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Abstract: The interferometric synthetic aperture radar (InSAR) technique was used in this study
to derive the temporal and spatial information of ground deformation and explore its temporal
correlation with groundwater dynamics. The random forest (RF) machine learning method was
used to model the spatial variability of the temporal correlation and understand its influential
contributors. The results showed that groundwater dynamics appeared to be an important factor
in InSAR deformation at some bores where strong and positive correlations were observed. The RF
model could explain up to 72% of spatial variances between InSAR deformation and groundwater
dynamics. The spatial and temporal InSAR coherence (a proxy for the noise in InSAR results that
is strongly related to vegetation) and soil moisture (difference, trend, and amplitude) were the
most important factors explaining the spatial pattern of the temporal correlation between InSAR
displacements and groundwater levels. This result confirms that noise sources (including deformation
model fitting errors and radar signal decorrelation) and perturbation of the InSAR signal related
to vegetation and surficial soils (clay content, moisture changes) should be accounted for when
interpreting InSAR to support groundwater-related risk assessments and in groundwater resource
management activities.
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1. Introduction

Land subsidence, which includes both gentle down-warping and the sudden sinking of
the ground surface [1], is an environmental geological phenomenon that has been observed
in many countries [2]. Chen et al. [2] summarized the impact of land subsidence in four
aspects: (1) damaging infrastructure, e.g., pipelines, buildings and dams, (2) reducing
the serviceability of roads and railways due to deformation of the road surface and rail
foundations, (3) increasing exposure to flooding, and (4) creating channels for ground
pollution sources to penetrate underground sources, causing groundwater pollution.

Since Interferometric Synthetic Aperture Radar (InSAR) can monitor temporal and
spatial changes in ground level over large regions with up to millimeter-scale precision [1],
it has been wildly used in many countries to derive land subsidence information and to
map its spatial distribution, e.g., Australia [3], China [4], France [5], Italy [6], Mexico [7]
and USA [8].

Over the last few years, Random Forest (RF), a machine learning technique, has been
widely used to investigate the spatial and temporal variations of InSAR displacements
and explore its associated factors. For example, Ilia et al. [9] used RF to predict the
subsidence the deformation rate based on three variables, which were able to explain
75% of the variance: the thickness of loose deposits, Sen’s slope value of groundwater-
level trend, and the Compression Index of the formation covering the area of interest.
Choubin et al. [10] predicted earth fissuring hazards, which are highly associated with
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land subsidence, with five machine learning models and found that the RF model was the
best model for modeling the earth fissure hazard process. Sensitivity analysis indicated
that the hazardous class was associated with low elevations with characteristics of high
groundwater withdrawal, a drop in the groundwater level, high well density, high road
density, low precipitation, and Quaternary sediments distribution. Mohammady et al. [11]
assessed land subsidence susceptibility using RF and showed that the distance from the
fault, elevation, slope angle, land use, and the water table was the greatest relation to
subsidence occurrence. Rahmati et al. [12] compared four tree-based machine learning
models for land subsidence hazard modeling and concluded that the RF model had the
lowest predictive error for mapping the LS hazard, and the groundwater drawdown was
seen to be the most influential factor that contributed to land subsidence in the study area.
Zamanirad et al. [13] used three machine learning models, i.e., Boosted Regression Trees
(BRTs), Generalized Additive Model (GAM) and RF, to produce a spatial land subsidence-
prone prediction map based on four anthropological and geo-environmental predictors.
The RF model, as a benchmark model, showed a slightly higher goodness of fit (85.45%)
compared to the GAM, although its prediction power was lower than the GAM. The
drawdown of the groundwater level, with a 77.5% contribution, was found to be the
main causative predictor of land subsidence occurrence, followed by lithology (19.2%),
distance from streams (2.5%), and altitude (0.8%). Arabameri et al. [14] evaluated the
12-factor significance of land subsidence using an RF model and found that groundwater
drawdown, land use, land cover, elevation, and lithology were the most important factors.
Chatrsimab et al. [15] assessed the efficiency of the hybrid algorithm Particle Swarm
Optimization-Random forest (PSO-RF) for the development of a land subsidence prediction
model with 11 factors. It was found that the aquifer media (clay, silt, or sand) was the
most influential factor in the development of land subsidence, followed by groundwater
drawdown, transmissivity and aquifer storage coefficient. Chen et al. [2] investigated
the spatial correlation between Interferometric Synthetic Aperture Radar (InSAR)-derived
subsidence and groundwater levels in four aquifers in Beijing and concluded that the
variation in the groundwater level in the second confined aquifer had the strongest spatial
correlation with subsidence in all aquifers, although its impact decreased after the South-
to-North Water Diversion Project. Ebrahimy et al. [16] produced and compared the land
subsidence susceptibility map using three machine learning approaches, i.e., the Boosted
Regression Tree (BRT), RF, and Classification. Additionally, the Regression Tree (CART),
with twelve influencing variables, namely altitude, slope angle, aspect, groundwater
level, groundwater level change, land cover, lithology, distance to fault, distance to the
stream, stream power index, topographic wetness index, and plan curvature. The results
showed that all methods performed well, and the BRT model yielded a slightly higher
prediction accuracy than RF. Elmahdy et al. [17] used the RF model to spatially investigate
the relationship between locations of land subsidence and the sinkhole and conditioning
factors (CFs) and showed that the area under the curve was 88.4% for the RF model. The
CFs include topographic factors (e.g., altitude, slope, topographic curvature), hydrological
factors (paleochannels and densities of paleochannels), geological factors (surface and
subsurface fault zones, distance from fault zones and lithological units) and land use/land
cover (LULC) factors. Arabameri et al. [18] predicted the land subsidence distribution by
generating land subsidence susceptibility models using five different artificial intelligence
(AI) models and found that the conditional random forest (Cforest) method yielded the
best results. In summary, the RF technique has been widely used in the last decade to
investigate the relationship between ground deformation data derived from InSAR, field
surveys, and other contributing factors. The main contributing factors vary from case to
case depending on the regional hydrogeological conditions.

The objective of this study was modeling and understanding the influence that cer-
tain spatially distributed parameters had, not only on the spatial variation in ground
displacement per se, which previous studies in the literature aimed at, but on the spatial
variability of the temporal correlation between InSAR displacements and groundwater
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level. Such parameters may include rainfall, evaporation, changes in soil moisture and
texture, elevation and slope, land use and land cover, groundwater level and aquifer stor-
age, distance to the river and road, and lithology. Understanding the correlation between
ground displacement and groundwater dynamics is not only essential for both groundwa-
ter management and land subsidence risk management, but it is also a scientific question
on whether deformation might be driven by inelastic or elastic aquifer deformation.

In addition, as InSAR data are becoming increasingly available, there is a need to
understand how to filter out unwanted contributors and ease its integration into water
management activities. This study contributed to this objective by exploring how an RF
model can help assess these contributors and their relative contributions to the InSAR
ground deformation signal.

2. Materials and Methods
2.1. Study Region

The study area is located in southeast Australia in the state of New South Wales
(NSW, Figure 1), where a severe and prolonged dry period occurred in 1997–2009, which
is generally referred to as the Millennium Drought [19]. This drought event, together
with increasing groundwater extraction, has contributed to and added to the significant
groundwater depletion observed in the last 50 years [20]. Ground deformation that occurs
as a result of irreversible, inelastic compaction that follows dewatering is of concern for the
NSW state government. Protecting the structural integrity of aquifers and aquitards and
potentially restricting extraction upon the evidence of irreversible, inelastic compaction are
explicit regulatory objectives [21,22]. As many areas in this region are indeed characterized
by long-term groundwater abstraction leading to widespread dewatering, the regulator has
a need for evidence of any subsequent compaction. However, as groundwater extraction is
only one of many factors that may influence deformation, this study did not only explore
the temporal correlations between InSAR displacements and groundwater dynamics but
also its spatial variations as well as its various influential factors. Contextual information
about the study region and the background of this research can be found in the project
report [23].
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The study region encompassed three major Groundwater Management Areas (GMAs)
of the NSW Riverina and several smaller upstream GMAs: Lower and Upper Lachlan (LL,
UL), Lower and Mid Murrumbidgee (LMB, MMB), and Lower and Upper Murray, as well
as Billabong Creek (LM, UM, BC, Figure 1).

2.2. Groundwater Dynamics

Groundwater depletion is one of the most common factors leading to ground displace-
ments. For example, Zhang et al. [4] have shown that the main cause of land subsidence in
Beijing, the capital city of China, is intensive groundwater extraction. Chaussard et al. [24]
have demonstrated that groundwater extraction for agricultural and urban activities is the
main cause of land subsidence in Mexico.

Two indicators of groundwater dynamics in 975 bores were used in this study: ground-
water levels and critical heads (Figure 1). Critical heads (CH) are the historical minima
of head levels in an aquifer and a proxy for pre-consolidation heads, which leads to de-
formation and controls the state of consolidation in fine-grained sediment interbeds and
aquitards. Critical head analysis was performed in 416 bores (a subset of the 975 bores
with sufficient historical records). Groundwater levels, which represent the aggregation
of different hydrogeological processes, including hydroclimate conditions and groundwa-
ter extraction [20], were correlated in this study with deformation in order to determine
where in space and at which aquifer depths groundwater oscillations could lead to elastic
compaction and expansion observed at the ground surface by InSAR.

Critical heads were used in this study based on the assumption that any water
level fluctuation above this critical head was assumed to solely influence elastic com-
paction and expansion. In turn, any new drop in the water levels below previous critical
heads established new critical heads and may have created both elastic deformation and
inelastic subsidence.

The primary expectation and hypothesis are that critical head drops in aquifers indicate
pressure losses in aquitards, which drive inelastic subsidence. However, whether the
presence of inelastic subsidence actually translates into InSAR deformation depends on
whether the InSAR signal is clouded by other factors, such as elastic expansion/compaction
caused by groundwater head oscillations above critical heads, clay swelling/shrinking,
other surface factors, and InSAR measurement noise.

2.3. Ground Displacements from InSAR

Radar interferometry, or InSAR, uses the phase observations of a Synthetic Aperture
Radar (SAR) sensor to retrieve information about the change in distance between the
sensor’s antenna and the ground. By using radar image time series acquired from the same
orbital position, the distance change can be interpreted as a modification of the ground
level. Information on how the radar images are processed and post-processed to produce
deformation maps can be found in [23,25]. Three Sentinel-1 swaths with a total number
of 396 acquisitions (132 acquisition dates for each swath) were used and merged and
the Intermittent Small Baseline Subset-InSAR. The ISBAS phase-to-deformation inversion
strategy was adopted [23,25].

2.4. Correlation between Ground Displacment and Ground Water Level/Critical Head

A correlation analysis was used to explore the relationship between InSAR-derived
deformation and groundwater. It is a statistical technique to understand the association
between one independent variable (such as groundwater level or critical head) and one
continuous dependent variable (such as InSAR-Derived deformation) [26]. In this study,
Pearson’s correlation coefficient (r) (Figure 2) was used to explore possible temporal rela-
tionships between ground displacement derived from InSAR and groundwater dynamic
indicators, i.e., groundwater level and critical head drop time series.
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The aim of this analysis was to determine whether InSAR deformation might be influ-
enced by inelastic compaction or elastic deformation because of a critical head drop above
the pre-consolidation head or head fluctuations, respectively. As stated above, this analysis
was based on a single variable, and as such, it did not directly account for non-groundwater
parameters. However, the influence of non-groundwater parameters was inherently in-
tegrated into the analysis in the sense that will influence the groundwater/deformation
correlation coefficients.

2.5. Random Forest Model of Spatial Variations of Temporal Correlation Coefficients

Random Forest (RF) is a machine-learning algorithm that was originally proposed by
Ho [27] and then further developed by Breiman [28,29]. It is a novel ensemble of classifica-
tion and/or regression trees underpinned by the bootstrapping subset selection technique,
in which a model (or a tree) uses a random subset of the observations and controlling pre-
dictors to learn the pattern of the given data and attain the best prediction. In other words,
many trees (models) are constructed in a certain “random” way to form a Random Forest.
The advantage of the RF method is that it can reduce the correlation between decision trees
by randomly selecting samples and features to overcome the overfitting issue of decision
trees, thereby significantly improving the performance of the final model [2]. Given its
advantages, RF has been widely used in practice from financial (such as the bank industry,
stock market) to healthcare and medicine sectors (such as breast cancer prediction) and
from e-commerce (such as price optimization) to professional sports (such as sports-related
injury identification).

In this study, a multi-factorial RF analysis was used to explain the spatial variability
of the temporal correlations between ground deformation and the groundwater/critical
head (Figure 2). Note that the RF analysis here did not aim at predicting the spatial
variability of InSAR deformation itself but the variability in the temporal relationship
between InSAR deformation and critical head/groundwater level (Figure 2). The analysis
used a set of explanatory variables sorted into four categories: surficial soils, terrain,
groundwater, and InSAR-deformation measurement noise as a proxy for land use and
land cover (Table 1 and Figure 2). This analysis may provide some answers as to which
predictors/variables have an impact on spatially distributed temporal correlations between
InSAR deformation and critical heads/groundwater levels over the observation period.
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Table 1. Variables of random forest (RF) model.

Type of
Covariates Acronym Definition Source

Surficial soils

Clay05 Fractional clay content for the soil
layer 0–5 cm Soil and Landscape Grid Australia [30]

Clay200 Fractional clay content for the soil
layer 5–200 cm Soil and Landscape Grid Australia [30]

SoilMoist.Trend Trend in moisture content in
1st meter of soil

Australian Landscape Water Balance
model (AWRA-L v6; [31])

SoiMoist.Mean Mean moisture content in
1st meter of soil

Australian Landscape Water Balance
model (AWRA-L v6; [31])

SoilMoist.Diff
Difference between mean moisture
content in 1st meter of soil and the
corresponding 2005–2015 mean value

Australian Landscape Water Balance
model (AWRA-L v6; [31])

SoilMoist.Amp Maximum amplitude of the moisture
variations in 1st meter of soil

Australian Landscape Water Balance
model (AWRA-L v6; [31])

Soil Classification of soil types Australian Soil Classification (ASC) soil
type map of NSW

Terrain

Slope Terrain slope Calculated from ALOS-3D Digital
Elevation Model [32]

Erodibility Mean annual hillslope erosion
(tons/ha/year) with C-factor

NSW-DPIE, Modelled Hillslope Erosion
over New South Wales

Dist.Stream Euclidian distance to stream Calculated from a map of perennial and
major streams

Elevation Elevation in meters asl ALOS-3D Digital Elevation Model [32]

Groundwater

Screen.Depth Depth of the screen for each well NSW-DPIE

GWExrtactionLayer1 Groundwater extraction in the
upper aquifer NSW-DPIE

GWExrtactionLayer2 Groundwater extraction in the
intermediary aquifer NSW-DPIE

GWExrtactionLayer3 Groundwater extraction in the
deep aquifers NSW-DPIE

InSAR

Inter.Perc Percentage of quality interferograms CSIRO—InSAR processing

Spatial.CC
Mean spatial InSAR coherence, based on
150 randomly selected interferogram for
each InSAR stacks

CSIRO—InSAR processing

Temp.CC Temporal InSAR coherence, or
‘stack’ coherence CSIRO—InSAR processing

The predictors used in the RF analysis examined the overall value of each factor to pre-
dict the temporal correlation between InSAR deformation and critical head/groundwater
level for the entire InSAR period and over the entire study area. That is, the RF analysis uses
static and time-integrated variables (totals, means, or trends for time-variable variables). As
the analysis explained the correlations between ground deformation and well information
(groundwater levels and critical heads), this is dependent on such data and could not lead
to extrapolation beyond locations where the groundwater data was available.
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3. Results
3.1. Temporal Correlations between InSAR Displacements and Groundwater Critical Head Drop

Table 2 shows the summary of correlation coefficients between InSAR and the critical
head drop time series from 416 piezometers with sufficient historical records. Overall,
it was skewed towards a positive relationship (75.5%) between InSAR and critical head
drop, implying that critical head was an important factor for InSAR displacement. While a
positive correlation was expected where groundwater extraction induced the compaction
of the fine-grained sediments present in the aquifer system, a negative correlation was
theoretically possible if depletion of the surficial aquifer induced geostatic unloading and
the expansion of the underlying confined aquifer. In that case, groundwater depletion in
the surficial aquifer led to the uplift of the ground surface.

Table 2. Correlation coefficients between InSAR and critical head drop time-series observed at
416 bores.

Cor. Coeff. No. of Bores % No. of Bores %

<−0.8 0 0.0

102 24.5
−0.8 to −0.5 16 3.8
−0.5 to −0.2 38 9.1
−0.2 to 0 48 11.5

0 to 0.2 39 9.4

314 75.5
0.2 to 0.5 137 32.9
0.5 to 0.8 111 26.7

>0.8 27 6.5

Figure 3 shows two examples of the strong and positive correlation between InSAR
and the critical head time series (Cor = 0.89 and 0.82), which supports the hypothesis that,
for some piezometers, the critical head is an important contributor to InSAR displacement.
In contrast, Figure 4 demonstrates two cases of a negative correlation between InSAR and
the critical head, i.e., a decline in the critical head with a positive InSAR displacement. A
negative correlation could also have hydrogeological implications. Depleting a surficial
aquifer can cause the expansion of the confined aquifer below, and accordingly, a negative
correlation could be observed between the surficial aquifer level time series and the InSAR
deformation time series (Figure 4). However, a negative correlation could also imply that
surface factors rather than groundwater dynamics could result in InSAR displacement
(Figure 3). These two figures are just examples of strong positive and negative correlations
and, in fact, the majority of the bores show a correlation coefficient in the intermediary
value range, as shown in Table 2. A very weak correlation most likely indicated that surface
factors rather than groundwater dynamics led to InSAR displacement or that groundwater
pressure did not lead to ground deformation at that location.

3.2. Temporal Correlations between InSAR Displacements and Groundwater Level

Table 3 shows a summary of correlation coefficients between the InSAR displacement
time series and groundwater head time series (referred to as groundwater level, GWL) in
975 bores. The number of groundwater bores with groundwater level observations was
much larger (975 vs. 416) than that with a critical head drop, given that no historical data
before the InSAR temporal window was required for this analysis. Overall, this was also
skewed towards a positive relationship between the InSAR and GWL time series in the last
5 years, highlighting the groundwater level contribution to InSAR displacements. However,
237 piezometers still showed a negative correlation between InSAR and groundwater level.
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Table 3. Correlation coefficients between InSAR and groundwater level time series.

Cor. Coeff. No. of Bores % No. of Bores %

<−0.8 5 0.5

237 24.3
−0.8 to −0.5 41 4.2
−0.5 to −0.2 97 9.9
−0.2 to 0 94 9.6

0 to 0.2 117 12.0

738 75.7
0.2 to 0.5 251 25.7
0.5 to 0.8 326 33.4

>0.8 44 4.5

Figure 5 shows two examples of strong, positive correlations between InSAR dis-
placement and GWL (Cor = 0.91 and 0.91). Both InSAR displacement and GWL showed
decreasing trends over the last 5 years, implying that the InSAR deformation was driven
by elastic aquifer compaction and expansion. In contrast, Figure 6 shows two piezometers
with a negative correlation between both positive and negative InSAR displacements and
declining/increasing GWL trends. While a negative correlation could also have implica-
tions between InSAR and groundwater level due to the expansion of the confined aquifer, it
could also indicate that surface factors, such as rainfall, evapotranspiration, land use/land
cover change and groundwater recharge, rather than groundwater dynamics could affect
InSAR displacement (Figure 6).

Geosciences 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

it could also indicate that surface factors, such as rainfall, evapotranspiration, land 

use/land cover change and groundwater recharge, rather than groundwater dynamics 

could affect InSAR displacement (Figure 6). 

 

Figure 5. Examples of strong and positive correlation between InSAR deformation and groundwater 

level (GWL) ((left): time series comparison; (right): correlation scatter plots). 

 

Figure 6. Examples of negative correlation between InSAR deformation and groundwater level 

((left): time series comparison; (right): correlation scatter plots). 

Figure 5. Examples of strong and positive correlation between InSAR deformation and groundwater
level (GWL) ((left): time series comparison; (right): correlation scatter plots).



Geosciences 2023, 13, 133 10 of 17

Geosciences 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

it could also indicate that surface factors, such as rainfall, evapotranspiration, land 

use/land cover change and groundwater recharge, rather than groundwater dynamics 

could affect InSAR displacement (Figure 6). 

 

Figure 5. Examples of strong and positive correlation between InSAR deformation and groundwater 

level (GWL) ((left): time series comparison; (right): correlation scatter plots). 

 

Figure 6. Examples of negative correlation between InSAR deformation and groundwater level 

((left): time series comparison; (right): correlation scatter plots). 

Figure 6. Examples of negative correlation between InSAR deformation and groundwater level ((left):
time series comparison; (right): correlation scatter plots).

3.3. Spatial Variability of Temporal Correlations between InSAR Displacements and Groundwater
Critcal Head Drop and Its Predictors with RF

The RF model could explain 71.7% of the spatial variance of temporal correlation
between InSAR displacement and groundwater head drop with 18 predictors, as shown in
Table 1, which was superior compared to a simple linear regression model with the same
18 variables that could only explain 28.6% of the variance (R2 = 0.286). However, it should
be noted that the 18 land cover classes, soil, and terrain covariates explained the variance
in the spatial distribution of all correlations between the groundwater and deformation,
ranging from positive to negative. Hence, naturally, surface factors that lead to an upward
displacement while, at the same time, a drop in groundwater was recorded also play a
role in this result. The relative importance of RF (Figure 7) indicated that spatial InSAR
coherence (Spatial.CC; a proxy for noise in InSAR data, its spatial patterns are mainly
controlled by the land cover) and soil moisture (difference, trend, and amplitude) were
the four most important factors resulting in a spatial pattern of correlation between InSAR
displacement and critical head changes.

The left panel of Figure 7 shows a mean decrease in accuracy (%IncMSE) if we leave
out a particular variable, and the right panel shows a mean decrease in the Mean Squared
Error (MSE) (IncNodePurity), which is a measurement of variable importance based on the
Gini impurity index, which was used for the calculation of the splits in RF trees. The higher
the value of the mean decreased accuracy or mean decreased Gini score, the higher the
importance of the variable was in the model. The top five variables were the same based
on these two criteria, although in slightly different orders.
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between InSAR deformation and groundwater head drop time-series.

An RF model with these four important factors was then built, and it could explain
a 67.5% variance in the spatial distribution of the temporal correlation, which was close
to the 71.7% variance of the full model with 18 predictors. Another RF model with only
three soil moisture variables was also built, and it could explain 65.2% pf the spatial
variance of temporal correlation between InSAR displacement and critical head. This is
only slightly worse than the four-predictor model (−2.3%). This comparison was valid
with the same random seed, given the “random” characteristics of the RF method. This
indicates that the characteristics of soil moisture are critically important to explain the
temporal correlations between InSAR displacement and critical head. However, the RF
model slightly underpredicted the positive correlation values between InSAR displacement
and critical heads and overpredicted the negative correlation values (Figure 8).

Geosciences 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

between InSAR displacement and critical head. However, the RF model slightly under-

predicted the positive correlation values between InSAR displacement and critical heads 

and overpredicted the negative correlation values (Figure 8). 

 

Figure 8. Temporal correlations between InSAR deformation and critical head vs. RF simulated re-

sults (red line is the 1:1 line and blue dash line is the linear fitted line). Each circle represents one 

groundwater bore. 

3.4. Spatial Variability of Temporal Correlations between InSAR Displacements and 

Groundwater Level and Its Predictors with RF 

The RF spatial model of the temporal correlation between InSAR displacement and 

groundwater level with 18 predictors could explain 60.0% of the spatial variance, which 

is also much better than a linear regression model with the same 18 variables that could 

only explain 9.7% of the variance (R2 = 0.097). These two values were lower than their 

corresponding values between InSAR displacements and critical heads, i.e., 71.7% vs. 

60.0% and 28.6% vs. 9.7%. However, a lower value does not necessarily indicate a poorer 

RF model given the different sample sizes, i.e., 416 vs. 975. 

The relative importance of RF (Figure 9) indicates temporal and spatial InSAR coher-

ence (Temp.CC and Spatial.CC; both are proxies for the decorrelation of the radar signal 

and noise in InSAR data) and soil moisture (difference, trend and amplitude) and are the 

most important factors resulting in a spatial pattern of temporal correlation. However, it 

should be noted that different rankings for variable importance could be obtained based 

on two different criteria. For example, the screen depth of a bore (Screen.Depth) is the 

second most important variable to explain the spatial variance of correlation between In-

SAR displacements and groundwater levels based on IncNodePurity but was only ranked 

10th out of 18 variables based on %IncMSE (Figure 9). In theory, there was not a fixed 

criterion that could be considered as the “best” measure of variable importance. 

Figure 8. Temporal correlations between InSAR deformation and critical head vs. RF simulated
results (red line is the 1:1 line and blue dash line is the linear fitted line). Each circle represents one
groundwater bore.



Geosciences 2023, 13, 133 12 of 17

3.4. Spatial Variability of Temporal Correlations between InSAR Displacements and Groundwater
Level and Its Predictors with RF

The RF spatial model of the temporal correlation between InSAR displacement and
groundwater level with 18 predictors could explain 60.0% of the spatial variance, which
is also much better than a linear regression model with the same 18 variables that could
only explain 9.7% of the variance (R2 = 0.097). These two values were lower than their
corresponding values between InSAR displacements and critical heads, i.e., 71.7% vs. 60.0%
and 28.6% vs. 9.7%. However, a lower value does not necessarily indicate a poorer RF
model given the different sample sizes, i.e., 416 vs. 975.

The relative importance of RF (Figure 9) indicates temporal and spatial InSAR coher-
ence (Temp.CC and Spatial.CC; both are proxies for the decorrelation of the radar signal
and noise in InSAR data) and soil moisture (difference, trend and amplitude) and are the
most important factors resulting in a spatial pattern of temporal correlation. However, it
should be noted that different rankings for variable importance could be obtained based on
two different criteria. For example, the screen depth of a bore (Screen.Depth) is the second
most important variable to explain the spatial variance of correlation between InSAR dis-
placements and groundwater levels based on IncNodePurity but was only ranked 10th out
of 18 variables based on %IncMSE (Figure 9). In theory, there was not a fixed criterion that
could be considered as the “best” measure of variable importance.
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4. Discussion
4.1. Advantages of RF Model

The RF machine learning technique was useful to investigate the spatial distribu-
tion of temporal correlation between InSAR and critical head/groundwater level and
their contributing factors. It produced a much higher correlation coefficient compared
to traditional linear regression because it could capture the complex and non-linear rela-
tionship between predict and (temporal correlation coefficient between InSAR and critical
head/groundwater level) and the predictors (Table 1). This is consistent with conclusions
found in the literature [2,9–18].

The model was robust. For example, the 3-predictor RF model was run 1000 times to
quantify the random characteristics of the RF method, and it showed that it was a robust
model with a variance explained below 65.0–67.9% (Figure 10).
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Figure 10. Variance explained with 3-predictor RF model of temporal correlation between InSAR
deformation and critical head (1000 runs).

4.2. Limitations and Uncertainty of RF Model

One major caveat of the RF model is that it is a machine-learning algorithm, not a
physical process-based model. It is possible that different combinations of predictors could
result in similar models, i.e., non-uniqueness, and that some of the results are difficult
to explain from a physical process point of view. It could also be part of the reason
why different studies have identified different important variables, leading to ground
deformation (Table 4).

Table 4. Examples of RF land substance applications and important variables.

Study Model Imprtant Variables

Arabameri et al. (2020) [14] ANN-bagging and RF Groundwater drawdown, land use and land cover,
elevation, and lithology

Arabameri et al. (2021) [18] 5 AI and conditional RF is
the best

Land use/land cover (LULC) (most important factor),
Groundwater depth (2nd most important), and lithology,
TWI, elevation, slope, aspect, distance to road, drainage

density, profile curvature, distance to stream
and plan curvature

Chatrsimab et al. (2020) [15] PSO-RF Media aquifer (furthermost effective factor), groundwater
drawdown and transmissivity and storage coefficient

Chen et al. (2020) [2] RF Variation in groundwater level in the
second confined aquifer

Choubin et al. (2018) [10] 5 ML and RF is the best

Low elevations with characteristics of high groundwater
withdrawal, drop in groundwater level, high well density,

high road density, low precipitation, and Quaternary
sediments distribution

Ilia et al. (2018) [9] RF
Thickness of loose deposits, the Sen’s slope value of

groundwater-level trend, and the Compression Index of
the formation covering the area of interest

Mohammady et al. (2019) [11] RF Distance from fault, elevation, slope angle, land use, and
water table

Rahmati et al. (2019) [12] 4 ML and RF is the best Groundwater drawdown (the most important)
Lithology, and distance from the stream network

Zamanirad et al. (2020) [13] 3 ML and RF benchmark Drawdown of groundwater level (77.5%); lithology
(19.2%), distance from streams (2.5%), and altitude (0.8%).

This study RF
InSAR coherence (a proxy for noise in InSAR data that is

mainly caused by variations in land cover) and soil
moisture (difference, trend, and amplitude)
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The controlling factors of InSAR-derived ground deformation are complex and vary
from region to region depending on many factors, such as local hydrogeological settings,
hydroclimate conditions, lithology, land use and land cover, elevation modeling errors, soil
moisture and texture changes. It is potentially part of the reason why many bores have a
weak correlation between InSAR displacement and groundwater level/critical head drop.

The RF model was run based on deformation and head observations at monitor-
ing bore locations only because we targeted the temporal correlation between InSAR
displacement and the critical head/groundwater level. The results indicated that soil
moisture variables (3 statistics) were among the most important contributor to explaining
the spatial variability of temporal correlations between InSAR displacement and the critical
head. If the relationships between the soil moisture and temporal correlation could be
explained as a physically-based process, then the spatial distribution of temporal corre-
lation could be predicted with the soil moisture and the RF model. Given the potentially
serious damage to farms and urban infrastructure and other environmental issues that land
subsidence could cause, a prediction model was useful for practical applications or as a
decision-support basis.

The RF model could also be run for each individual year (5-year data implies five
different RF models) because the hydroclimate conditions varied from year to year or each
groundwater management area, which could tell us whether the most important contribut-
ing factors were different within wet/dry climate conditions and different groundwater
management areas.

More importantly, the RF model could be run for individual GMAs, which would help
the model account for the variability of lithological parameters that are under-represented
in the analysis presented in this paper, e.g., compressibility, thickness of aquitards and
fine-grained interbeds. Such an analysis could assume that lithology was less heteroge-
nous at the GMA scale rather than at the scale of the entire study area. In addition, the
temporal correlation between InSAR displacements and groundwater level/critical head
showed a spatial pattern. For example, the piezometers in the Upper Lachlan and Lower
Murrumbidgee (Figure 1) generally showed a combination of larger negative GWL trends
and a larger declining InSAR trend [23].

Only one RF model for the seven groundwater management areas (GMAs) was pro-
duced, with lithological heterogeneity largely unaccounted for in the set of covariates
(Table 1), which led to an inherent underestimation of the influence of lithological factors in
the RF analysis. Individual RF models at scales solely where the correlation between the
groundwater level declined, deformation was positive, and where the lithology is homoge-
neous could potentially provide a more meaningful determination of influential covariates.

Nevertheless, even at a regional scale across all seven GMAs, a competent model with
R2 > 0.7 could be built using the proposed set of covariates, which reinforced the idea that
both surficial soils and InSAR noise (due to radar phase decorrelation and residuals of
deformation model fitting) were important contributing factors to the InSAR results; thus,
it influenced the temporal correlation with groundwater level changes. More generally,
we noted that the RF machine learning technique was useful for investigating the spatial
distribution of correlation between InSAR and critical head/groundwater level and their
contributing factors.

Last, but not the least, the entire dataset was used to build the spatial RF model and
was not split into calibration and validation subsets. This was because the aim of this
analysis was to explore contributing factors controlling the spatial patterns of the Pearson
coefficient of correlation between InSAR and groundwater dynamics. That is to say, the
objective of this study was not to build a prediction model to map the spatial distribution
of ground displacement.
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5. Conclusions

Ground displacement or ground deformation and associated horizontal deformation
often have significant damaging effects, such as damage to infrastructure and increased
exposure to flooding. This has been observed in many countries in the world and has
attracted great attention because of its impacts and implications.

Results from the interferometric synthetic aperture radar (InSAR) technique were
used in this study to derive the temporal and spatial information of land subsidence in
southeast Australia. Temporal correlations between InSAR displacement and groundwater
level dynamics were analyzed. Groundwater dynamics can be considered an important
factor for InSAR displacement temporal evolution where strong positive correlations are
observed. However, a negative correlation between InSAR displacement and groundwater
dynamics can also be observed for other bores, potentially due to the expansion of the
confined aquifer. It may also indicate that surface factors unrelated to groundwater, such
as rainfall, evapotranspiration, land use/land cover change and groundwater recharge,
rather than groundwater dynamics, could affect InSAR displacement, especially if their
correlation is very weak.

The random forest (RF) machine learning method was used to model the spatial varia-
tion in the temporal correlations between InSAR displacement and groundwater dynamics.
The results indicate that the RF model was a useful tool with which to investigate the spatial
distribution of temporal correlation, and it could explain 71.7% and 60.0% spatial variances
between the InSAR and critical head/groundwater level, respectively. The RF models also
produced a higher correlation coefficient compared to traditional linear regression because
it captured the complicated and non-linear relationship between the predict and (temporal
correlations between InSAR displacements and groundwater levels) and predictors (soil,
terrain, and groundwater variables).

The 3-predictor RF model was run 1000 times to quantify the random characteristics
of the RF method and showed that it was a robust model with variance explained below
65.0–67.9%.

The spatial and temporal InSAR coherence (a proxy for noise in InSAR data that
is mainly related to land cover and model fitting performance, respectively) and soil
moisture (difference, trend, and amplitude) were the most important factors resulting in the
spatial pattern of correlations between InSAR displacements and groundwater dynamics
(critical head or groundwater level changes). This result confirmed that the influence from
surficial soils (clay content, moisture changes) should be accounted for while interpreting
InSAR data.

The limitations and uncertainties include but are not limited to (a) RF is not a physical
process-based model and some results are difficult to explain; (b) The model can only be run
at monitoring bore locations due to data availability; (c) The mixed wet/dry hydroclimate
conditions are merged into a single model; and (d) a combined model is built for different
groundwater management areas with various lithological and hydrogeological settings.

The RF machine learning results provide added value to the correlation analysis for
suggesting a ranking of spatially distributed influential variables that can explain and
model the correlation between deformation and groundwater dynamics. However, given
that both positive and negative correlations are included in this study, the predictive value
of the analysis has limitations. These could be partially overcome by focusing RF analyses
on subsets of the domain at scales where clusters of positive or negative correlation between
groundwater level decline and deformation are dominant or for specific GMAs, where the
lithology could be considered homogeneous.
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