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Abstract: This technical note illustrates a linear regression algorithm based on the Maximum Like-
lihood Estimation (MLE), with a related Excel spreadsheet and VBA program, adapted to the case
of fracture aperture data sets in which sampling of the smallest values is problematic. The method
has been tested by means of Monte Carlo simulations and exhibits significantly better convergence
against Least Squares criterion (LSM). As the method is conceptually simple and, following the
indications illustrated here, the relative spreadsheet can be easily designed, it may be routinely
used, instead of the Least Squares, in fracture analysis. Furthermore, the proposed method, with the
appropriate modifications, might be potentially extended to other cases in geology and geophysics,
in which significant biases at the lower limits of the sampling scale occur.
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1. Introduction

Stratabound joints, as defined by Odling et al. [1] (also defined as perfect bed-bounded
joints [2]), are fractures exhibiting in outcrop both terminations on the bed boundaries
(Figure 1a). Let us consider the fracture sub-network composed only of this kind of joint.
Such joint system, together with bedding joints bounding the mechanical layers, can form
a well-connected hydraulic network [3], observable at the meter–decimeter scale, which
divides rock into blocks that are parallelepiped shaped, often clearly observable in field.

In the last decades several studies (e.g., [4–7]) have highlighted how permeable struc-
tures are normally detectable on several scales of observation. Other studies have empha-
sized the advantages of using multiple-porosity models to simulate hydraulic behavior of
naturally fractured rocks [8–14]. Multiple-porosity models allow to consider the different
permeable structures in rock (e.g., pores, vugs, fracture networks, from micro-fractures to
faults, observable at different scales) as hydraulic systems that are conventionally distinct,
overlapping and interacting among them (e.g., [15] and references therein).

Guerriero et al. [4] proposed a hierarchical model for permeable structures in carbonate
rocks, which identified four main kinds of interacting hydraulic structures, observable
at different scales: (i) fault network, (ii) stratabound joints, (iii) non-stratabound joints
(including micro- fractures) and (iv) a pore scale system. Stratabound joint networks
assume a key role in the hydraulic behavior of fractured rock masses because they are an
element of communication between the small-scale fractures (including micro-fractures)
with the large-scale fault network.

For these reasons, the geometric characterization of stratabound joint networks in
terms of fracture aperture and spacing may be of considerable interest. In fact, for a given
succession, the knowledge of how aperture and spacing vary with bed thickness, would
allow, for a given succession, a hydraulic characterization or modeling of stratabound
joint networks, based on thickness data. Joint spacing and its dependence on rock layer
thickness has been extensively analyzed [1,16–23]. Joint aperture and related statistical
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distribution have also been studied [2,4,6,24–32]. Nevertheless, in the specific case of perfect
bed-bounded (i.e., stratabound) joints, aperture statistical distribution and its dependence
on bed thickness and/or lithology has been insufficiently studied.

Figure 1. (a) Stratabound or perfect bed-bounded joint network; (b) example of field scanline;
(c) example of field data, provided as paired values of joint aperture vs. bed thickness, highlighted by
red arrows (from [3], modified); (d) comparator utilized for field measuring of joint aperture (from [6],
modified); the threshold value of 0.265 mm is highlighted by a red circle.

Therefore, Guerriero et al. [3] carried out a specific statistical investigation aimed at
assessing whether and how stratabound joint aperture depends on bed thickness and/or
lithology. Such analysis involved two Lower Cretaceous (Albian) carbonate successions,
outcropping at Faito and Chianello Mts. (southern Italy). These successions, which had
been selected as surface analogues of buried oil reservoirs in Val D’Agri (Basilicata, Italy),
were previously well studied in terms of sedimentology and petrophysics [33,34], as well
as of geological structural settings [3,30,31,35].

The statistical analysis carried out by Guerriero et al. [3] pointed out that stratabound
joint aperture depends on bed thickness, according to a linear function, characterized
by a non-zero y-intercept. This may have important consequences for the hydraulic and
structural characterization of fractured rocks. As explained by Guerriero et al. [3], non-
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zero intercept implies that packages of thin beds may exhibit very high porosity and
permeability values, whereas thicker beds are expected to exhibit low porosity but high
permeability values.

In that analysis, fracture sampling was carried out by measuring aperture and bed
thickness for each joint (and other attributes that are not relevant for the present study),
along scanlines oriented parallel to the bedding along a vertical face through the center of
each fracture (Figure 1b,c). To measure joint aperture in the field, the caliper proposed by
Ortega et al. [6] was utilized (Figure 1d).

Guerriero et al. [3] explained the various drawbacks associated with field measurement
of fracture aperture. Based on the visibility conditions at the studied outcrops, aperture
measurements that were less than 0.265 mm (Figure 1d) were considered unreliable. For
this reason, it was decided to set a minimum threshold value of 0.265 mm for them, thus
including all aperture values detected equal to or less than this limit into this single category.
This produces a data truncation that should not be confused with the truncation artifact
(e.g., [6]) because the latter is an underestimation of the number of fractures detected,
and small fractures (and micro-fractures) might not be visible. In the case of stratabound
joints in our study area, we expect that they are practically always visible (as these do
not include micro-fractures), but it is the measure of their aperture that could be wrong.
By way of example, if in a certain layer six joints are measured with the following (true)
aperture values (mm) [0.316, 0.224, 0.118, 0.081, 0.426, 0.277], the values of the recorded
measurements according to the above-mentioned scale and threshold are [0.33, 0.265, 0.265,
0.265, 0.4, 0.265]. If the layer has, e.g., a thickness of 28 cm, the sample consists of the
following pairs of values [(0.33, 28), (0.265, 28), (0.265, 28), (0.265, 28), (0.4, 28), (0.265, 28)].
Therefore, the number of fractures sampled is not altered (i.e., no truncation artifact, sensu
Ortega et al., [6]), but there is a loss of information about the recorded measurement values.

The inclusion of all smaller aperture values into a single aperture class may induce a
marked tendency of the regression line, in a diagram showing aperture vs. bed thickness,
to intersect the ordinate axis near this threshold [3]. Because the intercept value identified
by Guerriero et al. [3] was just close to this limit, the suspicion arose that it could have been
affected by an artifact. Therefore, it has been decided to repeat the analysis of those data
using a more effective method based on Maximum Likelihood Estimation (MLE). Such
criterion has been successfully used by Rizzo et al. [32] to study fracture aperture and
length statistics, which demonstrated the validity of the MLEs against linear regression. In
the present work, the MLE has been used for different purposes, i.e., for the specific goal of
correcting the above-mentioned aperture measurement bias within the framework of linear
regression analysis.

The aim of this paper is to describe the adopted statistical method and the utilized
algorithm and software, as well as to provide details about its validation and effectiveness.
To this end, an example of application based on synthetic simulated fracture data is illus-
trated to clarify the differences between the two approaches and the added value of the
Maximum Likelihood approach. Instead, illustrating the results of the analysis involving
real field data from Faito and Chianello outcrops [3] goes beyond the scope of this work
and these will be presented in a companion paper to be published later.

2. Recalls about Maximum Likelihood Estimation in Linear Regression

Let us consider a certain observed statistical sample and assume that it follows a
known probability distribution. MLE is a parametric method in which the parameters
(e.g., mean, variance, etc.) are estimated by adjusting them until the probability of observing
that sample is maximized (e.g., [36]). As an example, suppose we observe an event that we
know to be distributed according to a Poisson distribution, which occurs on average λ times
in a time interval T. Let us imagine that we have the following outcomes of six independent
observations (i.e., that we have observed the occurrences for six different time intervals
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T): [0, 3, 5, 6, 3, 5]. If we knew the λ parameter, we could calculate the probability L(λ)
associated with this sample as the product of the probabilities of each observation:

L(λ) =
λ0·e−λ

0!
·λ

3·e−λ

3!
·λ

5·e−λ

5!
·λ

6·e−λ

6!
·λ

3·e−λ

3!
·λ

5·e−λ

5!
. (1)

In case λ is not known and we want to estimate it, the basic idea of MLE consists
of finding the one that maximizes L(λ) among all the possible values of λ, as seen in
Equation (1). The function L(λ) is called Likelihood Function (LF). This function is also used
for continuous probability distributions as the product of probability density functions. By
way of example, if we have N observations of a Normal variable z, as [Z1, Z2, . . . ZN], then
the LF is given by:

L(µ, σ) =
1

σ
√

2π
∏N

j=1 e−
(Zj−µ)2

2σ2 ; (2)

where µ and σ denote the parameters mean and standard deviation, respectively. In the
case where µ and σ are both unknown, LF must be minimized as a function of two variables.
If one of the two parameters is known, then LF must be minimized with respect to the other
unknown parameter. The cases above illustrated that the parameter values which maximize
the LF can be calculated in closed form. If the involved equations are more complicated,
maximization can be carried out numerically. Usually, the logarithm of the LF, denoted by
Log-Likely Function, is utilized (e.g., [36,37]). In case of numerical maximization, its use
has the advantage of avoiding overflow/underflow drawbacks.

The MLE can also be employed in (linear or nonlinear) regression analysis, as an
alternative method to LSM [37,38]. In regression analysis between the two variables z and
T, it is assumed to be:

zi = y(Ti) + ri, (3)

where y(Ti) (i.e., the expected value) is a function of T, and r is a random residual with
zero mean and constant standard deviation. In linear regression, the expected value y is
defined as a linear function of T: y = m T + n, where m and n are constant parameters. If
the analysis is carried out by means of MLE (which is a parametric method), a kind of
distribution needs to be assumed for r. Usually, r is assumed normally distributed, with
zero mean and constant standard deviation (here denoted by σ). Considering Equation (2),
the LF involving r is:

L =
1

σ
√

2π
∏N

j=1 e−
rj

2

2σ2 =
1

σ
√

2π
∏N

j=1 e−
(zj−y(Tj))

2

2σ2 =
1

σ
√

2π
∏N

j=1 e−
(zj−(m·Tj+n))2

2σ2 . (4)

It should be noted that, in Equation (4), zj and Tj are known observed values, whereas
m, n and σ need to be calculated by maximizing L(m,n,σ) or its logarithm.

It can be proven that such an approach to linear regression provides the same results
as the classical LSM (e.g., [37]). Nevertheless, in the present study, the LF is defined in a
different way (Section 3.1), and Section 3.2 explains why such MLE formulation provides
different results than LSM.

Guerriero et al. [3] suggested that it is more appropriate to calculate residuals ri as the
difference between the logarithms of observed values zi and predicted yi:

ri = ln(zi)− ln(yi). (5)

Also in this case, residual r is assumed normally distributed, with zero mean and
constant standard deviation denoted by d. Furthermore, the expected value is again:
y = m T + n. It should be noted that this definition implies that, for each rock layer, i.e., fixed
T, the result is ln(z) = r + ln(y(T)); therefore, ln(z) is the sum of a Normal variable with
zero mean (i.e., r) and a constant (i.e., ln(y(T)), i.e., it is a Normal variable with a mean
equal to such constant. In other words, within each layer, the observed aperture is well
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described by a Log Normal variable (i.e., whose logarithm is Normal), with a median value
equal to y(T) = m T + n, and standard deviation d.

Once r, z and y are defined, an expression of the LF similar to that given in Equation (4)
may be found. In the present study, a differently defined LF is used, whose details are
illustrated in the next section.

3. Methods
3.1. Linear Regression by Means of Maximum Likelihood Estimation

Here, the LF involved in regression analysis, and utilized by the proposed algorithm
and spreadsheet, is defined. Given the joint aperture classes illustrated in Figure 1d, let
us denote the limit value by xi between contiguous classes si. In this instance, xi is an
intermediate value between si-1 and si, opportunely chosen (Figure 2, at #1). Under the
hypothesis that joint aperture values exhibit Log Normal distribution (Sect. 2), let us denote
a probability distribution by Fmn.d(x) whose mean is ln(y) and the standard deviation is d.
Here, y denotes the expected aperture value, which is a linear function of bed thickness T,
whose parameters are coefficient m (mm/cm) and intercept n (mm). Then, the probability
that a measured aperture value S falls within the class si denoted by pmn,d(si), for i > 1, is:

Probability(xi−1 < S < xi) = pmn,d(si) = Fmn,d(xi−1)− Fmn,d(xi); i > 1; (6)

Whilst, for the first aperture class:

Probability(S < x1) = pmn,d(s1) = Fmn,d(x1) ; i = 1 . (7)

Therefore, for a given sample [Sk, Tk], the Likelihood Function L(m,n,d) assumes the
following form:

L(m, n, d) = ∏k pmn,d(Sk) . (8)

Searching for the maximum of this function on the space of the three parameters m, n
and d (numerically), the MLE estimates of these three parameters are achieved.
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fracture data. #3: Estimated m, n and d values, by MLE. #4: Estimated m, n and d values, by Excel
linear regression functions. #5: Excel function LOGINV() to produce a single random aperture value,
starting from a bed thickness value. #6: Simulated data set; from left: resampled bed thickness value,
fracture aperture class and its upper and lower limits. #7: Field bed thickness data. #8: Likelihood
data (see main text). #9: Object function; in sheet MLE, it is the Log Likelihood, and in sheet LSM, it is
the sum of square of residuals. #10: Data to build up probability plots of residuals. #11: Monte Carlo
simulation output data. Three columns on the left include each one 100 estimated values of m, n and
d; on the right side, average and standard deviation of these columns are calculated.

3.2. Different Response to Data Truncation of the Proposed MLE and LSM, in Linear Regression

To understand the systematic error in the LSM analysis, caused by data truncation, let
us recall the example illustrated in the Introduction, in which we imagine having acquired
six joint aperture measurements from a 28-cm-thick layer. Imagine reporting these values
in a diagram with bed thickness in abscissae and joint aperture in ordinate (e.g., Figure 1c).
Of the six values above illustrated, three of them (with true apertures of 0.224, 0.118 and
0.081 mm) should have been placed in aperture classes lower than 0.265 mm. The grouping
of these aperture values in the single class of 0.265 mm produces an upward migration
of the points associated with the related measure. If we imagine inserting data recorded
from several layers into this diagram, such migration of points will occur more frequently
for smaller thicknesses (Figure 1c). This migration produces a lifting of the left part of the
trendline, resulting in an increase in the value of the intercept, with consequent alteration
of the estimated coefficient, due to a clockwise rotation of the trendline.

Whenever an experimental point has ordinates in the 0.265 mm class, the LSM intro-
duces a bias due to the assumption that the residual around the trendline can take on the
values +r and −r with equal probability. Due to data truncation, the measured aperture
values can take on any exceeding values (according to the scale in Figure 1d) but cannot
take on values lower than 0.265 mm. The MLE, on the other hand, does not introduce this
bias, since the definition of the LF (Equation (8)) associates with values belonging to the
0.265 mm aperture class, and the probability that an aperture value is equal to or lower
than this threshold (true statement). If a sample contains many aperture values in that
class, LSM may provide highly biased estimates, while MLE is expected to be unaffected
by that condition.

3.3. The Excel Sheet and VBA Program

The Excel folder utilized in this work includes three sheets: MLE, LSM and Results.
Figure 2 illustrates the sheet MLE in detail; with respect to the latter, the sheet LSM is
different only in column K cells, whose formula calculate the square of residual in the
adjacent cell in column J. The first 30 rows, which are not depicted here, include a header
illustrating some user instructions. The routines, written in Visual Basic for Applications
(VBA), which utilize this folder to analyze data and carry out Monte Carlo simulations, are:

- Sub Maximize() and Sub Minimize_LS(): analyze a data set by maximizing or minimiz-
ing an object function, which is Log likelihood for the former and residual standard
deviation for the latter.

- Sub Simul_Apert_Data(): based on thickness field data (#7 in Figure 2) and assigned
(true) values of the parameters m, n and d (#2 in Figure 2), it produces a data set,
composed of 35 paired values, by (i) resampling thickness data and (ii) producing a
random aperture value for each thickness value (Section 3.3). Then, it identifies which
class, and related limits, belongs to (#6).

- Sub Simul_100(): for each triplet of true values m, n and d, it produces 100 simulated
data sets and analyzes each one by means of Sub Maximize(), in sheet MLE, and Sub
Minimize_LS(), in sheet LSM. Then, it saves the estimated values in columns S, T
and U.
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- Sub Monte_Carlo(): varies the n true value in the range 0.05–4.75 mm, and for each
value produces simulations by calling Sub Simul_100(), then saves the related results
(#11) in sheet Results (Figure 3).
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Figure 3. Spreadsheet “Results”. The diagrams on the left side point out that MLE estimators exhibit
modest deviations over the whole analyzed range of true n values and excellent convergence for
n > 0.1, whereas LSM ones converge only for n > 0.3, showing large deviations elsewhere.

The core of the calculation method in the MLE sheet is in formulas in column K (#8 in
Figure 2), in which for each aperture value (in column E, #6), the probability logarithm that
it falls within the range to which it belongs is calculated as follows:

LN(LOGNORMDIST(G60; LN(I$55×C60 + I$57); J$48)− LOGNORMDIST(F60; LN(I$55×C60 + I$57); J$48)

The formula LOGNORMDIST(G60; LN(I$55×C60 + I$57); J$48) provides the proba-
bility that an aperture value is lesser or equal to the limit in cell G60 when its median value
is a linear function of thickness (term LN(I$55 × C60 + I$57)) and its standard deviation
is the value d in cell J48. The difference between distribution values in the formula above
illustrated the probability that an aperture value lies within the range limited by cells
G60–F60. The sum of logarithms of these probabilities returns the Log likelihood in cell
J55. The routine Sub Maximize() starts calculations by assigning likely initial values to
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parameters m, n and d achieved by Excel least squares functions in cells J46:L46 (#4) by
means of instructions such as:

Range(“I55”) = Range(“K46”)

Range(“I57”) = Range(“L46”)

Range(“J48”) = Range(“J46”)

then, it iteratively adjusts the values of parameters m, n and d in cells I55, I57 and J48,
respectively (#3, in Figure 2), according to a simple steeper descent algorithm, until the
maximum of the Log Likelihood (cell J55) is reached.

The spreadsheet also includes formulas to build up probability plots of residuals,
indicated in panel #10 in Figure 2. Illustrating the use of these plots lies outside the scope
of this paper. An explanation of their construction and usefulness is provided, such as in
the work of Chambers et al. [39].

3.4. Validation by Means of Monte Carlo Simulation

A convenient way to evaluate the effectiveness of the MLE method compared to
the LS consists of carrying out the analysis on simulated data sets whose parameters are
already known, then comparing the known parameter values with the estimates achieved
according to the two methodologies. To this end, a series of Monte Carlo simulations was
carried out in which synthetic fracture aperture data sets were produced using likely values
for the parameters m and d (equal to 0.03 and 0.2, respectively) and with parameter n
(which was critical in our analysis) varying in the range 0.050–0.475 mm according to the
following procedure:

1. Produce a data set, constituted by paired values (aperture, thickness), using the known
parameters (m,n,d),

2. Simulate data truncation, including all joints belonging to the aperture class of
0.265 mm or lesser, in the 0.265 mm class,

3. Analyze by means of MLE,
4. Analyze by means of LS,
5. Compare known parameter values with estimates by MLE and LS,
6. Go back to step #1.

From sheet MLE, the Sub Monte_Carlo() is called, which assigns, as “true” values from
which simulated data are produced, m = 0.003, d = 0.2 and varies n, starting from 0.050 to
0.475 with step of 0.025. For each n value, 35 thickness values are chosen from field data
(in column A) by means of random numbers (Sub Simul_Apert_Data()). For each thickness
value, an aperture one is produced by means of a random number and of the function in
cell F52:

LOGINV(E52; LN(H41× G52 + H43); I$48)

which returns the inverse Log Normal distribution of: (1) random number, (2) mean as
logarithm of a linear function with m value from cell H41 and n from H43 and (3) standard
deviation from cell I48. Then, the subroutine Sub Simul_Apert_Data() individuates the class
and related limits to which this value belongs, and saves these in columns E, F and G. Hence,
the Sub Maximize() is called, which maximizes the Log Likelihood. Then, the simulated
data set is copied within the sheet LSM, and the best fit line is calculated by minimizing the
sum of the square of residuals, calculated according to Equation (5) (Sub Minimize_LS()).

For each n value, this procedure is repeated 100 times; then, (m, n, d) estimates are
saved in columns U, T and S, respectively. After 100 iterations, the average and standard
deviation of these column values are saved into the sheet Results. Then, n is incremented
by 0.025 mm.
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4. Use of the Spreadsheet for Analysis of Field Data

The illustrated spreadsheet allows us to reproduce the mentioned Monte Carlo simu-
lations. Nevertheless, it can be used to analyze our own field data by means of the routines
Sub Initialize_Apert_Data() and Sub Maximize(). The fracture aperture data will be entered in
column E and, for each item, the associated bed thickness value will be entered at the same
row, in column C. Then, call the routine Sub Initialize_Apert_Data(), which will insert the
appropriate values into columns F and G by individuating the class and related limits to
which each aperture value belongs. Then, call the Sub Maximize() on the MLE sheet, which
will estimate the parameters m, n and d, by maximizing the object function (i.e., the Log
Likelihood function). This routine only works on the sheet denoted by MLE.

The spreadsheet, in its current form, analyzes the data set of 35 items. When analyzing
a data set of a different size—for example, 50 items—the arrays in columns I, J, K, M, N,
O and P need to be updated so that they have the same size (i.e., 50). Furthermore, the
formulas in cells J55, J46, K46 and L46 must be updated so that they perform calculations
on arrays of suitable length. By way of example, the formula in cell J55, which calculates
the Log Likelihood, is:

SUM(K60:K94).

This calculates the Log Likelihood as sum of items in column K and rows from 60 to 94.
In cases in which, for example, the analyzed data set includes 50 values, then the last one
will fall at row 109. Therefore, such a formula will need to be updated as SUM(K60:K109).

This spreadsheet utilizes the aperture classes according to the logarithmic comparator
proposed by Ortega et al. [6], which are stored in column F, at rows from 39 to 48. The class
limits are in column G. By way of example, the limit between the aperture class of 0.33 mm
(in cell F40) and 0.4 mm (in cell F41) is given by their average, equal to 0.365 mm (in cell
G41). In case it is needed to use different aperture classes, in addition to modifying the
values in that column, the routine Sub Initialize_Apert_Data() also needs to be updated in
order to take into account both the varied limit values for each class and the varied number
of aperture classes.

5. Results Discussion

Figure 3 shows the results of Monte Carlo simulations aimed at comparing the MLE
and modified LSM results. The estimates of the parameters m, n and d, are plotted against
the true n value, here denoted by ntrue. The MLE estimates of m and n exhibit a good conver-
gence over the whole analyzed ntrue range. The estimates of the three parameters m, n and
d, achieved by MLE, show an excellent convergence for ntrue > 0.1 mm. The LSM estimates
of m, n and d show notably strong deviations from true values, for ntrue < 0.2 mm (i.e., LSM
provides strongly biased estimators), and a good convergence only for ntrue > 0.3 mm. It is
noteworthy that, for ntrue < 0.2 mm, the LS estimate of the parameter n assumes the same
value (about 0.25 mm) and is independent of the statistical sample. This highlights the
absolute ineffectiveness of such a statistical approach in estimating this parameter for small
ntrue values.

Table 1 illustrates the results of Monte Carlo simulations for the MLE, which are partly
visible in Figure 3. For each parameter analyzed, the estimate and, in the adjacent column,
the relative standard deviation are reported. For ntrue > 0.1 mm, the mean values of m, n
and d estimates converge, thus pointing out that MLE provides unbiased estimators. The
standard deviation of the parameter n estimate increases as ntrue decreases. This highlights
a random uncertainty that can be reduced by increasing the statistical sample size (as the
estimator is unbiased).
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Table 1. Results of Monte Carlo simulations. For each parameter, the mean value of the sampling
estimate is illustrated, as well as the related standard deviation, as a descriptor of uncertainty. Note
that the 6th column shows the estimated value of the parameter ‘residual standard deviation’, whereas
the last column shows the related standard deviation (i.e., the uncertainty).

Method: Maximum Likelihood Estimation
True m = 0.003, True Residual std dev = 0.2, Sample Number = 35

True n
Value

Estimated
m

Std dev.
m Estimated n Std dev.

n

Estimated
Residual
std dev.

Std dev.
Residual
std dev.

0.05 0.0024 0.00113 0.102 0.086 0.125 0.105
0.075 0.0028 0.00112 0.098 0.079 0.132 0.089

0.1 0.0030 0.00106 0.097 0.072 0.170 0.088
0.125 0.0031 0.00086 0.115 0.060 0.177 0.085
0.15 0.0029 0.00085 0.149 0.051 0.171 0.071

0.175 0.0031 0.00094 0.167 0.049 0.172 0.053
0.2 0.0030 0.00069 0.200 0.026 0.188 0.052

0.225 0.0031 0.00057 0.224 0.022 0.185 0.047
0.25 0.0030 0.00054 0.249 0.019 0.193 0.043

0.275 0.0030 0.00056 0.274 0.019 0.196 0.039
0.3 0.0030 0.00058 0.302 0.018 0.193 0.035

0.325 0.0030 0.00069 0.326 0.020 0.192 0.034
0.35 0.0031 0.00065 0.348 0.021 0.190 0.033

0.375 0.0031 0.00057 0.372 0.021 0.190 0.032
0.4 0.0031 0.00074 0.399 0.023 0.188 0.031

0.425 0.0031 0.00069 0.426 0.024 0.186 0.030
0.45 0.0032 0.00092 0.450 0.030 0.194 0.029

0.475 0.0030 0.00080 0.476 0.028 0.189 0.027
0.05 0.0024 0.00113 0.102 0.086 0.125 0.105

6. Concluding Remarks

MLE is particularly effective in analyzing fracture data sets in which the field mea-
surement of minor fracture aperture is problematic. Comparison of MLE against LSM has
pointed out that the former is able to remove the bias due to data truncation, and then
provide unbiased estimators, whereas the latter provides strongly biased estimators. The
utilized algorithm, the related spreadsheet and routines have been illustrated in detail,
thus allowing the reader to use the Excel folder proposed here and modify it or to create
their own version. As this linear regression method can be easily performed with an Excel
spreadsheet, it may be routinely used in fracture analysis. Furthermore, with the appropri-
ate modifications, it might be potentially extended to other experimental situations where
biases occur at the lower limit of the sampling scale.
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