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Abstract: Recently, the use of microtremor techniques for subsoil investigation has increased sig-
nificantly. The HVSR (Horizontal to Vertical Spectral Ratio) technique allows, in many cases, to
obtain a seismo-stratigraphic reconstruction of the subsoil and to identify areas with similar seismic
behavior. However, the stratigraphic interpretation of the HVSR peaks still remains a subjective
choice and linked to a priori information. A non-hierarchical centroid-based algorithm was modified
to group HVSR peaks of different measurements that can be attributed to the same generating seismic
discontinuity. Some tests performed have shown that the proposed algorithm produces valid results
even in the absence of a priori information to evaluate the choice of the optimal grouping. The results
obtained for HVSR measurements acquired in the city of Modica (Italy) are presented. The cluster
analysis of these data and the information on the lithologies outcropping in the area made it possible
to reconstruct a 3D model of the main seismo-stratigraphic discontinuities.

Keywords: HVSR; cluster analysis; seismo-stratigraphic; 3D model

1. Introduction

The Horizontal to Vertical Spectral Ratio (HVSR) noise method [1–3] is currently a
very popular method in seismic microzonation studies, as it has been shown to provide
coherent information on site effects, i.e., significant increases of peak amplitude of ground
shaking [4–7]. In the HVSR method, environmental noise, which includes microtremors
induced by wind, ocean waves, and anthropogenic activity, is recorded using triaxial
broadband velocimeters that measure the vertical component and the two horizontal com-
ponents (north-south and east-west) [8]. The statistical analysis of the spectral components
allows one to derive the trend of the ratio of the average horizontal-to-vertical spectrum.
The shape of the HVSR curve approximates the spectrum of the transfer function of the
sedimentary cover with respect to the bedrock. Consequently, the resonance frequencies of
the site can be obtained from this. The analysis of the peaks of the HVSR curve allows one
to recognize those reasonably caused by stratigraphic discontinuities. Stratigraphic peaks
can be interpreted using regression equations to estimate the sediment thickness and depth
with respect to the bedrock [9]. Moreover, geographically close measurements are more
likely to show similar frequency peaks if they are caused by the same stratigraphic limit.
This consideration can be exploited to correlate information and build bedrock frequency
and depth maps, for example [10]. The uncertainty on the sources of the HVSR peaks can
be reduced with cluster analysis techniques [11] in order to distinguish between peaks
mainly related to site effects and peaks mainly related to source effects. Some authors have
used cluster analysis techniques to distinguish peaks caused by source effects and peaks
due to site effects [7,12–14]. The discrimination between these two effects can allow one to
select the appropriate cluster of curves linked only to the site effects and consequently to
derive a more reliable average HVSR curve, better identifying all the significant peaks of
the H/V spectral ratio.
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Often, the HVSR curves are inverted to obtain one-dimensional models of seis-
mic velocity and layer thickness and consequently estimate the depth of the seismic
bedrock [13,15–17]. However, the HVSR inversion must always be constrained by de-
tailed stratigraphic information [7,17–21].

Many authors have shown how the uncertainty of the solution of the inverse prob-
lem in HVSR can be limited by using data from other geophysical methods as a priori
constraints [16,22–28]. In this regard, the shear wave velocity models obtained from Multi-
channel Analysis of Surface Waves (MASW) can be used as initial models for the inversion
of the HVSR curve [13,29–32].

Cluster analysis can also be applied on the spatial distribution of all significant peaks
observed in a set of HVSR curves to identify and group the peaks likely due to the same
site effect [13,14,33] and delimit areas with the same seismic response. Although we
cannot completely exclude that the peaks belonging to the same cluster are due to different
structures, it is statistically plausible to consider the main clusters of HVSR peaks to define
the seismic layers, each characterized by a specific range of seismic velocities, and to
associate them with the known geological formations. The depth values obtained by
inverting the HVSR mean curves, if related to peaks of the same cluster, can then be
interpolated to reconstruct a seismic stratigraphic limit.

2. Materials and Methods

Cluster analysis is a multivariate analysis technique used in many research
fields [11,34–36], through which it is possible to combine a set of statistical units, dividing
it into some subsets, called clusters, which tend to be homogeneous within them. This
grouping is based on the level of internal similarity (intra-cluster) and external dissimilarity
(inter-cluster) evaluated by the values that a number of chosen parametric variables assume
in each unit. Cluster analysis generally does not foresee any interpretative model but
is based only on statistical considerations [37]. At the end of the procedure, the objects
inside the clusters are close to each other, while the objects belonging to different clus-
ters are distant from each other. The parametric distance is quantified by measures of
similarity/dissimilarity between defined statistical units.

Many clustering algorithms have been proposed [38]; they can be classified into two
main classes: Hierarchical Clustering (HC) and Non-Hierarchical Clustering (NHC). In HC
the objects are progressively grouped (agglomerative hierarchical clustering) or divided
(divisive hierarchical clustering) into clusters, evaluating the proximity between the objects.
In HC, it is not necessary to define the number of clusters in advance. At the end of
the procedure, similar clusters are grouped and arranged hierarchically according to a
dendrogram, which allows you to get an idea of the adequate number of clusters in which
the data can be grouped.

On the other hand, NHC algorithms do not follow a tree structure and involve the
formation of new clusters by joining or splitting the clusters. These techniques group the
data in order to maximize or minimize some evaluation criteria. The number of clusters,
the presence of outliers, and the parameters used for distance measurements primarily
affect the results of the cluster analysis.

Different clustering strategies often lead to dissimilar results [39–41]. In any case, to
assess the performance of the clustering procedure, it is necessary to evaluate the stability
and the objectivity of the partition results [42]. Generally speaking, if we are looking for
groups of statistical units characterized by a high internal consistency, non-hierarchical
techniques are more effective than hierarchical ones.

A multiparametric clustering procedure is described here, with the aim of group-
ing the H/V peaks attributable to the same origin (stratigraphic, tectonic, topographic,
anthropogenic, or other sources). This clustering is carried out in order to delineate
the areas within which it is possible to hypothesize a continuous trend of the parame-
ters used to describe the subsoil and of the seismic behavior of the subsoil. Many stud-
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ies [13,14,17,21,24,26] demonstrated that the hypotheses on the cause of HVSR peaks are
fundamental to extract reliable information on the subsoil from these data.

The parameters considered for the determination of the clusters are the coordinates
(x, y, z) of the measurement, the peak frequency f 0, the H/V ratio in correspondence of
f 0, and the lithology emerging at the measurement point. In particular, the geological
information is converted into numerical information L, assigning to the point the value
of the average density of the corresponding lithology, which is directly related to its
seismic behavior.

The procedure is based on the use of a non-hierarchical algorithm based on mobile
centers in which the number k of clusters is not chosen a priori. In practice, the mobile
centers algorithm is repeatedly applied to the set of n data using different values of k (in our
tests, k varying from 2 to 7). The choice of the optimal value of k is determined a posteriori,
based on the analysis of the values assumed by the deviance within the individual clusters
and by that between the clusters.

The initialization of the non-hierarchical algorithm requires the choice of the number
of k classes to which to aggregate the units and the random choice of the k elements
e1

0, e2
0, . . . , ek

0, which represent the provisional nuclei of the k classes. After calculating
the distances of each element from the k nuclei and assigning each of these to the group
represented by the closest nucleus, we identify a first partition of the set E into k classes
C1

0, C2
0, . . . , Ck

0. However, our approach provides that the algorithm is not linked to the
initial choice of the number k of clusters. The algorithm is repeatedly applied to the set of n
data by varying k from a value kmin to a value kmax (for example, from 2 to 7).

Centroid-based algorithms generally require that the number of clusters k and the
starting coordinates of the centroids are specified in advance. This aspect is considered one
of the major drawbacks of these algorithms because an inappropriate choice in this regard
can produce poor results. That is why it is important to run diagnostic checks to determine
the number of clusters in the dataset. In particular, it is known that the parameter k is
difficult to choose when it is not given by external constraints.

The proposed algorithm starts with the first iteration by choosing, independently,
the coordinates of the first centroids. In particular, the parametric coordinates regarding
the spatial position, the H/V amplitude, and the lithology are chosen the same for all the
centroids, corresponding to their average value among all the units.

The differentiation on the coordinates of the initial centroids is limited only to the peak
frequency f 0, partitioning the range between the minimum and maximum frequency of all
the data in a number of frequency intervals equal to the number of partitions chosen, in
logarithmic scale.

The first aggregation is performed only based on the peak frequencies and the paramet-
ric coordinates of the cluster centroids are subsequently calculated to start a new iteration.
In this way, the new nuclei e1

1, e2
1, . . . , ek

1 of the classes are defined, identified in the
centers of the classes themselves. After calculating the distances of each element from
the new nuclei and assigning each of these to the group represented by the closest nu-
cleus, we identify a second partition of the set E into k classes C1

1, C2
1, . . . , Ck

1. This
sequence is repeated until two successive iterations define the same partition, which is then
considered final.

The Euclidean distance of each element from the initial nuclei and from the nuclei
obtained after each iteration is calculated as the weighted sum of the distances of all the
variables considered (position, frequency, amplitude, and lithology):

D =
[

a
(

dx2 + dy2 + dz2
)
+ b
(

d f 2
)
+ c
(

dA2
)
+ d
(

dL2
)] 1

2 , (1)

where dx, dy, dz, df, dA, and dL are the differences between the parametric coordinates
UTMX, UTMY, elevation, frequency, amplitude, and lithology, respectively, and a, b, c, and
d are the weights. The information on the emerging lithostratigraphic unit is converted into
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numerical information using nearby numbers for seismically similar lithologies and distant
numbers for different lithologies.

The optimization of cluster analysis, i.e., the choice of the optimal number of clusters
and the optimal set of weights, is made through a joint analysis of the trend of the deviance
within the individual groups DEVIN and the deviance between groups DEVOUT:

DEVIN =
g

∑
k=1

p

∑
s=1

n1

∑
i=1

(xi,s − xs,k)
2 (2)

DEVOUT =
p

∑
s=1

g

∑
k=1

(xs,k − xs)
2nk (3)

where g is the maximum number of clusters, p is the total number of variables considered,
n is the number of data for each variable, xi,s is the i-th datum relating to the s-th variable,
and xs,k is the mean of the s-th variable with reference to the k-th group.

Considering that the total deviance DEVT is given by:

DEVT =
p

∑
s=1

n

∑
i=1

(xi,s − xs)
2 (4)

we have:
DEVT = DEVIN + DEVOUT . (5)

In passing from k + 1 to k groups (aggregation) DEVIN increases while, predictably,
DEVOUT decreases.

The partition validity indicator [43] is instead provided by:

R2 =
DEVOUT

DEVT
(6)

but fundamentally it remains a subjective choice of the operator, based on the a priori and
contextual information of the data.

The algorithm was tested using a data set of 100 HVSR measurements acquired
in the urban center of Modica (Italy). From the HVSR curves, the values of the peak
frequencies, H/V amplitudes, as well as UTM coordinates and outcropping lithologies
L were preliminarily obtained.

We considered nine sets of different weights (Table 1) in which the coordinates
weight a increases as the weight set number increases, while the frequency weight b
decreases. The amplitude weight and the lithology weight are kept constant at c = 0.15 and
d = 0.05, respectively.

Table 1. Weight sets used to calculate the Euclidean distance.

Weight Set # Location Weight
a Frequency Weight b Amplitude Weight c Lithology Weight d

1 0.6 0.2 0.15 0.05
2 0.55 0.25 0.15 0.05
3 0.5 0.3 0.15 0.05
4 0.45 0.35 0.15 0.05
5 0.4 0.4 0.15 0.05
6 0.35 0.45 0.15 0.05
7 0.3 0.5 0.15 0.05
8 0.25 0.55 0.15 0.05
9 0.2 0.6 0.15 0.05
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Figure 1 shows the histograms relating to DEVIN (top) and the those relating to
DEVOUT (bottom) for the k clusters considered (k ranging from 2 to 7 clusters) as the weight
set varies.

Figure 1. Histograms showing the trend of DEVIN (top) and DEVOUT (bottom) for the number of
clusters k ranging from 2 to 7 clusters, as the weight set varies from #1 to #9 (from deep blue to brown).

It should be noted that DEVIN increases as the position weight a increases and as the fre-
quency weight b decreases, while it decreases as the number of clusters k increases. On the
other hand, the DEVOUT has a mirror behavior, considering that DEVT = DEVIN + DEVOUT.

The results of these tests prompted us to use the weight set #4 (a = 0.45, b = 0.35,
c = 0.15, d = 0.05) for all subsequent analyses, considering that a lower value of the frequency
weight, and greater value of the position weight, compared to those chosen, show a rapid
increase in DEVIN and decrease in DEVOUT.

The average frequencies of the clusters, for each grouping from k = 2 to k = 7, obtained
considering the weight set #4, are shown in Table 2.

Table 2. Average frequencies of the clusters, for each grouping from k = 2 to k = 7, obtained considering
the weight set #4.

C1 C2 C3 C4 C5 C6 C7

k = 2 1.05 Hz 17.35 Hz
k = 3 1.05 Hz 4.27 Hz 17.35 Hz
k = 4 1.05 Hz 2.67 Hz 6.81 Hz 17.35 Hz
k = 5 1.05 Hz 2.12 Hz 4.27 Hz 8.60 Hz 17.35 Hz
k = 6 1.05 Hz 1.84 Hz 3.22 Hz 5.65 Hz 9.90 Hz 17.35 Hz
k = 7 1.05 Hz 1.67 Hz 2.67 Hz 4.27 Hz 6.81 Hz 10.87 Hz 17.35 Hz

The results of the proposed algorithm were compared with those obtained using
as coordinates of the initial centroids those resulting from an accurate preliminary data
analysis. In the absence of other information, only the information on the frequency of the
H/V peaks f 0 was used for this first partition. Once the first partition was made, the distance
of each point was calculated with respect to all the points within the same cluster, and
the points whose minimum distance was greater than 600 m (twice the average distance
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between the measuring points) were discarded. This choice made it possible to calculate
the initial coordinates of the centroids without the distortion in space (x, y, z) caused by
isolated and distant points, although characterized by similar peak frequencies. The points
left within the clusters were used to calculate the average coordinates of the centroids of
each cluster to be used as input data for the nonhierarchical algorithm.

The results obtained by carrying out the preliminary analysis of the data and those
obtained by applying the nonhierarchical algorithm with automatically chosen centroids
are compared, for k = 5, in Figure 2 (distribution in the frequency domain) and in Figure 3
(distribution in the spatial domain).

Figure 2. Comparison between the distribution in the frequency domain (peaks of H/V as the fre-
quency varies) of the points of the clusters, obtained by performing a preliminary analysis of the data
(top) and by applying the non-hierarchical algorithm with automatically chosen centroids (bottom).

It is highlighted how the separation of clusters in the frequency domain is clearer,
leaving the algorithm free to choose the coordinates of the initial centroids rather than
imposing constraints on the distance of the points in the spatial coordinate domain.

Comparing the values assumed by the parameter R2 in the two different clustering
procedures, we obtained R2 = 0.77 for the unconstrained algorithm and R2 = 0.72 for those
constrained by a priori choices.

Considering that a high value of R2 indicates good clustering (minimum deviance
within clusters and maximum deviance between clusters), the results indicate a good
partition level and then the unconstrained algorithm produces statistically better results.
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Figure 3. Comparison between the distribution in the spatial domain (x and y coordinates) of the
points of the clusters, obtained by performing a preliminary analysis of the data (top) and by applying
the non-hierarchical algorithm with automatically chosen centroids (bottom).

The greatest differences, especially in the distribution of points in the spatial coordinate
domain, are obviously evident in the second, third, and fourth clusters, which represent
the groups with the greatest number of units.

In order to choose the optimal number of clusters, at least from a purely statistical point
of view, it is proposed to refer to the trend of the deviance values DEVIN, DEVOUT, DEVT,
and, consequently, of the ratio R2 = DEVOUT

DEVT
, as the number of partitions varies (Figure 4).

As can be noted, although the value of R2 tends to be 1 for a number of clusters equal to n,
the 3-clusters grouping is the one in which R2 changes the variation rate, reaching a value
equal to 0.745.

Figure 4. Graph of the variation of R2 as a function of the number of clusters k.
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Based on these considerations and in the absence of other information (for example,
data on the main lithologies of the subsoil) the statistically most-valid choice will be the
grouping of three clusters.

3. Results

During 2012, as part of an agreement with the Italian Civil Protection Department, a
first-level seismic microzonation was performed in those municipalities in Sicily considered
to be at high seismic risk. In this context, 100 HVSR measurements were performed in the
inhabited center of the city of Modica. These measures, as previously mentioned, have
been used to test the cluster analysis approach described in this article and, through this, to
perform a seismo-stratigraphic modeling.

3.1. Geological Outlines

The municipal area of Modica city extends in the central sector of the Hyblean zone.
The Hyblean Mountains together with the submerged zones of the Strait of Sicily constitute
a sector of the African foreland that, from Southwestern Sicily, extends across the Strait of
Sicily to Tunisia and Libya [44].

The geological outcrops of the territory of Modica (Figure 5) consist of mainly
carbonatic-marly Oligo-Miocene successions referable to the Ragusa Formation and more
marly deposits with rare intercalations of calcarenites and marly calcarenites of the Mid-
dle and Upper Miocene (Tellaro Formation). In the depressed areas of the valley floor,
recent and current fluvio-alluvial deposits are also reported, mainly consisting of carbonate
pebbles of variable dimensions, from centimeters to decimeters, immersed in a mostly
sandy-silty matrix [45].

Figure 5. (a) Geological map of the Modica territory [45], modified; (b) location of the microtremor
measure points.

3.2. Application of the HVSR Technique to Microtremor Measurements

The analysis with the Nakamura method was performed on each ambient noise
recording to derive the average HVSR curves. The high number of recording points served
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to guarantee a statistically accurate interpretation, and subsequently a sufficiently detailed
reconstruction of the main seismic-stratigraphic interfaces of the subsoil.

For each measurement point, the time of each microtremor recording was 46 min and
the sampling frequency was 256 Hz. Each of the 3-axial components of noise was divided
into 138 time-windows of 20 s, in order to allow a more than adequate number of analysis
windows, according to SESAME recommendations [46].

After detrending and smoothing the signals, the HVSR curves in frequency domain
were determined and their geometric means and standard deviations were estimated. The
selection of the significant noise windows was performed by applying an Agglomera-
tive Hierarchical Clustering algorithm (AHC) [37,38], using Standard Correlation (SCxy)
defined as:

SCxy =
n

∑
i=1

xi · yi/

√
n

∑
i=1

x2
i ·

n

∑
i=1

y2
i (7)

where xi and yi indicate the values of the spectral ratios relating to the i-th frequency and
the generic pair of analysis windows [11]. This procedure allows one to group the curves
relating to each window by degrees of similarity and to distinguish and discard those
curves that showed trends and peaks not referable to stratigraphic attributes.

In this way, time windows relating to transient noises or having clearly non-stratigraphic
peaks were discarded. The HVSR average curves thus obtained were examined to identify
the main seismo-stratigraphic peaks.

3.3. Cluster Analysis of the H/V Peaks

Finally, the method discussed in the previous paragraph was applied to the ob-
tained dataset.

All the partitions obtained (from k = 2 to k = 7) were superimposed on the geological
map shown in Figure 5 to identify correlations with geology and topography.

Not considering the small thickness of alluvial fluvial deposits, whose presence is
however limited to river incisions, the absence of important tectonic discontinuities suggests
the areal continuity of the aforementioned lithologies in the studied area. Consequently,
the presence of only three main seismo-stratigraphic boundaries between four different
lithologies (the three members of the Ragusa Fm. and the Tellaro Fm.) was hypothesized.
This confirms the choice of the optimal number of clusters obtained only through the
statistical evaluation of the data (Figure 4). The central frequencies of the clusters are 1.05
Hz for cluster #1, 4.27 Hz for cluster #2, and 17.35 Hz for cluster #3. The spatial distribution
of these three clusters is shown in Figure 6.

Figure 6. Spatial distribution of the H/V peaks for each of the three clusters obtained from the dataset
of the city of Modica.
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3.4. Seismo-Stratigraphic Modeling

The results of some Multichannel Analysis of Surface Waves (MASW) [47] surveys
were used to constrain the seismic velocities of the first layers in HVSR inversions [28,30].
These latter surveys were performed using the Dinver module of the Geopsy open source
software [48], using similar starting models for each cluster.

Each individual cluster of HVSR peaks was considered to define a different seismic
layer, each characterized by a specific range of seismic velocities, and to associate them
with a known geological formation or member.

Figure 7a shows an example of an HVSR curve in which two peaks are visible: one
belonging to cluster #1 (f 0 = 0.9 Hz) and the other belonging to cluster #3 (f 1 = 9.5 Hz).
However, the curve lacks peaks belonging to cluster #2. Consequently, the obtained
inverse model (Figure 7b) shows two seismo-stratigraphic boundaries at z = 124 m and
z = 295 m respectively.

Figure 7. (a) HVSR curve of the measurement n. 88, in which two peaks are visible (f 0 = 0.9 Hz;
f 1 = 9.5 Hz); (b) inverse seismo-stratigraphic model.

The layer thicknesses obtained were spatially interpolated to reconstruct the three
seismo-stratigraphic surfaces. These were superimposed on the geological map (Figure 8)
to highlight correlations with geology and topography. Observing the overlaps, it can be
seen that the areas in which the altitude of the seismo-stratigraphic boundaries is greater
than the topographic altitude (less transparent colored areas) correspond quite well with
the outcrop limits of each lithology. This is a good indication of a robust interpretation.
Finally, a three-dimensional representation of the seismo-stratigraphic model is shown in
Figure 9.
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Figure 8. The three seismo-stratigraphic boundaries projected in transparency on the geological map
of Modica territory. The less transparent areas are those with an altitude greater than the topography.

Figure 9. 3D imaging of the seismo-stratigraphic boundaries in the subsoil of Modica.
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4. Discussion

Contrary to other statistical procedures, cluster analysis is often used when there is no
a priori hypothesis or in the exploratory phase of the analysis. However, the application of
cluster analysis, even though it is one of the essentially exploratory methods of analysis,
should be preceded and accompanied by the definition of interpretative models.

A weakness of cluster analysis is that of arriving at indeterminate solutions, subject to
arbitrary decisions relating to the initial information, to the subjective interpretation of the
results, and not statistically verifiable.

The proposed cluster analysis algorithm applied to the stratigraphic determination of
HVSR peaks has shown excellent results, allowing the grouping of peaks attributable to
the same generating seismic surfaces.

However, the tests performed have shown that the algorithm works without the need
to choose the number of clusters in advance, which can be determined independently
through the analysis of the R2 parameter. However, although the results of the applied
algorithm are similar regardless of the a priori choices, the best partition is linked to the
choice of weights for calculating the distance D and to the geological and stratigraphic
knowledge of the area.

The application of the proposed algorithm to the data acquired in the city of Modica
made it possible to correctly identify three main clusters linked to the presence of three
seismic impedance discontinuities. This procedure made it possible to reconstruct a 3D
model of the subsoil that is well correlated with the geological information of the area and
with the outcrop lithology.
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