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Abstract: Earth flows are complex geological processes that, when interacting with linear infras-
tructures, have the potential to cause significant damage. Consequently, conducting comprehensive
investigations and continuous monitoring are becoming paramount in designing effective mitigation
measures and ensuring sustainable risk management practices. The use of digital image correlation
(DIC) algorithms for the displacement monitoring of earth flows is a relatively new and growing field
with a limited number of dedicated works in the literature. Within this framework, the present paper
contributes by evaluating DIC techniques at several earth flow sites. These assessments were founded
upon data obtained from both low-cost and multi-platform sensors, used to assess the displacement
field, pinpointing the most active sectors, and gauging their rates of movement during different
kinematic phases. In this regard, the highest localized movement velocities reached in the Pietrafitta
(0.01 m/day) and Grillo (0.63 m/day) earth flows experience different ongoing kinematic processes.
The versatility of these techniques is notable, manifesting in the ease of installation, cost-effectiveness,
and adaptability to various platforms. The proven reliability in terms of maximum accuracy (1 pixel)
and sensitivity (0.05 m) lays the foundation for the extensive use of the presented techniques. The
amalgamation of these attributes positions DIC techniques as competitive, adaptable, and readily
deployable tools in earth flow studies.

Keywords: landslide monitoring; digital image correlation; earth flow; linear infrastructures;
remote sensing

1. Introduction

Earth flows predominantly occur within clayey and structurally complex forma-
tions [1–7]. When they interact with human-made structures, they can cause substantial
damage. This holds particularly true with linear infrastructures like highways, railways,
and pipelines crossing inhabited hilly regions such as the Italian Apennines [8]. Imple-
menting mitigation and stabilization measures is often challenging due to their typical
rheological and mechanical behaviors and their complex kinematics [9]. In this context,
investigation and monitoring activities play a pivotal role in designing effective mitigation
strategies and, consequently, in sustainable risk management [10–12]. Despite this, only a
few works in the literature focused on the critical evaluation of both conventional and inno-
vative techniques for earth flow monitoring. As an example, the authors of [13] studied the
geomorphological evolution of earth flow through a combination of monitoring techniques
such as visual interpretation of aerial and satellite imagery, quantitative analysis of digital
elevation models (DEMs), and three-dimensional topographic measurements using robotic
total stations (RTSs). Also, the authors of [14] employed a Ground-Based Interferometric
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Synthetic Aperture Radar (GB-InSAR) for risk management associated with an earth flow
reactivation. Instead, the authors of [15] compared and combined data collected during
different earth flow phases that occurred in 2016 in the site of Pietrafitta using different
ground-based remote sensors such as RTS, GB-InSAR, and Terrestrial Laser Scanners (TLSs),
with the aim to derive insights into the performance of such techniques. In addition, the
authors of [16] demonstrated the applicability of using global positioning system (GPS)
techniques to determine the 3D coordinates of the moving points of an earth flow precisely.

This scarcity may stem from the need to integrate multiple sensors to monitor the
various factors influencing these complex processes, along with cost issues [17]. Although
imaging techniques possess considerable potential benefits, the monitoring of earth flows
near linear infrastructures remains a relatively nascent and evolving field, even in common
practice. In recent years, some analyses based on digital image correlation (DIC) algorithms
have been successfully employed for landslide assessment and monitoring [18–30], as well
as for many other applications in geosciences [31]. Applying these techniques requires care-
ful consideration of several factors, including selecting appropriate processing algorithms,
data calibration and validation, and integrating different data types. Furthermore, interpret-
ing DIC data requires specialized knowledge and skills in the field of engineering geology.
Given the complexities involved, comprehensively studying landslides is challenging and
requires accurate imaging and modeling over time [32,33]. As indicated in [34], its overar-
ching purpose is a pivotal determinant of the success of geotechnical monitoring. Three
main monitoring categories are pertinent: knowledge monitoring, control monitoringand
emergency monitoring. These classifications can greatly assist in managing earth flow
risk related to the presence of linear infrastructures. In all the aforementioned monitoring
categories, DIC techniques are nowadays able to provide reliable data quickly, and, in
specific cases, they can underpin the establishment of early warning systems (emergency
monitoring) [35]. Such monitoring data can serve early warning purposes by identifying,
for instance, displacement thresholds.

The overall objective of this work is to understand how modern digital image correla-
tion (DIC) techniques can be utilized for the knowledge, control and emergency monitoring
of earth flows while also conducting an assessment and comparison with more conventional
monitoring techniques.

This study aims to present three examples of DIC monitoring applications on two
distinct case studies, namely the Pietrafitta and Grillo earth flows, during three different
timeframes. For these studies, images were acquired from three different platforms (a
ground-based camera for Pietrafitta and UAV and satellite images for Grillo) during specific
periods of heightened earth flow activity.

However, unlike other methodologies, DIC analysis carried out with satellite images
was only used for long-term cognitive monitoring in the absence of ancillary data. The
specific objectives are as follows:

• Evaluate the monitoring capabilities of the DIC technique at the Pietrafitta earth flow
pilot site using low-cost ground-based sensors;

• Assess the monitoring capabilities of the DIC technique at the Grillo earth flow pilot
site using sensors installed on UAV platforms;

• Perform a quantitative comparison with two classical monitoring techniques used
at the pilot sites: the robotic total station survey (RTS) for Pietrafitta and the global
navigation satellite system (GNSS) for Grillo. This comparison will focus particularly
on displacement field assessment, identifying the most active sectors, and measuring
motion rates during various phases of the earth flow.

2. Case Study Sites

This section presents the study sites characterized by the presence of slope instabilities
and strategic road infrastructures. Activities were carried out at two landslide sites within
the Campania Region (Italy), known as Pietrafitta and Grillo, situated in the provinces of
Benevento and Avellino, respectively (Figure 1a). Both landslides can be classified as earth
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flows according to the well-known classification in [36], owing to their characteristic slow-
moving and intermittent nature and the material involved. They mobilize clay-rich flysch
formations (late Cretaceous–Miocene), which are widespread in the southern Apennines [1].
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Figure 1. (a) General overview and location of the earth flow study site. The Pietrafitta and Grillo
earth flows are shown, with their topographical setting in (b,d) and orthophotos in (c,e), respectively.
PEF: Pietrafitta earth flow, GEF: Grillo earth flow, NR: national road; RR: Reventa River; R: railway;
CR: Cervaro River; TF: thrust fault; NF: normal fault; SSF: strike–slip fault; C-FOV: camera field of
view; RoI: region of interest.

2.1. Pietrafitta Earth Flow

The Pietrafitta earth flow (41◦13′13′′ N, 14◦44′33′′ E) develops along the north-western
slope of the Torre Palazzo hill, situated at elevations ranging from 200 to 250 m a.s.l., on
the southern side of the Reventa River Valley, with an average slope angle of about 16◦
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(Figure 1b–d). The earth flow is located within an overthrust fault zone between the
Flysch Rosso formation (FYR) and the Fragneto Monforte formation (UFM). These geological
sequences consist of a complex alternation of clay, sandstone, and calcareous marl levels.
The entire extent of the earth flow spans approximately 250 m, with a width varying
from approximately 30 m at the middle channel to around 100 m at both the source and
depositional areas. Overall, it covers an area of about 10,000 m2; the estimated thickness
of the material involved is between 2 and 5 m. The volume mobilized during various
reactivation events is estimated at around 300,000 m3. Its active bulging toe has repeatedly
affected a segment of the national road SS87, leading to several issues related to road asset
management. The periods of greatest activity were in 2015 and 2016, which led to the
complete closure of the road. From November 2016 to July 2017, some provisional works
were carried out to mitigate the geomorphological risk. In particular, the earth flow toe was
covered with a waterproof sheet, and a drainage trench was dug at the middle of the slope.
However, an intensive rainfall period—exacerbated by a rapid snow-melting event—led
at the beginning of March 2018 to the earth flow reactivation affecting more than half of
the slope. The rainfall period is well evidenced by rainfall data collected at the “Torrecuso”
rain gauge, managed by the Centro Agrometeorologico Regionale (C.A.R.) of the Campania
Region, located 3 km west and at the same elevation as the Pietrafitta earth flow (Figure 2).
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Pietrafitta’s earth flow has been the subject of specific studies, including the work [15],
which aimed to study the process through remote sensing instruments and a multi-sensor
approach. The work carried out by the authors of [15] took into consideration the period
of activity in 2016, exploiting different monitoring systems installed along the slope and
combining the results of the different technologies. Due to this approach, the authors were
able to fully understand the deformative behavior of earth flow in Pietrafitta, and the work
presented here has taken advantage of this knowledge to study the period of activity in
March 2018.

2.2. Grillo Earth Flow

The Grillo earth flow (41◦14′32′′ N, 15◦15′51′′ E) is located along the southwestern
slope at elevations ranging from 350 to 500 m a.s.l, on the northern side of the Cervaro
River Valley (Figure 1c–e), involving the Flysch of Faeto formation (FAE) terrain [37], which



Geosciences 2023, 13, 364 5 of 21

crops out with a calcareous–clayey–marly member. The Flysch of Faeto is highly fractured,
and many springs, which are typically controlled by a local permeability contrast between
clayey and fractured strata, are widespread in the area, especially in the upper part of
the slope [38]. The earth flow body exhibits a stream bed incision that remains wet for
a significant portion of the year. Two active branches depart from the source area of the
earth flow, with one of them being notably more pronounced, featuring a 130-m-long
transport zone and a fan-shaped, bulging toe. Different from the transport and deposition
zone—where thrust and strike–slip faults are dominant—the source area is characterized
by the presence of normal faults (Figure 3). In total, the Grillo earth flow covers an area
of approximately 20,000 m2 and is located in the proximity of the well-known Montaguto
earth flow [13,38,39]. This latter earth flow has experienced multiple reactivations over the
years, resulting in severe damage and disruptions to both the SS90 national road and the
strategic railway line connecting the Benevento and Foggia towns [38]. Similarly, the Grillo
earth flow affects the same linear infrastructures. During the monitoring campaign, rainfall
data were collected from April 2022 to June 2023 at the “Orsara di Puglia” rain gauge,
managed by the local Civil Protection. Currently, the SS90 national road has been subjected
to deformation due to the pressure exerted by the earth flow toe, whereas the railway line
is presently safeguarded through the implementation of structural mitigation works. These
measures include the construction of pile bulkheads and retaining walls (Figure 1e).
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normal fault-like structure.

3. Materials and Methods

This chapter presents the remote sensing instruments (Section 3.1) in terms of sen-
sors and platforms used in this study, as well as the techniques for data processing
(Section 3.2) [40].

The main tools used in the processing phases were the IRIS software (version 1.17) [20],
developed by NHAZCA S.r.l., for coregistration, multi-master, single-pair DIC analysis,
and generation of displacement maps and time series; the Agisoft Metashape (version 1.7.6)
software for the structure from motion (SfM) photogrammetric processing of an unmanned
aerial system (UAS) imagery; and the QGIS software (version 3.10.8) for digital surface
model (DSM) generation, computation of hillshades, and for all spatial analyses.
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3.1. Remote Sensing Instruments and Data

In this study, monitoring instruments and available data were selected based on
their functional properties to ensure efficient performance in terms of spatial, radiometric,
spectral, and temporal resolution.

With reference to the Pietrafitta earth flow, the initial integrated monitoring system de-
scribed by [15] was removed and only partially reactivated—with a different configuration—
in July 2017 (Figure 4a). Specifically, a ground-based rugged camera (72 × 300 mm in size)
equipped with a 1/2.9′′ progressive CMOS low-resolution sensor (2MP) and a 3.6 mm focal
length was securely installed on a stable pole situated on the left flank of the earth flow
(Figure 4b,c). Additionally, the Robotic Total Station (Topcon mod. PS-101)—previously
located on the opposite slope [15]—was positioned on the right flank of the earth flow,
looking at 11 reflectors strategically placed along the slope for location (Figure 1d). The
R-TS acquired data with a minimum resolution/accuracy of 1′′. While the installation of
these monitoring instruments—as already mentioned—occurred in July 2017, our data
analysis was primarily centered on data acquired in March 2018. This timeframe coincided
with the landslide reactivation. The data obtained from the RTS were compared with those
derived from the DIC analysis to evaluate the reliability of the technique. We employed the
well-established Pearson correlation method for this comparative analysis [41].
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Regarding the employment of an UAS for the Grillo earth flow study, we used a DJI
Phantom 4 coupled with a D-RTK2 mobile station. This drone was equipped with a 1-inch
CMOS sensor (20 megapixels) and a 24 mm focal length. The Real-Time Kinematics (RTK)
system exhibited a remarkable positioning accuracy of 2 cm + 1 part per million (ppm) in
both the vertical and horizontal dimensions. For georeferencing targets and monitoring
activities within the Grillo earth flow area, we employed an RTK-capable GNSS receiver
(Topcon model HiPer SR) with 3.5 mm + 0.4 ppm and 3.0 mm + 0.1 ppm vertical and
horizontal precision, respectively. The data were acquired during a monitoring campaign
that started in April 2022 through multi-temporal UAS and GNSS acquisitions in RTK mode
using self-made targets (Figure 5). Table 1 presents a synopsis of the surveys performed,
offering a comprehensive summary of the acquired dataset.
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Table 1. Timing of the multi-temporal UAS and GNSS surveys performed at the Grillo earth flow.

Date GNSS UAS

12 April 2022 4

3 October 2022 4

1 December 2022 4 4

1 February 2023 4 4

22 March 2023 4 4

18 May 2023 4 4

Furthermore, with the aim of observing how the phenomenon evolved over a longer
period, Google® satellite imagery was used to perform a DIC analysis on the Grillo earth
flow. A summary of the dataset is shown in Table 2.

Table 2. Dataset for the satellite DIC analysis at Grillo earth flow.

Date Satellite GSD (m)

13 May 2009 GeoEye-1 0.41
15 April 2013 WorldView-1 0.47

1 November 2017 TripeSat-1 0.80
14 June 2019 WorldView-2 0.46

Table 3 summarizes the characteristics of the monitoring platforms from which the
data for the DIC technique were acquired.
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Table 3. Summary of the imaging platforms used for the DIC technique.

Platform Pole (Ground-Based) UAS Satellite

Sensor 1/2.9′′ CMOS (2MP) 1′′ CMOS (20MP) various (depending
on constellation)

Scenario Pietrafitta earth flow Grillo earth flow Grillo earth flow

Geometric resolution 10–63 cm 3 cm 30–100 cm

Radiometric resolution 10-bit 12-bit various

Spectral resolution low (RGB) low (RGB) low (RGB)

Temporal resolution days–hours months years

3.2. Imaging Techniques for Data Processing

For each study site, separate processing chains were created for the DIC techniques.
To enhance clarity, these processing chains have been categorized into three main stages:
pre-processing, processing, and post-processing (Figure 6). The analyses were carried out
for a 2D monitoring of the slope surface; therefore, no volumetric studies were carried out
because they were not in line with the objective of the work.
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Figure 6. General workflow for the instruments used.

The analyses performed with the dataset obtained from the ground-based camera (for
the Pietrafitta earth flow) and those performed with the UAV dataset (for the Grillo earth
flow) were then quantitatively compared with the data obtained with other monitoring
tools (RTS and GNSS, respectively). For the Grillo earth flow, in addition to the mentioned
methods of analysis, it was necessary to use a dataset of satellite images for long-term
cognitive monitoring, which was previously performed for the Pietrafitta earth flow [15].
These DIC analyses using satellite images were used for a qualitative purpose, and the
results were not quantitatively compared with the other techniques.

(a) Analysis of the Pietrafitta earth flow

For the Pietrafitta earth flow, we commenced by co-registering the data acquired from
the ground-based rugged camera. This co-registration process was undertaken as an initial
step in the pre-processing stage. Subsequently, we computed the ground sampling distance
(GSD), which represents the distance measured on the ground between two adjacent pixel
centers (Pre-processing). The determination of the GSD holds pivotal importance as it serves
as a key parameter to be considered before starting any monitoring activities. The GSD is
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calculated by taking into account the distance from the area of interest to the camera, along
with the specific camera specifications, such as image and sensor widths, as well as the
focal length. To clarify, it is worth noting that a larger GSD corresponds to a reduced spatial
resolution within the captured image, resulting in a diminished visibility of finer details.

In this scenario, an average GSD value was determined, factoring in the distance
arising from the camera’s non-perpendicular alignment relative to the line of sight (LoS),
and this configuration can significantly distort the pixel size. Unfortunately, in this case,
the value of the angle of incidence was omitted from the GSD calculation due to obvious
measurement problems. To solve this problem and correct the GSD value, identifiable
points of known sizes within the image were used as benchmarks.

To generate a displacement map, a multi-master analysis based on the DIC algorithm
was carried out. The DIC is an optical numerical measurement technique that provides 2D
surface deformation data by comparing co-registered digital images collected at different
time points [42,43]. Displacement maps can be generated either by comparing a single pair
of images taken before and after the deformation event (single analysis approach) or by
utilizing an image stack of the same area (multi-master approach). The latter approach
allows for the extrapolation of displacement time series for each selected pixel. The
displacement analysis, performed to retrieve the movements that occurred at the Pietrafitta
earth flow, relies on the phase correlation (PC) algorithm proposed in [44].

The PC algorithm is based on a frequency domain data representation computed
through fast Fourier transforms (FTs) employing a moving window. It leverages the FT
translation property, wherein a spatial domain shift between two images manifests as
phase differences in the frequency domain [15]. In Equation (1), the functions F(u,v) and
G(u,v) represent the respective FTs of f (x,y) and g(x,y), which we assume to be two image
functions. The notation F − 1 signifies the inverse FT.

PC = F − 1 {F(u,v) ∗ G(u,v)|F(u,v) ∗ G(u,v)|} = F − 1{exp(−i(u∆x + v∆y))} (1)

It is worth noting that three different displacement analyses, designated as A, B, and C,
were performed for this case study using the PC algorithm. The primary objective was to
evaluate variations in the accuracy of image analysis in response to different temporal reso-
lutions. In this regard, different moving window sizes were used, and different approaches
were tested, as detailed in Table 4.

Table 4. Analysis performed for the Pietrafitta case study. Time span covered by analyses B and C
refers to a single day (21 March 2018). Time is expressed as UTC +1. MM: multi-master analysis; SA:
single analysis.

Analysis

A B C

Time span covered 7 March 2018–31 March 2018 08:47–17:18 13:02–14:06
Images processed 25 8 2

Temporal resolution 1 day 1 h 1 h
Approach MM MM SA

Window size 64 pixel 8 pixel 8 pixel

Considering the camera FOV, after the co-registration stage, a region of interest (RoI)
was selected (Figure 1e), and the analysis was started (Processing). This was also to avoid the
possible noise that could interfere with the analyses due to the presence of dense vegetation
on the sides of the slope.

Harnessing the intrinsic capability of the DIC to quantitatively measure deformations
that occurred between two or more sequentially acquired images captured at different
times, we systematically extrapolated displacement time series for select deforming pixels
in order to assess their evolution over time (post-processing). The verification and validation
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of these time series were conducted with regard to the available ancillary data, primarily
derived from the RTS.

(b) Analysis of the Grillo earth flow

With regard to the utilization of unmanned aerial systems (UASs) in the monitoring
of the Grillo earth flow, we used the acquired aerial images to conduct photogrammetric
processing through the well-known SfM technique [45]. The application of SfM photogram-
metry to UAS imagery represents an emerging methodology that ensures high spatial
resolution and flexible surveying periodicity, both of which are fundamental elements in
earth flow monitoring [46–48]. Furthermore, UAS photogrammetry facilitates the mapping
of remote and impervious areas [46,49,50].

Subsequently, 3D topographic models were generated and accurately georeferenced,
enabling the derivation of DSMs and, consequently, the production of hillshades at a
resolution of 20 cm\pixel for each UAS campaign (pre-processing).

Following this stage, a multi-master analysis employing the PC algorithm was used to
generate a displacement map. This approach is similar to the methodology utilized for the
Pietrafitta earth flow (processing). In this case, a window size of 32 pixels was employed for
the analysis.

Similarly, we extrapolated the displacement time series for specific deforming pixels
to evaluate their temporal evolution (post-processing). As described above, these time series
were compared and validated with the available ancillary data (GNSS receiver, Table 1).

Moreover, Google® satellite imagery between 2009 and 2019 was exploited for image
analysis. Firstly, we exclusively selected and exported images that contained well-known
ground control points (GCPs). Subsequently, these images were georeferenced using the
coordinates of the reference points themselves (pre-processing). Furthermore, the selected
images were co-registered to facilitate the customary multi-master analysis utilizing the
normalized cross-correlation (NCC) algorithm to generate the displacement map (process-
ing). Unlike the previously introduced PC algorithm, it is worth noting that the NCC
operates directly within the spatial domain of the data [51]. For each pixel of the master
image, a square template window (STW) is defined, and various parameters, such as the
number of pixels, mean, and standard deviation, are computed. Simultaneously, the search
template, which shares the same size as the STW, is also moved within a defined search
radius around each pixel of the secondary image, with similar parameters computed for
this template. An iterative computation of the NCC value allows us to identify the optimal
correspondence correlation surface. Mathematically, the NCC is defined as follows:

NCC =
1
n ∑x, y

1
σf σt

( f (x, y)− µ f )(t(x, y)− µt) (2)

where f and t are the primary and secondary images, respectively; n is the number of pixels
in each template; µ is the mean; and σ is the standard deviation.

In addition, in this case, the displacement time series from pixels were also extrapo-
lated (post-processing).

4. Results

In this section, we present the main outcomes obtained in both temporal (e.g., dis-
placement time series) and spatial terms (e.g., displacement maps). Furthermore, whenever
feasible, we conducted comparisons among different datasets originating from the diverse
monitoring instruments to validate the strength and direction of the linear relationship
between the two quantitative variables, utilizing the Pearson correlation coefficient (r) [9].

4.1. Analysis of Images Acquired with a Ground-Based Camera (Pietrafitta Earth Flow)

Due to the presence of a pole-mounted camera, initially intended solely for visual
inspection purposes, along with its optimal configuration in terms of distance and perspec-
tive, we were able to generate detailed displacement maps and time series. Specifically,
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this setup enabled us to detect the main direction of displacement of the geomorphological
process, which aligns approximately with the line of the maximum slope gradient, and
quantify its rate.

Figure 7 shows the displacement map resulting from the image analysis A (in Table 4)
with a daily image capture frequency. It should be noted that the earth flow involves a
considerable section of the slope with velocities that are notably higher in the inner part of
the earth flow body and decreasing towards the edge and toe of the earth flow, closer to the
road infrastructure. To validate displacement rates, we deployed a robotic total station on
the right flank of the earth flow, looking at 11 reflectors placed along the slope. For this
analysis, only reflector No. 3 was considered as it was located within the area covered
by the visual beam (see Figure 1d for location). The comparison of data shows a high
correlation in terms of direction (positive) and strength (strong), with a Pearson coefficient
of r = 0.91 (chart in Figure 7). Importantly, the p-value is less than 0.05, confirming the
statistical significance of the correlation between these two variables. Moreover, the chart in
Figure 7 also compares the cumulative displacement of the monitoring point with rainfall
data collected at the “Torrecuso” rain gauge. The acceleration trend due to the rainy events
of 11–22 March 2018 (84.4 mm) is well evident.
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We used hourly images to investigate the velocity rates achieved during periods
characterized by high earth flow activity. As shown in Figure 8, on 21 March 2018, the earth
flow exhibited a displacement of 18 cm in approximately 8.5 h, maintaining a constant
velocity (R2 = 0.99) of about 2 cm/h (i.e., moderate velocity according to [52]). Again,
the displacement measurements were confirmed by comparisons with reflector (No. 3)
sightings made via RTS. Additionally, Figure 9, displaying the displacement map obtained
through a single analysis approach (utilizing two images captured between 13:00 and 14:00),
demonstrates the analysis’ remarkable sensitivity, capable of measuring approximately
5 cm of displacement within 1 h. This result aligns with RTS data, specifically referencing
benchmark 3, which underscores that the maximum displacement velocity on 21 March
2018 was reached between 13:00 and 14:00.
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4.2. Analysis of Images Acquired with an UAS Camera (Grillo Earth Flow)

For the Grillo earth flow, image analysis was carried out using accurate and georef-
erenced imagery generated through several UAS photogrammetric surveys. In contrast
to the Pietrafitta earth flow, the displacements observed in this case are presented from a
top-down perspective (zenithal view). Also, in this case study, the DIC techniques used
enabled the identification of the main displacement direction of the earth flow process
and the localization of its most active areas. The results show a heterogeneous displace-
ment pattern characterized by localized reactivations occurring along two main directions
(Figure 10). Additionally, these movements exhibited a “step-like” kinematic, potentially
indicative of impulsive responses to rainfall events. This trend was confirmed via the
available rainfall data collected from April 2022 to June 2023 at the “Orsara di Puglia” rain
gauge, managed by the Protezione Civile (Centro Funzionale Decentrato, C.F.D.) of the
Puglia Region, located about 2 km east and at the same elevation as the Grillo earth flow
(Figure 11). Although the distance is not negligible, it is considered to be acceptable given
the unique availability of the instrument and the gentle terrain catchments of the area [53].
In addition, for the type of analysis performed, even small cumulate changes would be
irrelevant.

Furthermore, a reliability assessment of the measurements was carried out considering
GNSS data for the targets placed on the ground (Figure 11). Since not all targets were placed
and surveyed simultaneously with the UAS surveys, the reliability analysis was restricted
to three specific targets (No. 2, No. 3, and No. 4). Although the sample size was limited
(n = 4), the comparison shows a robust positive correlation in terms of direction (positive)
and strength (strong) with a Pearson coefficient r = 0.99 for each of the targets. Given
that the p-value is less than 0.05, we can conclude that the correlation between these two
variables holds statistical significance. The GNSS analysis for target No. 2a is not present
because, having been installed on 23 March, it was no longer found on 23 May, probably
due to surface modifications caused by the landslide process under consideration (no data
available). Regarding target No. 6, it is probable that the reference area experienced its
maximum displacement before the installation of the target itself. In fact, the latest GNSS
measurements validate the trend recorded through the DIC, with comparable absolute
displacements.

Overall, the accuracy of the DIC analysis ranged from 0.2 to more than 1 m, namely
from 1 pixel to more than 5 pixels.
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Figure 10. Displacement map obtained from an UAS hillshade DIC analysis. The numbered black
dots represent the position of the GNSS targets.

4.3. Analysis of Images Acquired with a Satellite Camera (Grillo Earth Flow)

A further analysis was conducted using optical Google® satellite imagery for the
Grillo earth flow. As previously mentioned with regard to UAS imagery, the displacements
detected are presented in an overhead perspective (zenithal view). The employed DIC
techniques provided sufficient detail to discern the main direction of movement in the
geomorphological process and identify the most active areas (Figure 12). The results
confirmed the heterogeneous displacement pattern observed earlier using UAS imagery,
with localized unstable areas along two primary directions. The displacement observed
at the source area (area of interest) can be attributed to a retrogressive kinematic process
(Figure 12). This can be witnessed by the presence of grabens, scarps, and back-tilted
surfaces mainly linked to normal fault-like structures in the source area. These extensive
kinematic elements cause an upstream widening of the earth flow, resulting in a movement
inverse to the “natural direction” (i.e., downstream) in the DIC analysis.
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5. Discussion

The results presented above appear promising for all configurations adopted (e.g., the
various platforms), but their potential and limitations still warrant further investigation.
Nevertheless, the utilization of DIC techniques is steadily gaining popularity as a method
for data acquisition and processing. The necessary setup is often cost-effective and straight-
forward to install, enabling the acquisition of substantial amounts of data across diverse
environments with minimal effort.
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With regard to the Pietrafitta earth flow, due to the optimal configuration in terms of
distance and perspective of the pole-mounted camera, we were able to generate detailed
displacement maps and time series. This allowed us to discern the main displacement
direction of the geomorphological process—approximately aligned with the maximum
slope gradient—and to quantify its rate. Furthermore, when comparing the displacement
rates with the data obtained from reflectors sighted by an independent RTS, we observed a
close correlation in terms of both direction (positive) and strength (strong). However, it is
important to note that this comparison was made on the horizontal component measured
by the RTS, which is the component most perpendicular to the image plane. This choice was
made to ensure maximum comparability. This aspect is of particular significance in imaging
since post-processing still requires complex steps, including georeferencing, georectification,
and feature tracking. These steps are necessary to transform oblique images into meaningful
data for quantitative analysis (e.g., velocity rates). In this regard, several attempts have been
made, and today, there are some free and open-source applications available to overcome
these obstacles [54,55]. Furthermore, looking ahead to future monitoring campaigns,
particular attention must be paid to achieving the optimal geometric configuration for
measuring the intended movement while also keeping factors such as the angle of incidence
and position of the camera in relation to the monitoring target under control. However,
this is not always possible and there are cases where the distance between the object and
the sensor, as well as its GSD, may increase or may not be in the optimal configuration. In
these cases, it may be advantageous to use higher-resolution cameras, such as gigapixel or
depth cameras [56].

In reference to the Grillo earth flow, which was analyzed using images acquired by a
UAS, a critical aspect lies in the precise determination of the image capture point due to the
utilization of an aerial platform. This specific configuration granted us a comprehensive,
bird’s-eye view of the entire earth flow kinematics. In the author’s perspective, when
dealing with landslides of this type, specifically earth flows, this vantage point represents
the optimal approach for generating a comprehensive map of the unstable sectors and
their respective displacements. Regarding the timing of these acquisitions, there are two
factors to consider: (a)the extreme versatility of the acquisition technique (survey through
a drone) permits us to adjust—increasing or decreasing—the frequency of data collection
in accordance with the evolving state of the geomorphological process; (b)the necessity for
a well-trained team and physical accessibility to the investigation site can influence the
planning and execution of these acquisitions. The incorporation of ground-based targets for
georeferencing significantly facilitated data processing and analysis while enhancing their
overall reliability. However, even in the absence of georeferenced data, UAS surveys, when
coupled with DIC processing, still enable us to initiate the mapping and monitoring of earth
flows, even when other sources of information and control monitoring are unavailable.

The analysis of satellite imagery of the Grillo earth flow provided us with a general
understanding of the evolution of the geomorphological process over the past decade,
thereby facilitating knowledge monitoring. Although the absence of ancillary data from
conventional monitoring techniques did not allow a quantitative assessment of the dis-
placement values, our analysis confirmed the potentiality to derive surface displacement
data from Google® Earth images [57], especially for a knowledge monitoring of an earth
flow. This application could be utilized to obtain very high geometric resolution (i.e.,
GSD) satellite imagery easily [58]; however, when conducting DIC analyses for processes
characterized by high seasonality, especially those occurring within relatively vegetated
areas, it is advisable to avoid using optical images, be they satellite based or otherwise.
This is because changes in vegetation can introduce a multitude of processing errors. In
such cases, it is recommended to employ hillshade products instead.

Moreover, the results and interpretation of monitoring activities carried out at the two
study sites allowed us to observe the typical earth flow activity: slow localized movements
(e.g., Grillo earth flow) and surging events (e.g., Pietrafitta earth flow) [52].
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The key role of the hydrologic forcing on earth flow movement velocity was demon-
strated at the Pietrafitta study site: the intensive rainfall period of January–March 2018
and the snow melting that occurred at the end of February 2018, increasing the pore-water
pressure causing a fluidization of the earth flow material and resulting in a surge event. In
this phase, the highest localized movement velocity reached was about 0.63 m/day. This
value is consistent with other earth flow surge speeds in the literature [38,59]. Meanwhile,
the distribution of the displacement and average velocity observed along the longitudi-
nal axis of the right branch of the Grillo earth flow proved the importance of the basal
slip-surface geometry [60] on earth flow activity, expressed as the relationship between
morphological structures and velocity distributions. Indeed, as observed in Figure 10, the
highest displacement rates were measured where the flow movement was bounded by
normal and strike–slip faults, whereas the lowest velocities were measured where thrust
faults were present (Figure 1e). As reported in [60], extensional and compression structures
could be associated with risers and treads, respectively, in the basal slip surface.

To contextualize the contribution of our study and, therefore, of DIC techniques within
geotechnical monitoring, with a specific focus on monitoring earth flows facing linear
infrastructures, Figure 13 shows the application domains of the monitoring techniques
used in this study and presented using the classification proposed in [34]. Considering the
three main monitoring categories proposed, namely knowledge, control, and emergency
monitoring, and drawing insights from our practical field experiences (indicated by colored
dots in Figure 13), the utilization of the DIC has been generalized (represented by colored
areas in Figure 13) based on the specific platform used and its general purpose.
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For example, ground-based cameras, such as the one used in the Pietrafitta earth flow,
demonstrated great potential in emergency and, partially, control monitoring. Cameras
mounted on drones (UASs), as in the case of the Grillo earth flow, give a great advantage,
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especially for control monitoring. Satellite images, such as those employed for the Grillo
earth flow, seem to be crucial for knowledge monitoring.

6. Conclusions

The present study has examined the use of digital image correlation (DIC) for the
displacement monitoring of earth flows by presenting the outcomes from the evaluation
and comparison of distinctive techniques for three different study sites in the Pietrafitta and
Grillo earth flows. Based on the results presented in this study and considering the main
potentialities of the DIC techniques that have emerged from this research, the following
general considerations can be made:

• The spatially continuous coverage, given by the DIC technique, affords the opportunity
to perform monitoring with clear, practical advantages. Indeed, this approach enables
us to (i) comprehensively cover large areas, thereby avoiding the risk of underestimat-
ing geomorphological processes; (ii) increase the statistical robustness of the acquired
data; and (iii) identify the most active sectors and their rates of movement. These
aspects are particularly relevant when monitoring complex kinematic phenomena like
earth flows;

• The versatility of DIC, in terms of the facility of the installation of sensors, cost-
effectiveness, and compatibility with various platforms, makes this technique a com-
petitive, adaptable, and ready-to-use solution. This versatility holds significant impor-
tance in the field of geotechnical asset management (GAM);

• The proven reliability in terms of both accuracy (e.g., high correlation with RTS;
r = 0.91) and sensitivity (ability to measure approximately 5 cm of displacement within
1 h) lays the foundation for extensive use of the DIC techniques presented so far.
Furthermore, through future developments, e.g., involving the automation of analyses,
the DIC could easily be implemented as a technique underlying early warning systems
(EWS).

In the view and opinion of the authors, the most appropriate way to quantitatively
monitor earth flows in the case of control monitoring is to use the DIC from UAS data and
through hillshades for several reasons: (i) they are not subject to variations in vegetation;
(ii) due to the high resolution, it is possible to also identify localized displacements without
running the risk of ambiguity; and (iii) low cost of realization. For continuous and emer-
gency monitoring, the most effective way to quantitatively monitor the earth flow is to use
low-cost ground-based cameras that maintain a good cost–benefit ratio.

Although it has been shown that the techniques used, with their different configura-
tions and acquisition platforms, can be immediately exploited for the above-mentioned
purposes, their actual benefit will only materialize once some of the main limitations, which
also emerged in our work, have been addressed. For example, with regard to ground-based
cameras, great care should be paid to achieving the optimal geometric configuration for
measuring the intended movement while also maintaining the angle of incidence and
position of the camera in relation to the targets.

Finally, from our perspective, the revised rating presented in Figure 13 and a focus on
imaging (DIC) could be very useful for the risk management of earth flows in the presence
of linear infrastructures.
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