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Abstract: Unsaturated soil is a three-phase medium with three interfaces, and the mathematical
equations that represent its behavior must be developed in a fully coupled manner for accurately
predicting its hydromechanical behavior. In this paper, a set of fully coupled governing equations
was developed for the dynamics of unsaturated soil, considering the interaction among the bulk
phases and interfaces. In addition to implementing the complete governing equations, a simplified
formulation was developed for practical applications. The derivation of the finite element formu-
lation considering all the terms in the partial differential equations resulted in a formulation called
complete formulation and was solved for the first time in this paper. Another formulation called reduced
formulation was derived by neglecting the relative accelerations and velocities of water and air in
the governing equations. In addition, small and large deformation theories were developed and
implemented for both formulations. To show the applicability of the proposed models, the dynamic
behavior of an unsaturated soil embankment was simulated using both small and large deformation
formulations by applying minor and severe earthquakes. The reduced formulation was found to be
computationally efficient and numerically stable. The smaller displacements predicted by large defor-
mation theories show that the results are consistent with the expected behavior. Large deformation
theories are considered suitable when the geotechnical system undergoes large deformation and may
lead to accurate prediction.

Keywords: dynamics of unsaturated soil; fully coupled analysis; large deformation analysis; finite
element framework

1. Introduction

The hydromechanical behavior of geotechnical structures, such as earth dams, levees,
and near-surface soil that supports superstructures, is influenced by the degree of satura-
tion (DOS) of the soil. The DOS of soil varies with climatic and hydrological parameters.
In general, the soil is in an unsaturated state, and the saturated (DOS = 100%) and dry
(DOS = 0) states are special cases of an unsaturated state. During hydrological and/or
climatic events, such as rainfall, flood, and drought, the state of the soil changes contin-
uously, resulting in variations in the behavior of geotechnical systems. To better design
and construct sustainable and resilient geotechnical systems, the variation in the behavior
of the soil when it transitions from one state to the other must be understood. In this
study, numerical models that predict the hydromechanical behavior of soil are developed,
considering the soil as unsaturated soil, and implemented.

Unsaturated soil consists of three bulk phases (solid, water, and air) and three inter-
faces (solid–water, water–air, and air–solid). The hydromechanical behavior of the soil is
influenced by the bulk phases and interfaces and also by the interaction among them. Of
the three interfaces, the water–air interface (contractile skin) has a significant influence on
the hydromechanical behavior of unsaturated soil [1], and it must be incorporated at the
governing equation level for to accurately predicting the behavior of soil. The behavior
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of the water–air interface is controlled by the amount of water in the unsaturated soil,
particularly at the particle contacts. The contractile skin helps maintain the pressure differ-
ence between the water and air phases and results in the water pressure in an unsaturated
soil system being always negative. These factors complicate studying unsaturated soil
compared to fully saturated and/or dry soils.

The partial differential equations for the dynamics of unsaturated soil systems can be
derived based on physical laws, such as the balance of mass, linear momentum, angular
momentum, and the first and second laws of thermodynamics. When developing governing
equations, the macroscopic quantities representing microscopic quantities, such as the area
density of the water–air interface, must be identified and properly used in the derivation.
A rigorous volume-averaging technique is used to accomplish this task [2].

The partial differential equations are typically simplified to develop numerically
stable formulations without compromising the accuracy of the prediction. In the case of
unsaturated soils, the relative accelerations of the water and air phases with respect to
the solid phase are typically neglected in the solution procedure [3,4]. However, such
an assumption has not been proved to be valid. Schrefler et al. [3] and Wei [5] derived
finite element formulations by neglecting the relative accelerations of the water and air
phases. They solved the finite element equations, considering solid displacement (u), water
pressure (pl), and air pressure (pg) as the primary nodal unknowns (u pl pg formulation).
In the formulation, they used a two-dimensional, four-node quadrilateral element with
continuous bilinear displacement (u) and pressure (pl and pg). However, it is shown that
such formulation violates the Babuska–Brezzi conditions or the simpler Zienkiewicz–Taylor
patch test [6] for solvability and convergence [7].

In general, small deformation theories are commonly used in the finite element sim-
ulation of soils, assuming that the geotechnical engineering structures experience small
deformations. The true response of the geotechnical structures undergoing large defor-
mations cannot be predicted correctly with small deformation theories. Therefore, large
deformation theories must be incorporated while solving the partial differential equations
using the finite element method [8,9]. Sanavia et al. [10] and Gawin and Sanavia [11]
developed a formulation for partially saturated soils undergoing large deformations. From
the example simulations, they showed strain and negative pore pressure localization and
their effects on the hydromechanical behavior of partially saturated soils.

In this paper, a set of fully coupled partial differential equations for the dynamics of
unsaturated soils was derived, considering the interaction among the bulk phases and
interfaces. Next, two different finite element formulations (complete and reduced) of the
governing equations were derived for analyzing unsaturated soil mechanics problems
undergoing large deformations. In addition, small and large deformation theories were
developed and implemented for both formulations. Finally, the dynamic behavior of an
unsaturated soil embankment was simulated using both small and large deformation
formulations by applying minor and severe earthquake acceleration–time histories.

2. Summary of Governing Equations

The partial differential equations for the dynamics of unsaturated soils were derived
based on the laws of physics, such as the momentum balance, mass balance, energy balance,
and the second law of thermodynamics. Since the amount of water in the soil system is
directly related to the matric suction (air pressure minus the water pressure), a constitutive
equation that relates the amount of water to the matric suction was established. In this
study, the volume fraction of the water phase is assumed to be a function of the solid
skeleton’s matric suction and volumetric strain, as shown in Equation (1).

nl = nl(S, εv) (1)

where nl is the volume fraction of the water phase, εv is the volumetric strain of the solid
skeleton, and S is the matric suction defined by S = pg − pl , where pg is the pore air
pressure and pl is the pore water pressure.
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2.1. Mass Balance Equations

When deriving the governing equations, the volume spanned by the solid phase is
considered as the representative elementary volume (REV) and its motion is given by
ϕs (X, t), where X is the material coordinate and t is the time. The water and air phases can
move in (influx) and out (outflux) of the REV. This phenomenon is graphically shown in
Figure 1. Therefore, there will be net flow across the closed REV. Such influx and outflux
were considered in this study when deriving the governing equations.
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Figure 1. Motion of an REV and fluids in an unsaturated soil system.

The balance of mass in an REV for a bulk phase α is given by Equation (2).

mα(Ω) =
∫

t+∆tΩ

(nαρα) dΩ (2)

where mα is the mass of the α-phase, nα is the volume fraction of the α-phase, and ρα is the
density of the α-phase.

• Mass balance for the solid phase:

The following equation (Equation (3)) for the solid phase was derived, assuming that
the solid particles are incompressible:

− .
n + (1− n)div(vs) = 0 (3)

where n is the porosity of the unsaturated soil system and vs is the velocity vector of the
solid phase.

• Mass balance for the water phase:

The final mass balance equation for the water phase was derived by incorporating
the mass balance equation for the solid phase into the mass balance equation for the water
phase, as shown in Equation (4).(

∂nl

∂εv

)
.
ui , i + nl

.
U

l
i , i +

(
nl

Γl −
∂nl

∂S

)
.
pl
+

(
∂nl

∂S

)
.
pg

= 0 (4)

where u is the displacement of the solid phase, Ul is the displacement of the water phase,
and Γl is the bulk modulus of the water phase.

• Mass balance for the air phase:
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Similarly, the final mass balance for the air phase was derived by incorporating the
mass balance equation for the solid phase into the mass balance equation for the air phase,
as shown in Equation (5).(

1− n− ∂nl

∂εv

)
.
ui , i + ng

.
U

g
i , i +

(
∂nl

∂S

)
.
pl
+

(
ng

Γg −
∂nl

∂S

)
.
pg

= 0 (5)

where Ug is the displacement of the air phase and Γg is the bulk modulus of the air phase.

2.2. Momentum Balance Equations

Momentum balance equations can fully describe the motion of the unsaturated soil
system for the soil (solid, water, and air mixture), water phase, and air phase. The momen-
tum balance equations for the water and air phases are essentially the generalized Darcy’s
flow equations in the flow direction. At the micromechanical level, the primary resistance
to the flow of these fluids is the drag forces on the solid skeleton and the primary driving
force is the fluid pressure gradients. The final momentum balance equations for soil, water,
and air were derived, as shown in Equations (6)–(8), respectively.

• Linear momentum balance for the mixture:

ns ρs ..
uj + nlρl

..
U

l
j + ngρg

..
U

g
j − σij , i − ρbj = 0 (6)

• Linear momentum balance for the water:

ρl
..
U

l
j −
(

k̂l
i j nl

) .
ui +

(
k̂l

i j nl
) .

U
l
i +
(

δi j pl
)

, i
− ρlbj = 0 (7)

• Linear momentum balance for the air:

ρg
..
U

g
j −

(
k̂g

i j ng
) .

ui +
(

k̂g
i j ng

) .
U

g
i +

(
δi j pg)

, i − ρgbj = 0 (8)

where σij is the total stress tensor, bj is the gravitational acceis the gravitational acceleration
vector, leration vector, k̂l

i j is the inverted permeability tensor of the water phase, k̂g
i j is the

inverted permeability tensor of the air phase, and δi j is the Kronecker delta.

3. Updated Lagrangian Formulation of Governing Equations
3.1. Application of the Principle of Virtual Work

The principle of virtual work requires that the virtual work performed when the soil
body undergoes a virtual displacement δu be equal to the external work performed by the
body force and traction, i.e.,

t+∆tW int =
∫

t+∆tΩ

t+∆tσ ijδ
t+∆te ij

t+∆tdΩ (9)

t+∆tW ext =
∫

t+∆tΩ

t+∆tρ t+∆t biδui
t+∆tdΩ−

∫
t+∆tΩ

t+∆tnst+∆tρs t+∆t ..
u iδui

t+∆tdΩ

−
∫

t+∆tΩ

t+∆tn l t+∆tρ l t+∆t
..
U l

iδui
t+∆tdΩ−

∫
t+∆tΩ

t+∆tngt+∆tρg t+∆t
..
U g

i δui
t+∆tdΩ

+
∫

t+∆tST

t+∆t f t
i δui

t+∆tdS

(10)

where t+∆tσ ij are the Cartesian components of the Cauchy total stress tensor and t+∆te ij are
the Cartesian components of the strain tensor. In the case of unsaturated soils, the body
force, the inertial force of the solid skeleton, the inertial forces of the pore fluids, and the
surface traction contribute to the external work. Similar equations were derived for the
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motion of the pore fluids. It should be noted that there are two major difficulties that exist
when applying these equations for developing large deformation theories, which involve
rotation and a change in configuration. First, the configuration at time t + ∆t is unknown,
and the integrals over the volume t+∆tΩ and surface t+∆tS cannot be evaluated before
calculating the equilibrium position at time t + ∆t. The second difficulty is the presence of
total stress in the internal work equation. Since the total stress does not directly influence
the mechanical behavior of the soil, the principle of net stress, which is expressed in terms
of Cauchy stress, was applied.

3.2. Stress–Strain Relationship for the Solid Skeleton undergoing Large Deformation

For the large deformation formulation, the rotation of the element must be separated
from its deformation to accurately calculate the strain. During the elastoplastic deformation
of the body from the reference configuration to the current configuration, the material
undergoes elastic reversible deformation and plastic irreversible deformation. The motion
of the body from tΩ to t+∆tΩ (a reference configuration tΩ, a virtual intermediate con-
figuration iΩ, and a current configuration t+∆tΩ) is considered in two steps, the motion
of the body from tΩ to iΩ and then from iΩ to t+∆tΩ, as shown in Figure 2. The motion
from tΩ to iΩ is purely plastic and irreversible. Therefore, the configuration Ωi can be
considered an unstressed configuration. The motion from iΩ to t+∆tΩ is purely elastic
and reversible. The deformation gradient for the motion from tΩ to Ωi is denoted by Fp,
and the deformation gradient for the motion from iΩ to t+∆tΩ is denoted by Fe in matrix
form. When the motion from tΩ to t+∆tΩ is continuous, the deformation gradient has the
following non-cumulative representation in its plastic and elastic parts [12,13]:

F =
∂x

∂
¯
x

∂
¯
x

∂X
= FeFp (11)

where x is the spatial coordinate, X is the material coordinate, and
¯
x is the intermediate

coordinate. Since the deformation measures are not linearly expressed in terms of displace-
ments, the elastic and plastic components are not summable. Choosing a representation of
the elastic part of deformation independent of rigid body motion (rotation), the deformation
rate tensor D is given by the symmetric part of the velocity gradient L [13,14].

L =
.
F

e
· (Fe)−1 + Fe

.
F

p
(Fp)−1(Fe)−1and

D = De +
(
FeDpFe−1)

s +
(
FeWpFe−1)

s
(12)

where L = D + W
where W is the skew-symmetric part of the velocity gradient. The subscript s indicates

the symmetric part. If the elastic components of the total strain are assumed to be minor,
which is true for most soils, Fe ≈ 1 and the last term in Equation (12) is also small. Then,
the rate of deformation reduces to the additive decomposition, as shown in Equation (13).

D = De + Dp (13)

where De and Dp are the elastic and plastic parts of the total strain rate, respectively.
The corotational form of the stress–strain relationship for the elastoplastic material

was expressed in the following form (Equation (14)):

.
σ
∇
= Cep : D (14)

where Cep is the tangential elastoplastic stiffness tensor, which may be a function of the
current state of the net stress, matric suction, strains, and some other internal variables.
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Among the many forms of objective stress rates, the Green–Naghdi stress rate was
used in this study, as shown in Equation (15).

σ∇ =
D
Dt

σ−Ω ·σ−σ ·ΩT (15)

where the angular velocity is given by Ω =
.

R ·RT

The rotation tensor R was calculated using the polar decomposition theorem, which
states that any deformation gradient tensor F can be multiplicatively decomposed into a
product of an orthogonal matrix R and a symmetric tensor U, called the right stretch tensor.
The deformation gradient in the index notation is given by Fij =

∂xi
∂Xj

= RikUkj.
By rearranging the objective rates and applying the net stress principle to the total

objective rate, the net stress is expressed as:

Dσij

Dt
= σn∇

ij − δij
.
pg

+ Ωikσkj + σikΩT
kj and

Dσij

Dt
= Cep

ijkl Dkl − δij
.
pg

+ Ωikσkj + σikΩT
kj (16)

3.3. Stress-State Variables for Unsaturated Soils

The net stress and matric suction are widely accepted as the stress-state variables to
define the mechanical behavior of unsaturated soils [1] and were also used in this study.
For large deformation analysis, an objective stress measure must be used to consider the
effect of rotation. Therefore, the objectivity of the net stress must be derived before using
appropriate objective stress measures to the net stress. The net stress is given by

σ = σn − pgI (17)

where σ is the total stress tensor, σn is the net stress tensor, and pg is the pore air pressure.
The conventional solid mechanics sign convention is used in the above equation. Since the
net stress is defined in terms of the Cauchy stress tensor, which is not an objective measure
of stress, a suitable rate form was established for the net stress equation. Equation (18) was
derived by taking the time derivative of Equation (17).

D
Dt

σ =
D
Dt

σn − D
Dt

pgI (18)
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where D
Dt indicates the material time derivative.

The net stress equation was rewritten in corotational form, as shown in Equation (19).

σ∇ = σn∇ − .
pgI (19)

where σ∇ is the objective total stress rate, σn∇ is the objective net stress rate, and
.
pg is the

pore air pressure. The objective form of the net stress equation was incorporated into the
virtual work equation.

3.4. Boundary Conditions

Solid, water, and air displacements; solid traction; and pore pressure boundary con-
ditions were considered in the derivation. These boundary conditions are specified on
different portions of the boundary surface t+∆tS of the soil body at a generic time t + ∆t
and are defined as follows:

• Solid displacement boundary condition:
t+∆tu i =

t+∆tu i on t+∆tSu
where t+∇tu i is the specified value of solid displacement on the boundary surface

t+∆tSu at time t + ∆t.

• Water displacement boundary condition:
t+∆tU l

i =
t+∆tU l

i on t+∆tSUl

where t+∇tU i is the specified value of water displacement on the boundary surface
t+∆tSU at time t + ∆t.

• Air displacement boundary condition:
t+∆tU i =

t+∆tU i on t+∆tSUg

where t+∇tU g
i is the specified value of air displacement on the boundary surface

t+∆tSUg at time t + ∆t.

• Traction boundary condition:
t+∆tσ ijnj =

t+∆t f t
i on t+∆tST

where t+∇t f t
i is the specified value of traction on the boundary surface t+∆tST at time

t + ∆t, nj is the unit normal, and t+∆tσ ij is the total Cauchy stress tensor acting on the
neighborhood of t+∆tST .

• Pore water pressure boundary condition:
t+∇t p l = t+∇t p l on t+∇tS pl

where t+∇t p l is the specified value of the pore water pressure at time t + ∆t.

• Pore air pressure boundary condition:
t+∇t pg = t+∇t pg on t+∇tS pg

where t+∇t pg is the specified value of the pore air pressure at time t + ∆t.

3.5. Incremental Equations and Newton’s Method

By knowing the equilibrium state of the soil body at time t, the state Π was defined
by the known stresses, tractions, deformations, and history of the soil body. Let the right
and left sides of the virtual work equation in the reference configuration be I(Π) and E(Π),
respectively. At time t + ∆t, a new equilibrium state was established for the body. Let ∆Π be

the change in state, which is the solution of [I(Π + ∆Π)− E(Π + ∆Π)] · δv = 0. Denoting
¯
Π

as a guess for the new equilibrium state, the above equation can be expanded around the new
guessed state, as follows:
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[I(Π + ∆Π)− E(Π + ∆Π)] · δv =

[
I
(

¯
Π

)
− E

(
¯
Π

)]
· δv +

∂I
(

¯
Π

)
∂

¯
Π

∂
¯
Π−

∂E
(

¯
Π

)
∂

¯
Π

∂
¯
Π

 · δv + · · (20)

where ∂
¯
Π is the increment between the correct equilibrium state Π + ∆Π and the guessed

equilibrium state
¯
Π and δv is the virtual velocity. By taking first-order approximation, the

above equation reduces to Equation (21), as follows:∂I
(

¯
Π

)
∂

¯
Π

∂
¯
Π−

∂E
(

¯
Π

)
∂

¯
Π

∂
¯
Π

 · δv = −
[

I
(

¯
Π

)
− E

(
¯
Π

)]
· δv (21)

The successive solution of the above equation for various trial states
¯
Π can be found

until the right side of the equation becomes zero, i.e.,
¯
Π equal Π + ∆Π and the equilibrium

is satisfied.
By substituting the stress measures and replacing the rate form with the incremental

form, we obtain the following equations:

.
Sij = JF−1

ik

(
Cep

klmnDmn + Ωkmσml + σkmΩT
ml

)
F−T

lj and ∂Sij = JF−1
ik

(
Cep

klmn∂Dmn + ∂Ωkmσml + σkm∂ΩT
ml

)
F−T

lj (22)

Equation (22) was substituted into Equation (10), and the incremental internal virtual
work equation was derived, as shown in Equation (23).

∂t+∆tW int =
∫

tΩ

(
JF−1

ik

(
Cep

klmn∂Dmn + ∂Ωkmσml + σkm∂ΩT
ml

)
F−T

lj

)
δt+∆tε ij

tdΩ

−
∫

tΩ

t+∆t
t h ijδ

t+∆t
t ε ij

tdΩ
(23)

Equation (23) was simplified by choosing the current configuration to coincide with the
reference configuration. This led to the deformation gradient becoming the identity tensor,
while all the stress measures remained the same. This choice of the reference configuration
is called the updated Lagrangian method [13–15]. This method is straightforward to use in
computer codes because it requires only the coordinates of the body to be updated after
each iteration so that the current configuration is also the reference configuration.

4. Finite Element Forms of Complete and Reduced Governing Equations

Closed-form solutions to the partial differential equations for many real-world prob-
lems do not exist. Therefore, a numerical technique, such as the finite element method,
must be used to find approximate solutions for the system of equations. The finite element
method is a powerful and widely used numerical method in geotechnical engineering
to solve complex partial differential equations. To investigate the influence of relative
accelerations and velocities of pore fluids on the overall dynamic behavior of unsaturated
soils, two different formulations were derived in this study. The system of equations that
considers the relative accelerations and velocities is called the complete formulation. In
contrast, the system of equations simplified by neglecting the relative accelerations and
velocities of the pore fluids is called the reduced formulation. The predictions from these two
equations are compared in later sections.
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4.1. Complete Formulation

The system of equations describing the dynamics of unsaturated soils, as listed below,
consists of five equations and five unknowns.

ns ρs ..
uj + nlρl

..
U

l
j + ngρg

..
U

g
j − σij , i − ρbj = 0 (24a)

ρl
..
U

l
j −
(

k̂l
i j nl

) .
ui +

(
k̂l

i j nl
) .

U
l
i +
(

δi j pl
)

, i
− ρlbj = 0 (24b)

ρg
..
U

g
j −

(
k̂g

i j ng
) .

ui +
(

k̂g
i j ng

) .
U

g
i +

(
δi j pg)

, i − ρgbj = 0 (24c)(
∂nl

∂εv

)
.
ui , i + nl

.
U

l
i , i +

(
nl

Γl −
∂nl

∂S

)
.
pl
+

(
∂nl

∂S

)
.
pg

= 0 (24d)

(
1− n− ∂nl

∂εv

)
.
ui , i + ng

.
U

g
i , i +

(
∂nl

∂S

)
.
pl
+

(
ng

Γg −
∂nl

∂S

)
.
pg

= 0 (24e)

By eliminating the water and air pressures in the momentum balance equations using
the mass balance equations, the final set of equations (Equations (25a)–(25c)) was derived
in terms of the displacement, velocity, and acceleration of solid, water, and air phases. In
the finite element solution, the displacement fields of all three phases were considered the
primary nodal unknowns, as shown in Figure 3a.

nsρs ..
uj + nlρl

..
U

l
j + ngρg

..
U

g
j − σij , i − ρbj = 0 (25a)

ρl
..
U

l
j −
(

k̂l
i jn

l
) .

ui +
(

k̂l
i jn

l
) .

U
l
i + µ11 ui , ij + µ12 Ul

i , ij + µ13 Ug
i , ij − ρlbj = 0 (25b)

ρg
..
U

g
j −

(
k̂g

i jn
g
) .

ui +
(

k̂g
i jn

g
) .

U
g
i + µ21 ui , ij + µ22 Ul

i , ij + µ23 Ug
i , ij − ρgbj = 0 (25c)

where
µ11 =

(
a12b21

(a22a11−a12a21)
− a22b11

(a22a11−a12a21)

)
µ12 = −

(
a22b12

(a22a11−a12a21)

)
µ13 =

(
a12b22

(a22a11−a12a21)

)
µ21 =

(
a21b11

(a22a11−a12a21)
− a11b21

(a22a11−a12a21)

)
µ22 =

(
a21b12

(a22a11−a12a21)

)
µ23 = −

(
a11b22

(a22a11−a12a21)

)
a11 =

(
nl

Γl − ∂nl

∂S

)
,a12 =

(
∂nl

∂S

)
,b11 =

(
∂nl

∂εv

)
, b12 = nl

a21 =
(

∂nl

∂S

)
,a22 =

(
ng

Γg − ∂nl

∂S

)
,b21 =

(
1− n− ∂nl

∂εv

)
and b22 = (ng)

The water and air pressures can be calculated using

pl = µ11 uk , k + µ12 Ul
k , k ++µ13 Ug

k , k and pg = µ21 uk , k + µ22 Ul
k , k + µ23 Ug

k , k (26)

4.2. Simplified Formulation

The reduced formulation was derived by neglecting the pore fluids’ relative accelera-
tions and velocities. Such simplification results in three equations (the momentum balance
equation for the mixture and the mass balance equations for the water and air phases). In
this case, the momentum balance equation was solved considering the solid displacements
as the primary nodal unknowns, as shown in Figure 3b, and the water pressure and air
pressure were calculated using the mass balance equations. In this formulation, the changes
in water and air pressures are directly related to the volumetric deformation of the solid
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skeleton since the flow of fluids does not occur. This formulation simulates the undrained
behavior of unsaturated soils.
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Figure 3. Nodal variables for the (a) u-U-U and (b) u formulations in 2 dimensions.

The final set of equations is summarized below (Equations (27)–(29)).

ρ
..
uj − σij , i − ρ gj = 0 in t+∆tΩ (27)(

nl +
∂nl

∂εv

)
.
ui , i +

(
nl

Γl −
∂nl

∂pc

)
.
pl
+

(
∂nl

∂pc

)
.
pg

= 0 in t+∆tΩ (28)

(
1− nl − ∂nl

∂εv

)
.
ui , i +

(
∂nl

∂pc

)
.
pl
+

(
ng

Γg −
∂nl

∂pc

)
.
pg

= 0 in t+∆tΩ (29)

4.3. Finite Element Formulation

The finite element formulations of the two formulations were derived using Galerkin’s
weighted residual method, considering isoparametric four-node quadrilateral elements.
The time integration was performed using the Hilber–Hughes–Taylor-α method, which
is a standard procedure in structural and geotechnical earthquake engineering. It allows
for energy dissipation and second-order accuracy, which is not possible with the regular
Newmark’s method. The readers may refer to Wang and Chester [16], Wang et al. [17], and
Ravichandran [8] for details on the derivation of weak form, shape functions, element-level
residuals, and tangents.

5. Example Simulations
5.1. Finite Element Model

The finite element mesh for the unsaturated soil embankment used in this study is
shown in Figure 4. The base of the embankment was assumed to be impermeable and fixed
in both horizontal and vertical directions during the dynamic analyses. For the other three
sides of the embankment, no displacement boundary conditions were applied so that they
could move in any direction during shaking, and closed boundaries (no flow) were applied
for the flow of water and air.
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5.2. Constitutive models and model parameters
Stress–Strain Relationship of the Soil Skeleton

The stress–strain behavior of the solid skeleton was represented by an elastoplastic
constitutive model based on the bounding surface concept. The schematic of the bounding
surface model on stress-invariant space is shown in Figure 5. The original three-surface
model for saturated cohesive soils [18] was modified for unsaturated soils by Muraleetharan
and Nedunuri [19]. Additional parameters related to matric suction have been incorporated
into the original model. This model uses the net stress (σij − pgδij) and matric suction
(S) as the stress-state variables. The modifications to the base model to incorporate the
suction effects were based on the concepts proposed by Alonso et al. [20], Wheeler and
Sivakumar [21], and Wheeler [22] for unsaturated soils. The simulations shown in this
paper were carried out for an Oklahoma soil called Minco Silt (liquid limit = 28.0, plastic
limit = 20.0, and USCS classification = CL). The model parameters for Minco Silt were
obtained using the laboratory tests performed by Ananthanathan [23] and Vinayagam [24].
A complete list of the model parameters for Minco Silt and their values are listed in Table 1.
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Figure 5. Schematic of a bounding-surface constitutive model in stress-invariant space.

Table 1. Calibrated bounding surface model parameters.

Parameter Value

Slope of virgin consolidation line in e-ln(p) plot, λ 0.0954

Slope of swelling line in e-log(p) plot, κ 0.0103

Slope of critical state line in compression, Mc 1.2678

Ratio of extension to compression for slope of critical state line, Me/Mc 1.00

Elastic shear modulus, G
(
×106 kPa

)
12.50

Poisson ratio, ν 0.20

Mean net stress at which consolidation curve changes from linear in e-ln(p) space
to linear in e-p space, PL

33.80
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Table 1. Cont.

Parameter Value

Shape parameter in compression corresponding to ellipse 1, Rc 4.20

Ratio of extension to compression of shape parameter corresponding to ellipse 1,
Re/Rc

1.00

Shape parameter in compression corresponding to hyperbola, Ac 0.05

Ratio of extension to compression of shape parameter corresponding to hyperbola,
Ae/Ac

1.00

Shape parameter corresponding to ellipse 2, T 0.01

Projection center, C 0.00

Elastic zone parameter, Sp 1.00

Positive model parameter, m 0.02

Degree of hardening in triaxial compression, Hc 0.80

Ratio of extension to compression for hardening parameter, He/Hc 1.00

Hardening parameter for states in immediate vicinity of I-axis, Ho 1.000

Suction-dependent parameter 1, m 4.703

Suction-dependent parameter 2, N 1.780

Suction-dependent parameter 3, A 0.420

Suction-dependent parameter 4, B 0.089

5.3. Soil Water Characteristic Curve (SWCC) and Model Parameters

Among the many SWCCs available in the literature, the model (Equation (30)) pro-
posed by Brooks–Corey [25] was used in this study.{

Θ = 1 S < a

Θ =
(

S
a

)−n
S > a

(30)

where a and n are the fitting parameters and Θ is the dimensionless water content given
by Θ = θ−θr

θs−θr
. The subscripts s and r indicate the saturated and residual values of the

volumetric water content, θ, respectively. The SWCC parameters were determined by
adjusting the model parameters until the model matched the experimental curve [23]. The
model parameters are listed in Table 2. The relative permeability was calculated using
the SWCC and the saturated permeability. The saturated permeability of 1.02× 10−8 m/s
and the initial DOS of 0.43 were used in this analysis. The initial pore water and pore air
pressures were−30.0 and 0.0 kPa, respectively. The relative permeability of the water phase
calculated using the van Genuchten method [25] was in the order of 10−3. This implies that
the unsaturated soil permeability is 1.02× 10−11 m/s for the given initial conditions.

Table 2. Calibrated Brooks–Corey model parameters.

Parameter Value

Dry density (kN/m3) 14.14

Parameter a 5.5

Parameter n 0.5

5.4. Static Analysis: Determination of the Initial Condition for Dynamic Analysis

The initial stresses for dynamic analysis using an elastoplastic constitutive model were
determined through static (gravity) analysis. The static analysis to compute the initial
stresses was performed by choosing the time integration parameters as α = 0, β = 1.0, and
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γ = 1.5 [26,27]. The gravity load was increased, as shown in Figure 6, for the static analysis.
Only the stresses were transferred to the dynamic analysis, and all the nodal and element
fields were reset to zero at the end of the static analysis.
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Figure 6. Gravity load–time history for static analysis.

5.5. Dynamic Analysis

For the dynamic analysis, the time integration parameters were changed to α = −0.3,
β = 0.4225, and γ = 0.8 [28] and the model embankment was shaken with the horizontal
and vertical motions, as shown in Figure 7.
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Figure 7. Input horizontal and vertical acceleration–time histories at the base of the model.

5.6. Comparison between Small and Large Deformation Analyses

The response of the unsaturated soil embankment discussed in the previous section
was analyzed using both small and large deformation models using only the reduced
formulation. The horizontal and vertical displacement–time histories at nodes N073 and
N053 are shown in Figures 8 and 9, respectively. The time histories of the pore water
pressure, pore air pressure, matric suction, and DOS in element E022 are shown in Figure 10.
From these figures, it is clear that the model did not undergo significant deformation during
the shaking. To increase the magnitude of the deformation, severe shaking was applied to
the model by multiplying the amplitudes of the motions, as shown in Figure 7, by 6, and
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then the results from the large and small deformation codes were compared. The horizontal
and vertical displacements at nodes N073 and N053 are shown in Figures 11 and 12,
respectively. The time histories of the pore water pressure, pore air pressure, matric suction,
and DOS in element E022 are shown in Figure 13. We found that the large deformation
analysis provides smaller vertical and horizontal displacements compared to the small
deformation analysis. This is due to the initial stiffness contribution to the large deformation
analysis at every time step coming from the updated Lagrangian formulation [15]. We also
found that the large deformation analysis shows a minor change in pore water and air
pressures. This response is consistent with the deformation response of the embankment.
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Figure 9. Horizontal and vertical displacement–time histories at node N073.
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Figure 12. Horizontal and vertical displacement–time histories at node N073—severe shaking.
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5.7. Comparison of Computational Efficiency of Complete and Reduced Formulations

In the case of a four-node quadrilateral element for two-dimensional analysis, the
complete formulation has 24-element degrees of freedom (DOF) and the reduced formula-
tion has 8-element DOF. In the case of an eight-node brick element for three-dimensional
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analysis, these numbers are 72 and 24 for the full formulation and the reduced formulation,
respectively. These numbers provide an idea of the computational effort needed to solve
these formulations. The embankment problem described earlier was run on an Intel-Xeon
processor with a 3.0 GHz clock speed processor. The complete formulation took 1160 min,
and the reduced formulation took 60 min to analyze 30 s of shaking using the same number
of steps in both analyses. The average number of global iterations for the complete formu-
lation was 5 and for the reduced formulation was 3. That is, in this example, the complete
formulation required 20 times more computational time than that required by the reduced
formulation.

6. Concluding Remarks

The following conclusions were made from this study:

• The large and small deformation theories for unsaturated soils were implemented
within a finite element framework, and a large deformation analysis of the unsaturated
soil was performed for the first time.

• The complete formulation for unsaturated soil was successfully solved for the first
time. The effects of relative fluid accelerations and velocities on the overall behavior
of unsaturated soils were estimated and compared. The reduced formulation is
computationally efficient and numerically stable. It captures the overall behavior
reasonably well for the soil considered in this study (Minco Silt) and can be used for
the evaluation of earthquake effects on similar soils. However, caution should be
exercised in using the reduced formulation for soils with larger permeability values.

• The small deformation analysis was observed to predict larger displacements com-
pared to the large deformation analysis. Therefore, a large deformation analysis will
likely produce an economical design of a geotechnical engineering structure.

• All predictions made by the computer code TeraDysac should be validated against
experimental results. These validations are currently in progress.
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