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Abstract: This research paper presents a comprehensive approach to investigating dry granular
collapses in three dimensions, by combining analytical, numerical, and experimental methods. The
experimental investigation utilised a novel apparatus to study granular collapses in the laboratory. It
is demonstrated that a quasistatic understanding of granular collapses can accurately predict the final
normalised run-out distances for dynamic granular collapses. Our approach involved establishing
a correlation between the angle of repose and the initial aspect ratio of the granular column. It is
also shown that the material point method (MPM) is suitable for modelling granular collapses in
three dimensions. Our in-house solver was further validated using experimental evidence under an
explicit formulation, resulting in good agreement between the numerical and experimental results.
The findings demonstrate the effectiveness of our in-house solver for three-dimensional granular
collapse modelling.

Keywords: granular collapse; GPU computing; generalised interpolation material point method;
large deformation

1. Introduction

The maximum angle above which noncohesive granular material starts to flow is
expressed by the angle of repose θc [1–3]. This angle is a dominant feature of such material
and is stable below the critical angle. The angle varies from 25◦ for smooth particles to
45◦ for angular particles [4–6]. Dry sands allow for typical values of approximately 35◦,
whereas it is much more important under wet conditions with values of approximately
90◦ or even greater [7]. This angle is related to the friction coefficient µ [8], i.e., µ = tan(θc)
(see [7] for further details). Other factors that influence the shape of a granular pile include
gravity, grain properties (e.g., roughness, sphericity, and grain size [9,10]), the number of
particles involved [11–13], and external perturbations such as vibrations that can cause
fluidisation, leading to a relaxation stage [3].

The collapse of a dry or wet granular column [14–17] is a well-known problem, for
which various experimental and numerical works [18–21] have been conducted. A funda-
mental metric is the initial aspect ratio of the column λ0 = h0/r0, where h0 and r0 are the
initial height and radius of the column, respectively.

The following well-established scaling law [18,22–24] relates λ0 to (r∞ − r0)/r0, i.e.,

r∞ − r0

r0
=

αλ0 , λ0 < λc,

αλ
γ
0 , λ0 ≥ λc,

(1)

where α and γ are material-dependent coefficients [5,25], λc is the initial critical aspect ratio,
r∞ is the final radii of the column, and i.e., is the final run-out distance.
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A transition phase exists, according to the initial aspect ratio, i.e., a change from a
truncated cone to a cone shape [26]. References [18–20] proposed a power scaling law to
(r∞ − r0)/r0 for high λ0 and linear scaling for low λ0. Even though such behaviour is often
observed in many studies, the value of this transition remains actively discussed.

Reference [27] proposed the following semi-empirical equation to fit their experimen-
tal results:

r∞

r0
=


1

2 tan(θc)

(
λ0 +

(
4 tan2(θc)−

λ2
0

3

)1/2
)

, λ0 < 0.74,(
3λ0
0.74

)1/2
, λ0 ≥ 0.74,

(2)

which implies that θc = cst. (constant), modulated by the variation of λ0. Such a for-
mulation was in agreement with experimental evidence, i.e., a constant final height
h∞ ≈ min(h0, r0 tan(φy)), where φy ≈ 36.5◦ is the internal yield angle. We refer to it
as a solution to the dynamic deformations of the granular column.

This manuscript proposes an analytical solution to the final run-out distance of the
granular continuum, for which we assume quasistatic deformations, i.e., h∞ = r∞ tan(θc),
whereas [27] proposed h∞ ≈ min(h0, r0 tan(φy)), i.e., dynamic deformations. These two un-
derstandings are summarised in Figure 1. In the case of quasistatic deformations, the
granular pile vertically grows in proportion with λ0, and we assumed that θc ≈ φy.

maxλ0≥λc(h∞) = tan θcr∞

maxλ0≥λc(h∞) = tanφyr0 = cst.

θc = cst.

θc ∝ λ0

φy

II.A) Quasi-static deformation

II.B) Dynamic deformation

h∞

h∞

r0 r∞

r∞r0

h0

r0

I. Initial conditions

λ0 = h0/r0

Collapse process

Figure 1. The general scheme of hypothetical quasistatic deformations and the actual experimental
evidence of dynamic deformations leading to a constant h∞. The dotted lines correspond to increasing
volumes with respect to an increasing λ0. In Case II B (dynamic deformations), θ′c naturally decreases
as λ0 increases.

The analytical solution is further compared to: (i) an experimental data collection using
a newly designed apparatus and (ii) the reference solution provided by Lajeunesse [27]. The
expected differences between the quasistatic solution highlight the characteristic smooth
transition between the quasistatic and dynamic deformations of the column. A solution to
unify this quasistatic hypothesis with the dynamic understanding of [27] is then provided.
Furthermore, the experimental results were compared with three-dimensional numerical
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solutions using the material point method (MPM), which is an effective numerical technique
for modelling large deformation mechanics [28–31].

2. Materials and Methods
2.1. Laboratory Experiments
2.1.1. Experimental Setup and Data Collection

To eliminate any significant influence from the walls of the container on the flow
dynamics of the granular material, a newly designed apparatus is proposed. In previous
experiments, the cylinder was rapidly raised upward, resulting in uncontrolled boundary
effects at the interface. The proposed experimental setup comprises a cylinder made of
three independent shells that quickly open radially outward using a high-performance
pneumatic system. This ensures the consistency and reproducibility of the experiments
while avoiding any significant influence of the boundaries. The granular material is released
and flows freely on a rough wooden surface (see Figure 2). Measurements of the final
run-out distance are taken once the column has fully relaxed.

d0 = 2r0 = 140 mm

h0 = 700 mm

a)

c)

b)

d)

d∞ = 2r∞ ≈ 840 mm

100 mm

Figure 2. Close-up pictures of the newly designed apparatus used in this study. A cylinder of
dimensions 140× 700 mm is filled with granular material and (a) quickly opens radially outward
from the column’s centre, (b) allowing the granular mass to (c) flow freely. The final run-out distance
is then measured when (d) the collapse has completely relaxed. The initial aspect ratio is typically
λ0 ≤ 10.

The dense front of the granular mass defines the maximum run-out distance, with
measurements taken at six radial locations relative to the centre of the column. The final
run-out distance is determined as the average of these six measurements, and individual
grain positions are not considered as they are influenced by their previous gaseous state.

The granular mass consists of polydisperse and highly angular silicon carbide beads
(SiC) with an average bead diameter of approximately 0.11 cm and a density of 3.21 g·cm−3.
Assuming an equivalent spherical shape, the grain mass is estimated to be 0.02 g. The
friction coefficient is relatively high at approximately 0.77, and it was determined by
laboratory measurements outlined in the following subsection.

2.1.2. Experimental Estimation of the Angle of Repose θc

The angle of repose of the granular material used in this study was measured by
slowly raising a vertical cylinder initially filled with the material. The outcome of this
process is the formation of a granular pile that is a valid representation of the granular
material’s quasistatic relaxation. Pictures of the pile were taken using a camera, a CANON
EOS 450D, and the procedure was repeated 125 times. The angle of repose over n = 250
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measurements was determined by processing the pictures and measuring the angles of
both sides of the granular pile. Figure 3 shows the simple procedure to determine θc.

θc,i ≈ 36.68◦

Figure 3. Quasistatic relaxation of a granular material initially contained within a cylinder.

An estimation of the maximal radial distortion was performed using the Agisoft Lens
commercial software, and it indicated that the distortion at the edge of the images was
approximately 0.18 %, corresponding to a metric distortion of 10−4 mm when considering
an average sensor distance of d = 600 mm. This value was deemed sufficiently low to
be negligible.

A cumulated average angle of repose was further calculated and is given by

〈θc〉n =
1
n

n

∑
i=1

θc,i, (3)

where n = 250 measurements (a quantity denoted by the symbol #) of various angles of
repose. An average value was identified when an equilibrium was reached, i.e., ∂n〈θc〉n → 0.
Figure 4 shows the overall results of the experimental measurements of the angle of repose.
This resulted in an average angle of repose 〈θc〉 = 37.55◦ ± 0.29◦. Using the relation
µ = tan(〈θc〉), one obtains µ ≈ 0.77.

Figure 4. The cumulative average value of the angle of repose is shown by the solid blue line (with
the dashed–dotted blue lines indicating the standard deviation of the cumulated average value),
and the derivative of the cumulative average value 〈θc〉 is shown as a function of the number of
measurements n.

2.2. A Continuously Smooth Piecewise Analytical Solution

To define a solutionR(θc, λ0) ≡ (r∞ − r0)/r0 resulting from the quasistatic relaxation
of a granular column as a function of tan(θc) and λ0, let us assume, based on Figure 5,
that (i) the mass is conserved and (ii) both the angle of repose θc and the initial aspect
ratio λ0 govern the relaxation of the granular column, i.e., a granular pile due to qua-
sistatic deformations during which the internal energy is dissipated by slow frictional
interactions only.
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θc = φy

(A) Cone

(B) Truncated cone

h∞

r∞r0

θc = φy

h0 = h∞

r∞r0

∆r = r∞ − h0/ tan θc

λ0 ≥ tan(θc)
√
3

λ0 < tan(θc)
√
3

Figure 5. Scheme of the relaxed granular column governed by the angle of repose θc and the initial
aspect ratio λ0 under the quasistatic deformation assumption.

The initial volume of the cylinder is given by V0 = πr2
0h0, and its final volume is given

by V∞ = 1/3πr2
∞h∞ (i.e., a cone) or V∞ = 1/3π(r2

∞ + r∞∆r + ∆r2) (i.e., a truncated cone).
As demonstrated in Figure 5, a transition occurs at λc := tan(θc)

√
3, i.e., when λ0 → λc.

Considering the relevant dimensions of the problem (Figure 5), the principle of mass
conservation dictates that Vi = V∞, where it is assumed that the granular material is
incompressible. The process of equating volumes and substituting and collecting terms
results in the following equation:

R(θc, λ0) =


1
2

(
λ0

tan(θc)
+

(
4− λ2

0
3 tan2(θc)

)1/2
)
− 1 , λ0 < tan(θc)

√
3,(

3λ0
tan(θc)

)1/3
− 1 , λ0 ≥ tan(θc)

√
3.

(4)

This analytical solution assumes quasistatic deformations of the column. To consider
the dynamic deformation of the column with a constant final height h∞ (see Figure 1II B),
we relate the angle of repose θc to the initial aspect ratio λ0, i.e., θc = f (λ0). θc is no longer
constant, but depends on the initial aspect ratio of the column λ0 and is given by

θc(λ0) = tan−1
([

tan3(φy)/(3λ0)
]1/2

)
. (5)

Inserting Equation (5) within Equation (4) results in a similar formulation with respect
to Equation (2) [27].

2.3. Numerical Simulation

The material point method (MPM) was originally proposed by Sulsky (1994) as an
extension of the particle-in-cell method. In the MPM, the weak form of the momentum
equations is solved on an Eulerian background mesh. Nodal solutions are updated and
then mapped to material points, which can be considered as moving Gauss points. The
state variables, such as stresses or displacements, are transported by the material points
as shown in Figure 6 (taken from [32]). This makes the MPM capable of handling large
deformations, such as those occurring in granular flows.

Numerical simulations were conducted to study the three-dimensional dynamics of
the granular collapse. The material point method and its variant, the generalised inter-
polation material point method (GIMP), were employed [33]. An explicit MPM solver
that takes advantage of modern graphics processing unit (GPU) architectures was im-
plemented, i.e., ep2-3De v1.0 (The latest version of the solver is available for download
from GitHub at: https://GitHub.com/ewyser/ep2-3De (last accessed: 10 August 2021).).
Further details of the implementation of the solver can be found in [32,34]. Because of the

https://GitHub.com/ewyser/ep2-3De
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large deformations involved during the collapse, we selected the uGIMP variant, i.e., the
material point’s spatial extent is constant (i.e., undeformed; see [35] for the limitations of
this variant). A non-associated Drucker–Prager plastic rheology was selected to reproduce
the granular collapse [36].

(a) Points to Nodes Projection

t t+∆t

(c) Nodes to Points Projection(b) Nodal solution

Figure 6. Typical calculation cycle of an MPM solver. (a) The continuum (orange) is discretised by
Lagrangian material points (red dots), for which state variables (e.g., mass or stress tensor) are defined.

2.4. Numerical Parameters and Geometry

Recently, Reference [37] demonstrated that density and stiffness properties have a
negligible effect on the morphology and run-out distance of granular collapses. Therefore,
the same values as [37] were used as we considered the material properties for an effective
continuum medium, i.e., a density ρ = 2000 kg·m−3, with Young’s modulus E = 5.84 MPa,
a cohesion c = 0 kPa, and a Poisson’s ratio ν = 0.3. The friction angle was φ = 37.55◦, i.e.,
φ = 〈θc〉, which was measured from our experiments. A local damping D was introduced,
for which D ∈ [0.05; 0.1] is a commonly accepted range for explicit formulations [38]. This
local damping is proportional to the magnitude of the out-of-balance forces calculated on
the background mesh [38].

Even though GPU programming enables performant (in terms of wall-clock time)
numerical solvers and one of the major limitations is the required memory [34], which
can far exceed the hardware limit, only one quarter of the granular column was con-
sidered, assuming that the horizontal momentum transfers are sufficiently small to be
neglected. This allowed an important amount of memory utilisation to be spared on the
GPU during computation.

Since the initial aspect ratio λ0 of the column strongly governs the run-out, we assumed
that the numerical geometry could differ from the experimental setting. Consequently,
a column of radius r0 = 1 m was considered, to artificially increase the numerical time
steps, which are restricted by the Courant–Friedrichs–Lewy (CFL) condition, i.e., adaptive
time steps are implemented in ep2-3De v1.0. The three-dimensional background mesh is
made of regular quadrilateral elements. Roller boundary conditions, i.e., free-slip boundary
conditions, were enforced on the side boundaries of the background mesh, whereas a no-
slip boundary condition was enforced on the bottom. The granular column was discretised
by 40 elements along the x and y directions, and npe = 8 were regularly assigned per the
initially filled element (see Table 1). The background mesh depends on the initial height of
the column, and it is defined to be sufficiently large to fully enclose the collapse without
the influences of side boundaries.
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Table 1. The granular column was discretised by 40 elements along the x and y directions, and
npe = 8 were assigned per the initially filled element.

λ0 nel nno nmp ∆x [m]

0.5 27,104 30,375 25,120 0.05
1.0 169,344 180,625 50,240 0.05
2.0 1,183,424 1,225,125 100,480 0.05
4.0 8,817,984 8,978,125 200,960 0.05

3. Results
3.1. Analytical Solutions and Experimental Collapses

Figure 7a shows the experimental results from the laboratory experiments fit by: (i) the
analytical solution under the quasistatic deformation hypothesis of the column and (ii) the
solution given by [27]. The latter agrees with the experimental granular collapses, whereas
the former (the present quasistatic understanding of the deformation) rapidly diverges
from the experimental data.

Figure 7. (a) Normalised final run-out distances (r∞ − r0)/r0 with respect to the initial aspect ratio
λ0 = h0/r0, with the non-dimensional unit symbol (-). The proposed analytical solution g(θc) (dark
green line) predicts lower normalised run-out distances when considering a quasistatic deformation
of the column. When relating λ0 to θc, the solution (green line) is in agreement with both the
experimental results (blue circles) and the solution proposed by [27] (thick red line). The (b) box plot
of the errors for the experimental data demonstrates a rather skewed distribution of errors with a few
outliers (red crosses). This explains the overall small amplitude of the error bars in (a).

In this case, θc = φy was considered, where the internal yield angle was φy = tan−1(µ)
with µ = 0.77. The latter was inferred with the experimental protocol previously presented.
When considering θc = f (λ0), the proposed analytical solution (green line in Figure 7a) is
then in agreement with both the experimental results and Equation (2) [27].

Regarding the experimental data, a small amplitude of the error measurements was ob-
served (see Figure 7b). This indicates that the present observations are consistent and reliable.

To quantify the goodness of fit of Equation (4), a power-law fit was applied to the
experimental data. It is given by

(r∞ − r0)

r0
= 0.63λ1.30

0 , (6)

for which the root-mean-squared error RMSE = 0.13 (R2 = 0.99), which is lower than
the proposed analytical solution. An RMSE = 0.23 was obtained for φy = tan−1(µ). The
optimal φy was further investigated (see Figure 8) for which the RMSE for Equation (4) was
the smallest when fit to the experimental data.

The difference observed for the parameter µ (i.e., 0.71 and 0.77 according to Figure 8)
appears reasonable. The value inferred from the robust fitting showed the smallest RMSE;
however, the value inferred from the laboratory measurements has a physical meaning (i.e.,
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the friction) despite its greater error. Since the error difference is acceptable, we considered
µ = 0.77.

Figure 8. Optimisation of the parameter µ = tan(φy). The smallest RMSE is resolved for µ = 0.71,
whereas the physical value µ = 0.77, derived from laboratory measurements, is similar in magnitude.
However, such an RMSE value is still greater than the one obtained by robust power-law fitting.

3.2. Experimental and Numerical Granular Collapses

A typical numerical solution obtained with the uGIMP variant in ep2-3De v1.0
(see [34]) is shown in Figure 9. The initial aspect ratio was λ0 = 2, and the local damping
was D = 0.05. The granular mass spread in a realistic fashion on the bottom surface. The
equivalent plastic strain ε

p
eqv highlighted intense zones of shearing. However, successive

shear bands were roughly resolved because of the numerical resolution, i.e., ∆x = 0.05 m.
One can observe that most of the plastic deformation was superficial. In addition to the
overall elastoplastic deformations of the granular column, shallower granular avalanches
also occurred. Few material points can be considered fully disconnected from the main
body, i.e., the gaseous state observed during the experiments. Similarly, the proportion of
material points in a disconnected state increased as the local damping was reduced.

Figure 9. Final morphology of the granular deposit for λ0 = 2 and D = 0.05. The colour denotes the
equivalent plastic strain ε

p
eqv =

∫ t
t0
( 2

3 ε̇p : ε̇p)
1
2 dt with the plastic strain rate tensor ε̇p, the symbol :

denotes the inner product operator. The transparent blue shell indicates the initial maximum extent
of the granular column.

Different values were selected for the local damping, i.e., D = {0.0, 0.05, 0.1} (see
Appendix A for further details). For simplicity, the maximal radial distance of the farthest
material point is reported to determine r∞. For D = 0.05 (see Figure 10), the numerical
solution agreed well with the experimental granular collapses. If the damping was smaller
or greater than 0.05, the numerical model either overestimated or underestimated the nor-
malised run-out distance, respectively. As such, local damping is an important parameter
and requires an iterative calibration process.

Increasing the local damping even more (i.e., D = 0.4) led to a numerical solution
closer to the proposed analytical solution assuming quasistatic deformation. This makes
sense since most of the out-of-balance forces were damped out during the calculation,
yielding final run-out distances close to the quasistatic state assumed previously.
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Figure 10. Direct comparison between the experimental results and the numerical solutions using
ep2-3De v1.0. The local damping D strongly influences the final normalised run-out distance. This
was expected since it damps the out-of-balance forces calculated on the background mesh. For
D = 0.05, the numerical solution given by ep2-3De v1.0 agrees with the experiments, even though
some discrepancies exist.

4. Discussion

The difference between the present analytical solutions (quasistatic and dynamic
hypotheses; see Figure 11) expresses an important principle under the following hypothesis.
The kinetic energy loss nearly asymptotically increased during the collapse because of an
increase in the elastoplastic collision rate. This suggested that the final angle of repose θc of
a granular collapse expresses the amount of energy lost during the process, compared to a
purely quasistatic deformation of the column: the greater the difference between θc and φy,
the greater the kinetic energy loss is.

Figure 11. Difference between quasistatic (sand pile, green area) and dynamic deformations (collapse,
red area) of the granular column: tan(θc) expresses the ratio h∞/r∞ and shows a significant decrease
when θc = f (λ0). It also indirectly expresses the increase in energy loss due to elastoplastic collisions
during the inertial deformation of the continuum.

Further interpretation yielded the following. The near-asymptotic behaviour of tan(θc)
(see Figure 11) could be understood because of a microscopic steady-state collision rate
during the granular collapse. The collision rate rapidly increased as the initial aspect ratio
increased. When the grains reached their free-fall velocity, their collision rate became steady.
When such an equilibrium is resolved, the energy dissipation rate within the system can no
longer change.

Within the MPM framework under an explicit formulation, the numerical solutions
agreed with the experimental results of granular collapses. This confirmed the solver
ep2-3De v1.0 to be an appropriate tool for the numerical modelling of dynamic granular
collapses. However, a proper calibration procedure for local damping must be conducted.
An increase of the local damping yielded a numerical solution closer to the quasistatic
analytical solution. However, the explicit formulation of the solver is not well suited to
further investigate such numerical transitions. An implicit formulation [39,40] should be
preferred to fully resolve quasistatic granular collapses.
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Because of hardware limitations (e.g., on-chip memory limit), a full three-dimensional
model of granular collapse is not yet possible. This should be the focus of future studies
by proposing a multi-GPU implementation of the solver ep2-3De v1.0 using a message-
passing interface standard (MPI), such as Open MPI.

As suggested by [37], some material properties (i.e., stiffness and density) had little
influence on the behaviour of the collapse. The only common material parameter between
the experiments and the numerical model was the friction angle. Nevertheless, the numeri-
cal solutions agreed well with the experimental data. This also demonstrated that the only
geometrical parameter that truly matters was the initial aspect ratio λ0 of the column.

5. Conclusions

We proposed an analytical solution for the normalised run-out distance of three-
dimensional quasistatic granular collapses. We further introduced a correction to consider
dynamic collapses and the influence of the initial aspect ratio λ0 of the column as a mod-
ulation of the angle of repose θc. Such an analytical solution was found to be in good
agreement with the experimental results. This demonstrated that a quasistatic understand-
ing of granular collapses can include its dynamic counterpart as well by including a relation
between the final angle of repose with the initial aspect ratio of the column. Here, we
can only further assume that energy dissipation during the collapse plays a key role in
determining the final angle of repose. This may explain the observed variations in the final
angle of repose.

Furthermore, we validated our proprietary explicit solver, ep2-3De v1.0, by compar-
ing it with experimental granular collapses. Our results demonstrated good agreement
and revealed that the introduction of a damping factor modulation enabled us to simulate
both quasistatic and dynamic granular collapses. This also allowed us to establish a cali-
bration procedure to determine the optimal damping parameter for use within an explicit
material point framework. Taken together, these findings provide strong evidence for the
accuracy of our solver in resolving granular collapses. However, future work should focus
on two important directions: (1) implementing a multi-GPU approach to overcome the
limitations of on-chip memory and (2) developing an implicit formulation of the solver that
can natively resolve quasistatic granular collapses and facilitate comparisons with damped
explicit solutions.

To improve the robustness and applicability of the proposed analytical solution, fu-
ture experimental investigations should explore the effects of various shapes of grains.
Investigating the impact of irregular grain shapes on the validity of the proposed analytical
solutions would be particularly interesting. This objective could be accomplished through
the use of different types of granular materials, e.g., long and elongated grains such as rice
or quite spherical beads.
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Abbreviations
The following abbreviations are used in this manuscript:

MPM Material point method
GIMP Generalised interpolation material point method
GPU Graphics processing unit
MPI Message-passing interface

Appendix A

We present the Supplementary Materials regarding the transition from dynamic to
quasistatic granular collapses. We report the influence of local damping (see Figure A1)
on the behaviour of the granular collapse, i.e., an increase in damping yields a more
pronounced quasistatic deformation of the granular column. We selected different values
for the local damping, i.e., D = {0.0, 0.05, 0.1, 0.2, 0.4}.

Figure A1. Normalised run-out distances with respect to an initial aspect ratio of column λ0 for
a variety of local damping coefficients D. Analytical solutions under quasistatic and dynamic
hypotheses are also reported.

We observed that, as the local damping coefficient increased, the numerical solution
came closer to the quasistatic analytical solution we proposed. For D = 0.4, the numerical
solution was the closest to a quasistatic relaxation of the granular column.
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