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Abstract: Chromatographic oil analysis is an important step for the identification of biodegraded
petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry.
However, analyses of chromatogram components by geochemists are comparative, visual, and
consequently slow. This article aims to improve the chromatogram analysis process performed
during geochemical interpretation by proposing the use of Convolutional Neural Networks (CNN),
which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one
chromatographic oil images from different worldwide basins (Brazil, the USA, Portugal, Angola, and
Venezuela) were used. The open-source software Orange Data Mining was used to process images
by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through
convolutional operations. Subsequently, the recurring features are grouped into common feature
groups. The training result obtained an accuracy (CA) of 96.7% and an area under the ROC (Receiver
Operating Characteristic) curve (AUC) of 99.7%. In turn, the test result obtained a 97.6% CA and a
99.7% AUC. This work suggests that the processing of petroleum chromatographic images through
CNN can become a new tool for the study of petroleum geochemistry since the chromatograms can
be loaded, read, grouped, and classified more efficiently and quickly than the evaluations applied in
classical methods.

Keywords: convolutional neural networks; biodegradation; organic geochemistry; orange data
mining; chromatogram image

1. Introduction

The Gas Chromatography (GC) technique is widely used by the oil industry and
can answer questions related to the origin of the oil and the physical-chemical conditions
of production, refining, and storage [1]. Recently, the emergence of artificial intelligence
(AI) techniques has opened up the data processing market, grouping, and classification of
complex imaged data that could be used to classify chromatogram components [2].

Image data are part of the analytical routine practiced by petroleum geochemists,
who use the proportion among chromatographic peaks to define the precursor geological
environment and identify contamination by drilling fluid, light exhaust, mixing of oils, and
even biodegradation [3–5].

It is important to create a routine for labeling geochemical data in a way that facilitates
its extraction and transformation into information to support companies’ decision-making.
The most modern way to reach this level of management is through machine learning
techniques controlled by experts in the field. In the case study of this paper, the users will
quickly decide whether, in their analysis, they need to extract biodegraded oils from the
data. Hence, the users will be able to download data efficiently with a low risk of noise,
which will enable them to obtain more accurate information.
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Biodegradation is a phenomenon caused by bacterial activity under 80 ◦C, often found
in shallow reservoir conditions close to water/oil contact [6,7]. These bacteria tend to
consume oil’s light compounds in the saturate fraction (preferably n-alkanes and then
isoalkanes) and then consume aromatics. Further, there are resistant compounds that form
complex chemical structures. They are located at the chromatographic baseline hump called
the unresolved complex mixture (UCM) [1]. As the biodegradation process is initiated,
UCM tends to climb, whereas the concentration of n-alkanes decreases. These observations
allowed Wenger [6] to build a biodegradation scale to rank the extent of biodegradation at
five biodegradation levels: very slight, slight, moderate, heavy, and severe biodegradation
(Figure 1). The biodegrading bacteria begin to consume the C8–C15 alkanes, accompanied
by a very slight UCMs climb. Following, at a moderate level, bacteria consume the most
part of n-alkanes (nC15+); however, UCM presents a tenuous hump.
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The petroleum density is vital to the oil and gas industry because it implies reservoir
recovery’s cost reduction together with refined products’ quality, which can reduce pro-
duction costs for companies [5,8]. The ◦API gravity decreases with the light compounds’
loss as well as petroleum quality [3,6,9]. This phenomenon is more sensitive at a slight to
moderate biodegradation level than at a moderate to severe biodegradation level [9].

Pristane and phytane are two iso-alkanes commonly found in petroleum and rep-
resented in petroleum chromatograms next to nC17 and nC18, respectively. The ratio
between the chromatographic peaks of these compounds indicates the probable degree
of biodegradation. At the level of moderate biodegradation, the pristane/phytane ratio
is little changed. At a heavy level, the UCM hump is very prominent, and n-alkanes
become rare [3,6,10]. When the biodegradation reaches the severe stages, biomarkers begin
to be consumed, and the demethylated hopanes (25-norhopane) are formed as a result
of the ring-opening process by bacteria [10]. If the reservoir underwent more than one
oil’s charge and there is 25-norhopane together with n-alkanes, it suggests the oil’s pulse
mixture [3,6,8,11].

In geochemical studies of petroleum, it is common to analyze many samples or
compare a few samples with previous analyses to group them, classify the characteristics
of the oil, and propose a diagnosis of the studied area (well, reservoir, basin, etc.). So, in
essence, the accurate evaluation of each chromatogram image can take a very long time for
the geochemist due to the large number of analyses or the complexity of the samples. The
use of AI in geochemical analysis brings cost and time savings and reduces the possibility
of interpretation errors. However, topics related specifically to the organic geochemistry of
petroleum involving the use of AI in image processing are still rare.

The use of statistics in petroleum geochemistry began around the 1960s, with simpler
regression techniques and bivariate data. Subsequently, multivariate techniques with
chemometrics and Machine Learning (ML) began to be used more widely because of the
spread of computers and the increase in computational capacity [12].

Chemometrics aims to explain chemical phenomena through statistical methods,
which, in turn, can be processed in a computer quickly by AI algorithms (Machine Learning
(ML) and Deep Learning (DL)). A milestone in the use of AI in petroleum geochemistry
is the work of McCammon [13], who used the separation of clusters (dendrograms) in
oil constituents in order to unravel which of the three horizons producers (in fields in
California) would preferentially drain. Wang et al. [14] did an extensive review of the use
of chemometric and ML methods in petroleum geochemistry, introducing the possibility of
using concentration data in certain situations.

One of the main Deep Learning (DL) algorithms for image classification is the Convo-
lutional Neural Network (CNN), through which a mapping is made from images, finding
recurring features and classifying them through neural networks. CNN is an algorithm
used to process and classify files of the type of images that have been developed since the
1980s but gained popularity in 2012 [15,16] when it aroused the interest of big tech. CNN
is a DL method that caught the attention of the scientific community at the International
Skin Imaging Collaboration (2017) when the technique was used to classify images of
melanomas with precision similar to experienced dermatologists, bringing speed to the
diagnosis of this disease [17,18]. CNN uses a large amount of categorized image data
(e.g., topographies such as hill, valley, and mountain) that are read pixel by pixel and
transformed into a vector of scores, one for each category. The goal of the algorithm is
that each category has the highest score, reducing the error between the output vector and
the standard vector. To reduce error, the algorithm uses “weights” (millions of adjustable
parameters) that control the input and output of the network and compute the vector that
indicates how much a slight change in the weight could increase or decrease the mistake.
This is possible because of the Stochastic Gradient Descent (SGD), a technique responsible
for presenting the input vector, calculating the output ones and their respective errors
repeatedly, and readjusting the weight with each new measurement. The sum of the vector
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weights is computed, and when it is above a certain range, it is classified as a feature in a
category [15,19,20].

Surveys involving the use of the same or similar algorithms began to be published
with topics related to other areas of knowledge. In Geology, de Lima et al. [21] used
images of fossils, rock samples, cores, and petrographic samples to classify and group
them, and satisfactory results were obtained. Other authors were also able to classify rock
images in order to improve petrographic analysis time through ternary diagrams [22,23].
CNN has been used to classify explosive volcanic plumes [24], fossil identification [25],
and unstructured geological text data clustering [26]. Koeshidayatullah et al. [27] used
transfer learning [28] to classify 4000 carbonate petrographic images in six classes as well
as nine object detection classes. Pires de Lima et al. [28] also used transfer learning to
make lithofacies classifications with approximately 7000 images split into 17 classes. These
authors also compared different pre-trained models to accurately classify petrographic
thin-section images [29]. CNN was successfully used to identify rock fractures from
outcrop pictures and drills [30,31]. Kim et al. [32] applied CNN to identify saturation
changes in core images caused by gas hydrate dissociation. With regard to source rock,
the CNN coupled with an unsupervised algorithm was used in well logging data to
predict total organic carbon (TOC), S2, and S1 values [33,34] and was used in seismic
images to identify petroleum system elements and consequently hydrocarbon leads [35]. In
addition, some papers used semantic segmentation to identify coal macerals and determine
their rank [36,37]. According to some authors, CNN can be used to predict rock porosity
through data logging, seismic images [38,39], and permeability [40]. Zeng and Wang [41]
were able to use CNN to classify SAR images from oil spills with greater accuracy than
conventional ML methods. Moreover, some authors have used CNN to classify Remote-
Sensing Scene [42–44].

In the forensic area, Bogdal et al. [45] used chromatogram image data to classify
flammable waste and determine the presence of traces of gasoline. Furthermore, in the
field of organic chemistry, some works used the CNN to qualify affected peaks by elution
on GC-MS chromatograms in order to discriminate the noise from the true peak [46].

This article aims to report a process automation of image analysis with the purpose
of discriminating biodegraded oils from non-biodegraded oils. The success of this test,
in addition to speeding up the analysis process, brings a new look at the geochemical
characterization of oils.

2. Materials and Methods
2.1. Convolutional Neural Network (CNN)

The first step in using CNN was to group the image bank according to categories (con-
tinuing the example given above, hill, valley, or mountain) and load it into the algorithm.
Subsequently, the data goes through a set of convolutional layers that work as an extractor
of recurring features from the images, rearranging them in a feature map (Figure 2). Each
neuron in the feature map of a given layer is connected with all neurons of the previous
layer via weights (filter banks). Lecun et al. [15] state that all units in the feature maps
share the same filter bank, mathematically corresponding to a convolution. To obtain more
robust and less general features that can recognize patterns at any position in the image,
a nonlinear (Kernel) calculation method is used. This step is called pooling layers and
is responsible for reducing the variance in feature maps with distortions or translations
(Figure 2). According to Lecun et al. [15], “although the role of the convolutional layer is to
detect local conjunctions of features from the previous layer, the role of the pooling layer is
to merge semantically similar features into one”.
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Figure 2. Materialization of a convolutional network and its analytical flow. Adapted from
Lecun et al. [15] and Rawat et al. [16].

Soon after, each layer is stacked on top of the previous one to extract more features
(fully connected layers) being extensively trained through the backpropagation mechanism
and, as a result, comes out with a predicted value (category or class).

2.2. Convolutional Neural Network using Orange®

The chromatogram images were loaded into the Orange® software, where the Incep-
tionV3 CNN algorithm was used for dedication (dimension reduction or embedded) and
image processing by Deep Learning [47,48]. InceptionV3 is a CNN model that was trained
on more than 1 million images. However, Orange® can import the inceptionV3 knowledge
for training new image types (Transfer Learning). InceptionV3′s transfer learning is impor-
tant for data with a few samples since CNN works better with larger [2,28,49,50]. The DL
processing via CNN determines the weights and feature maps of the images by finding
patterns and creating filters from the training images (81% of the images). Next, Machine
Learning algorithms (standard neural networks, logistic regression, decision tree, naive
bayes, and random forest) were employed to classify the embedded images and compare
them with each other. The algorithm with the best accuracy was utilized to generate a
prediction model for the test samples (19% of the images). In the test, the model was
effectively tested with untrained samples and revealed the actual efficiency of the technique
for image classification. The complete flowchart of the Deep Learning analysis through
CNN of gas chromatography imaged data can be seen in Figure 3.



Geosciences 2023, 13, 321 6 of 12
Geosciences 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. Complete flowchart of image analysis in the Orange® software. (a) input image; (b) 
convolutional calculations; (c) separation of test samples and training samples; (d) sample training 
with five algorithms; (e) the best model’s testing; and (f) output class. 

 
Figure 4. Chromatogram images used in the analysis and their pre-training classification. Figures 
(a,b) are chromatograms of biodegraded oil samples. Figure (a) presents the loss of light compounds 
(the peaks have a smaller carbon number than nC16). Figure (b) shows the total loss of light 
compounds in addition to the rise of UCM. Figures (c,d) are chromatograms of non-biodegraded oil 
samples. 

3. Results 
The algorithms Naive Bayes, Neural Networks, Random Forest, Decision Tree, and 

Logistic Regression were chosen to test the classification of images (Table 2). Neural 

Figure 3. Complete flowchart of image analysis in the Orange® software. (a) input image; (b) convo-
lutional calculations; (c) separation of test samples and training samples; (d) sample training with
five algorithms; (e) the best model’s testing; and (f) output class.

A total of 221 whole oil images (chromatograms) in JPEG format from gas chromatog-
raphy analysis were used and tested. These data show oils from foreign basins (East
Venezuela, Lusitanian, and Lower Congo, among others); however, the vast majority be-
long to Brazilian basins (Campos, Santos, Recôncavo, and Potiguar, among others). The
samples were previously classified as both biodegraded and non-biodegraded (Table 1 and
Figure 4). However, some samples were purposely misclassified as biodegraded (they are
not currently biodegraded) in order to evaluate the efficiency of the classification model
with mistakes still in the training stage.

Table 1. Number of images used and original classification.

Biodegraded Non-Biodegraded
92 129

The data were processed by CNN, which measured the images (180 images) and cre-
ated specific filters for each category. Next, the image classifier was trained using the results
calculated by the CNN to create a robust image prediction model of the chromatograms
from biodegraded oils. There is a moderate difference in the number of images for each
class. Nevertheless, in the test stage, the samples were stratified to avoid any bias in
the model. For that, it was necessary to find the algorithm that would present the best
result (accuracy).
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Figure 4. Chromatogram images used in the analysis and their pre-training classification.
Figures (a,b) are chromatograms of biodegraded oil samples. Figure (a) presents the loss of light
compounds (the peaks have a smaller carbon number than nC16). Figure (b) shows the total loss of
light compounds in addition to the rise of UCM. Figures (c,d) are chromatograms of non-biodegraded
oil samples.

3. Results

The algorithms Naive Bayes, Neural Networks, Random Forest, Decision Tree, and
Logistic Regression were chosen to test the classification of images (Table 2). Neural
Networks presented the best classification result because, despite having an area under
the curve (AUC) as high as Logistic Regression (both with 99.7%), it presented the highest
accuracy (CA) among all algorithms with 96.7%, followed by Logistic Regression and its
96.1%. Among the 6 samples that were misclassified, 4 show mild biodegradation with the
loss of light compounds (<nC16) or a slight rise in UCM (Figure 5).

Table 2. Classification training results for the five ML algorithms. Note that the Neural Networks
algorithm presented the highest accuracy (CA) of the group, followed by Logistic Regression.

Model AUC CA
Decision Tree 0.889 0.928
Random Forest 0.973 0.939
Neural Network 0.997 0.967
Naive Bayes 0.94 0.939
Logistic Regression 0.997 0.961
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Figure 5. Results of misclassified samples in the training step. Pictures (a,d) represent non-
biodegraded oils; however, CNN classified them as biodegraded. Note the small parabola in the
region of the lighter compounds, which is related to the original composition of the organic matter and
may have misled CNN analysis for pictures (a,d). Pictures (b,c) represent biodegraded oils; however,
CNN classified (c) as non-biodegraded. Observing the lighter compounds’ loss means there was a
slight biodegradation, which may have misled CNN analysis for picture (c). Picture (b) was purposely
misclassified as non-biodegraded in the training step; however, CNN classified it as biodegraded.

Once the prediction model was established, the next step was intended to test the
model through the processing and classification of 41 images not yet classified. The test
result (Table 3) shows that the AUC achieved was 99.7%, with an accuracy of 97.6%, which
is even better than the training result. The confusion matrix of the test samples indicates
that only one sample was misclassified; however, this sample shows characteristic ele-
ments of contamination by drilling fluid, like a prominent pike at nC13 to nC17 compounds
(Figure 6a) [5]. The result of the mixture of severe biodegraded oil (note the 25-norhopane
peak in Figure 6b) and drilling fluid will be an oil-derived chromatogram with no distin-
guishable elements of biodegradation. Therefore, the test’s prediction error is actually a hit
(Figure 6).

Table 3. Test result and model classification.

Model AUC CA
Neural Network 0.997 0.976
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Figure 6. This sample was misclassified by the algorithm, as there was a mixture of biodegraded oil
and non-biodegraded fluid in this well. (a) A gas chromatography (GC) sample previously classified
for training as biodegraded was predicted to be non-biodegradable by the model, which is correct as
the chromatography sample results in an oil with non-biodegradable characteristics. (b) Note that
the terpane fragmentogram highlights the high peak of 25-norhopane, a diagnostic biomarker of
severe biodegradation.
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4. Discussion

Samples that show only mild biodegradation features or mixtures of fluids from
different sources may induce the algorithm’s prediction error (Figures 5 and 6 and Table 4).
It is important to note that the CNN algorithm is highly dependent on the number of
samples used for training. In fact, with more images, the algorithm tends to have more
accurate and complex responses. Samples purposely misclassified serve as a screen for
simulating cases in which the previous manual classification presents some misclassified
samples. The critical point in this case study is that even small errors in the pre-classification
can generate a useful and adjusted model.

Table 4. Confusion matrix shows the number of samples classified correctly (in blue) and incorrectly
(in green).

ACTUAL PREDICTED ∑
Biodegraded Non-biodegraded

Biodegraded 14 1 15
Non-biodegraded 0 26 26

∑ 14 27 41

Some authors pointed out that it is possible to mix biodegraded oil with younger oils
from fresh charges into reservoirs [6,11]. However, the better way to identify biodegraded
and fresh’s mixed oils is through a m/z 177 or 191 mass chromatogram, because mass
chromatograms display 25-norhopanes peaks. Nevertheless, studying mass chromatograms
is beyond the scope of the present paper.

Despite the increasing use of CNN in images from rock, paleontological, and petro-
graphic materials, the use of CNN for the improvement of organic geochemical analysis
is still quite rare. Geochemists typically take between 8 and 16 h to interpret 221 chro-
matogram images. A deep learning model can reduce this time to almost 10 min. Notwith-
standing the success, unfortunately, CNN does not give the main parameters and details
used for your interpretative mechanism [15,21]. Nevertheless, the use of CNN can open
a new horizon for geochemistry when it comes to analysis by GC-FID, GC-MS, and GC-
MS/MS (total and selected ion chromatogram), identification of contaminants (as well as
environmental pollutants), identification of analysis defects, and, finally, identification and
characterization of origin and oil maturation.

5. Conclusions

Each well drilled for the petroleum industry increases the amount of generated oil
data (isotopes, biomarkers, composition, etc.). Therefore, it is vital for these companies’
managers to manage their databases in order to simplify the download by users, who can
use these geochemical data to obtain information and provide rapid support for geological
modeling, well locations, and drilling resolutions.

This research proposes a new way to interpret petroleum by using a deep learning
approach. The experiments were feasible to achieve high accuracy by modeling with
low computational cost. This approach is sufficient to reduce the time of geochemist
interpretation, and it allows companies to manage their geochemical data bank adroitly.

It is worth noting that the CNN model may also be applied to other oil classification
problems such as clustering analysis, drill contamination, or even the environmental origin
of parental source rock. There are possibilities for using CNN in bitumen, oil shows, or
even gas samples.
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