minimum values, on the other hand, are concentrated in the topographically
low valleys of central Kure City (Figure 7). The aspect that heavier rainfall volumes
are concentrated in topographically elevated areas is quite noticeable when comparing
localization patterns with topographical values. This relationship is illustrated in the graph
and map of Figure 8.
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Figure 7. Localized mean annual precipitation for the years 2016 through 2021 (XRAIN radar-acquired
data), along with landslide occurrence points recorded from the July 2018 disasters in the study
area of Kure City (on top), as well as bar graphs indicating landslide density in each precipitation
class (bottom). Precipitation classes were divided according to equal intervals in total precipitation
volume. Values above each bar represent the number of landslides in the respective zone.

Comparing the localized rainfall aspects and the occurrence of landslides in the area
during the 2018 disasters, a relationship between intermediate rainfall values and landslide
activity is noticeable, especially around the northern flank of Mt. Noro, and at Mt. Enofuji,
where landslide occurrence was particularly significant.
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Figure 8. Relationship between MAP from 2016 to 2021 (represented by green-red color grading) and
topographical elevation (represented by contour lines), as well as bar graphs indicating the mean
topographical in relation to the mean annual precipitation. It is noticeable that high precipitation
values are concentrated in peak elevation locations.

The relationship between rainfall accumulation values and landslide occurrence is il-
lustrated in Figure 7, where landslide density per precipitation class is compared to rainfall
volumes in each specific precipitation class. The five precipitation classes were divided
based on equal intervals. It is noticeable that landslide occurrence initially increases accord-
ing to rainfall value, usually peaking around intermediate classes (9.2 landslides per km2

in the 2427.43 mm to 2628.42 mm precipitation class zone). However, there is a significant
decrease in landslide density in classes of high precipitation volumes (3 landslides per km2

in 2628.42 mm to 2829.41 mm precipitation class zones and 2.2 landslides per km2 in the
2829.41 mm to 3030.39 mm precipitation class zone). This may be explained by the fact
that high rainfall volumes are typically concentrated in high topographical areas (Figure 8),
which are not so prone to landslides since the slopes in these regions are usually composed
of summits or scarps, weathered down to hard bedrock, or composed of flat mountain
peaks. This relationship is also reflected in the relationship between landslide occurrence
and slope angle, where landslide activity peaks in intermediate slope angles but decreases
in very high slope angles due to the hard material and low weathered layer thickness char-
acteristics of high-angle slopes (Rodrigues Neto, 2020). This demonstrates that localized
rainfall volume, even when analyzed in long ranges such as yearly volumes instead of
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in single event ranges, may be co-relatable with landslide occurrence. The relationship,
however, is not a simple direct proportional relation (where landslide occurrence increases
directly with mean annual precipitation) but more of a parabola with peak landslide activity
observable in intermediate mean annual precipitation zones.

3.4. Event and Long-Term Rainfall Localization Patterns Correlation
3.4.1. Relative Mean Annual Precipitation Differences

When comparing the relative precipitation values and their differences in each XRAIN
cell for event precipitation and mean annual precipitation (Table 3), it is observed that
few cells present differences below −10% or above +30%, as illustrated in Figure 9. The
average difference between cells is 13.83%, with a maximum positive difference of 45.37%,
a maximum negative difference of −58.72%, and a minimum of no substantial difference.

Table 3. Data on relative precipitation (percentage of maximum precipitation in the analyzed period)
cells for the study area, XRAIN radar-acquired rainfall data. The difference represents the amount in
which relative event precipitation exceeds (for positive values) or falls behind (for negative values)
the relative mean annual precipitation.

Relative
Precipitation

Number of
Landslides

Number of XRAIN
Cells

Landslides Per
Square km

−50% 1 8 1.88
−40% 0 13 0
−30% 0 19 0
−20% 9 105 1.39
−10% 110 483 3.95

0% 175 803 3.47
+10% 186 1002 3.01
+20% 263 976 4.15
+30% 192 642 4.83
+40% 192 259 11.76
+50% 41 25 24.74
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Figure 9. Number of XRAIN cells for relative precipitation difference classes. A concentration of cells
near the 0% mark would indicate a good fit and not much change in localization patterns between
event precipitation and mean annual precipitation.

The relative precipitation difference values are illustrated in map form, along with
landslide points from the 2018 disasters in map form in Figure 10. It is noticed that
landslide occurrence increases directly with a positive relative precipitation difference
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(Figure 11). That is, landslides occurred more frequently in areas where the 2018 disaster
event precipitations were more intense than the usual mean annual precipitation, in what
are called extreme precipitation anomalies. This result was also reached and presented
by Marc et al. [34], who analyzed landslide inventory in relation to both event rainfall
and long-term precipitation data, finding a much more compatible match of landslide
occurrence with rainfall anomalies relative to 10-year-return rainfall events.
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Figure 11. Graph showing the relationship between landslide density and relative precipitation
difference. It is noticeable that high landslide activity takes place in areas where the relative event
precipitation is more intense than the relative mean annual precipitation.

3.4.2. Pearson’s Product-Moment Correlation Coefficient

The calculation of PPMCC by comparing the relative precipitation percentage values
of mean annual precipitation between 2016 and 2021 and event precipitation of the 2018
disasters for each XRAIN rainfall cell of the study area resulted in a coefficient value of
0.55, which in Pearson’s correlation scale is a value considered of moderate correlation. The
relationship is illustrated in the graph of Figure 12, which shows a proportional relationship
between the two analyzed datasets.
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Figure 12. Pearson’s correlation coefficient graph for the correlation of mean annual precipitation and
event precipitation localization values after being normalized to percentage values. The coefficient’s
r value resulted in 0.55, which is considered representative of moderate correlation.

4. Conclusions

In order to better comprehend the relationships between precipitation and landslide
occurrence and investigate the recurrency of rainfall localization patterns throughout the
years, rainfall data were analyzed along different ranges of intervals in terms of inten-
sity, volume, and localization using the landslide events around Kure City (Hiroshima
Prefecture) during the July 2018 heavy rain disasters as a study case.

Considering the rainfall events of the July 2018 disasters, it was observed that Kure
City experienced heavy continuous rainfall starting at 8:30 AM on 5 July, a condition which
continued for about 47 h until the cessation of rainfall at 7:30 AM on 7 July. XRAIN data
show that the precipitation accumulated up to 368 mm and that the mean rainfall intensity
was 7.8 mm/h. There were two peaks of rainfall intensity, one 35 h into the event at 7:30
PM of 6 July, when rainfall intensity reached 47 mm/h, and another 44 h into the event, at
4:30 AM of 7 July, when rainfall intensity reached 40 mm/h. These peaks are associated
with high landslide activity according to records of the disasters. Considering the rainfall
localization during the July 2018 disasters in Kure City, it was observed that landslide
density peaks in high precipitation class zones, with 16 landslides per km2 in the 403.10
mm to 434.45 mm precipitation zone. There is, however, a decrease in landslide activity in
maximum precipitation zones, which is attributed to the flat mountain peak topography or
hard rock material associated with elevated areas.

XRAIN data were also utilized together with reports of landslide occurrences in eight
locations of Southern Hiroshima in order to calculate an intensity–duration threshold for
the area, resulting in the threshold of I = 133.44 × D−0.841, where I is the average rainfall
intensity until failure, and D is rainfall duration until failure. When compared with Guzzetti
et al.’s [22] collections of rainfall thresholds for landslide activation throughout the world,
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it is noted that the calculated threshold for Southern Hiroshima is found slightly above the
world average.

Analysis of rainfall data from 2016 to 2021 demonstrated that the mean annual precip-
itation amounts to about 2300 mm in the study area. Considering the spatial distribution
of rainfall volumes around the study area, the XRAIN data show that precipitation vol-
umes are highly localized, with intense rainfall values being concentrated in locations of
elevated topography. However, peak landslide density is found in areas associated with
intermediate precipitation volumes, peaking on 9.2 landslides per km2 in the 2427.43 mm
to 2628.42 mm precipitation class zone. Maximum precipitation class zones, however, show
decreased landslide activity when compared to the intermediate zones.

The decrease in landslide activity in maximum precipitation areas, observed in the
mean annual precipitation localization maps and also, to some extent, in the event precip-
itation localization maps, may be explained by the fact that the maximum precipitation
zones are associated with high topographical elevation areas, usually referent to bedrock-
weathered mountain peaks and extremely steep slopes, which are not prone to landslide
activity.

Comparing the rainfall localization patterns in the study area of the event precipitation
during the 47 h of the July 2018 disasters and the mean annual precipitation from 2016
to 2021 by checking the relative precipitation differences in the two datasets indicates
that although not many XRAIN cells show differences higher than 30%, particularly high
landslide activity is closely related to areas of peak positive relative precipitation differ-
ence, that is, where event precipitation was more intense than mean annual precipitation.
This conclusion of strong correlation between landslide occurrence and extreme rainfall
anomalies is also pointed out by Marc et al. [34].

Using Pearson’s correlation coefficient, an r value of 0.55 was found, which is con-
sidered a moderate correlation. Although the correlation is not perfect or even very high,
a positive relationship is found, which points out that mean annual precipitation local-
ization patterns may indeed be used to forecast what the localized rainfall may be in a
specific future event. It is judged that these patterns are controlled by the topographical
features of the area (which is shown in this study by how maximum rainfall volumes are
usually concentrated in peak topographical areas) or by meteorological dynamics of rainfall
movement.

In this research, it was found that landslide activity is more co-relatable with high
precipitation volumes in event rainfall and not so much with mean annual precipitation
volumes, where peak landslide density is found in intermediate precipitation zones, though
maximum rainfall volumes show a decrease in landslide activity in both observations.
Relative precipitation difference, however, was found to be closely related to landslide
activity in a directly proportional behavior. An ID rainfall threshold for landslide activation
was calculated for the Southern Hiroshima area using XRAIN radar-acquired rainfall data.
Finally, it was evidenced that long-range localized precipitation patterns are moderately co-
relatable with event precipitation localization patterns. Recommendations for future studies
on the subject include using mean annual precipitation data in landslide susceptibility
mapping approaches, as well as further investigation into what factors influence rainfall
localization.
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