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Abstract: Gully erosion susceptibility mapping (GESM) through predicting the spatial distribution
of areas prone to gully erosion is required to plan gully erosion control strategies relevant to soil
conservation. Recently, machine learning (ML) models have received increasing attention for GESM
due to their vast capabilities. In this context, this paper sought to review the modeling procedure of
GESM using ML models, including the required datasets and model development and validation.
The results showed that elevation, slope, plan curvature, rainfall and land use/cover were the most
important factors for GESM. It is also concluded that although ML models predict the locations of
zones prone to gullying reasonably well, performance ranking of such methods is difficult because
they yield different results based on the quality of the training dataset, the structure of the models,
and the performance indicators. Among the ML techniques, random forest (RF) and support vector
machine (SVM) are the most widely used models for GESM, which show promising results. Overall,
to improve the prediction performance of ML models, the use of data-mining techniques to improve
the quality of the dataset and of an ensemble estimation approach is recommended. Furthermore,
evaluation of ML models for the prediction of other types of gully erosion, such as rill–interill
and ephemeral gully should be the subject of more studies in the future. The employment of a
combination of topographic indices and ML models is recommended for the accurate extraction of
gully trajectories that are the main input of some process-based models.

Keywords: gully erosion susceptibility mapping (GESM); machine learning; support vector machine;
random forest

1. Introduction

Gully erosion is one of the most important forms of erosion that causes land degra-
dation problems by reducing the quality and quantity of arable soil in both developed
and developing countries [1,2]. Gullies are categorized into two types, namely, “perma-
nent” and “ephemeral” gullies [3]. Permanent gullies are commonly described as erosion
channels with a depth of 0.5 to 30 m or a cross-sectional area larger than 0.09 m2 [4,5]
that cannot be obliterated by conventional tillage due to their large size [6,7]. By contrast,
ephemeral gullies are small channels that are formed due to the results of natural and
concentrated flow which can be removed by normal tillage [3]. Generally, the negative
effects of gullies can be aggravated by rapid changes in soil characteristics resulting from
land use change and agricultural pressure through expansion of farming activities and
intensive grazing [1,8–11].

There is unanimity in the literature that the prediction of gully erosion trajectories
(trajectory is defined as the exact location and path of the gully) and the estimation of soil
loss from gullies would provide planners with important information for implementing
erosion control strategies in agricultural watersheds [12–15]. Different studies have demon-
strated that the initiation and development of gullies are mostly controlled by precipitation,
topographic features, soil condition and land use/land management practices [16–19].
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Hence, various process-based models (e.g., chemicals, runoff and erosion from agricultural
management systems (CREAMS) [20], the ephemeral gully erosion model (EGEM) [21],
groundwater loading effects of agricultural management systems (GLEAMS) [22,23], the
revised ephemeral gully erosion model (REGEM) [24], the water erosion prediction project
(WEPP) [25], and annualized agricultural non-point source (AnnAGNPS) [26]) have been
developed to use these factors to quantify soil loss from gully erosion. However, measure-
ments of the input factors, which are the basic requirements of the process-based models
are not generally available on a larger scale. For example, the CREAMS model needs the
original length of the gully to compute the amount of sedimentation [20], which limits its
application for large scale areas where the measured lengths of gullies are not available.

Topographic indices (e.g., slope-area (SA) [27], the compound topographic index
(CTI) [28] and the topographic wetness index (TWI) [29]) have been developed to predict
gully trajectories that can be used as the input to process-based models for the estimation
of soil loss due to gully erosion. Topographic indices predict gully trajectories based on
the assumption that gully formation can be related to the combined effects of the main
topographic characteristics [30]. Although topographic indices show promising potential
for the identification of the exact location of gullies, they only consider topographic factors
and do not account for rainfall characteristics, land use or soil properties which is a major
limitation that leads to simplistic representations of gully formation [31–33].

Recent studies indicate that remote sensing can supply good data for analyzing and
predicting gully trajectories [34–39]. Remote sensing not only provides the input data
(e.g., digital elevation models (DEMs)) for topographic index models [16,40,41] and process-
based models [42], but can also be used individually for the detection of gully trajectories
by visual interpretation. Gully trajectories can be detected by manual digitization or inter-
pretation of gullies from aerial photos or satellite images. For example, Wang, et al. [43]
used multi-source remote sensing data to map the spatial distribution of gully trajectories
at different spatial scales (Pleiades 1A, 0.7 m; unmanned aerial vehicle (UAV), 0.042 m).
To identify gully trajectories, they used visual interpretation and field verification; the
results obtained showed that the sub-meter images were a good source of data for the
identification of various gully types, and that using satellite and UAV data simultaneously
provided satisfactory gully erosion assessment at multiple spatial scales. In another study,
Zhang, et al. [44] applied visual interpretation of topographical maps using Landsat en-
hanced thematic mapper plus (ETM+) images and SPOT-5 satellite images to map gully
trajectories in the Kebai region, China. The results obtained showed that gullies had the
greatest density in hilly and tableland regions and the lowest density in flatlands.

Although UAV data provide satisfactory results for detailed gully trajectory mapping
at the site scale, due to limitations, such as vulnerability to weather conditions and overall
budget problems, they are not suitable for large scales. On the other hand, as reported by
Skytland [45], the use of remote-sensing information from a particular satellite is growing
dramatically by several terabytes per day and global gathered observation data may exceed
one exabyte [46]. Therefore, due to the high volume of remote-sensing data, analyzing and
visually interpreting the information provided by remote-sensing imagery is beyond human
abilities to process and is also costly and labor-intensive [47–49]. Therefore, advanced
techniques are required that can adapt to the challenges associated with analyzing remote-
sensing data.

Many studies have demonstrated the ability of machine learning (ML) algorithms to
discover the rules and patterns in large datasets [50]. Hence, over the past few years, an in-
creasing number of ML applications have been developed in geology [51,52], forestry [53–55],
hydrology [56–58], agriculture [59–61], and other domains, such as soil-erosion studies [62–64].

Many technical papers are available that use ML techniques for identifying areas
prone to gully erosion via gully erosion susceptibility mapping (GESM). Susceptibility is
defined as the potential of a specific landscape to be influenced by a particular erosion
process or a group of erosion processes [65]. To use ML algorithms efficiently in the
field of GESM, four main questions must be answered: (1) What are the main steps for
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developing an accurate ML model for GESM? (2) What are the best predictor variables
for GESM? (3) What spatial resolution of data can be used to produce accurate detection
of gullies? (4) What is the best ML model to be used for GESM? However, among the
different technical papers in the field of GESM, no study provides explicit answers to these
questions because related studies test the ML models over different regions with different
environmental conditions and the results of one study cannot be directly used in another
study. Therefore, the main objective of the current paper is to present a thorough review
of the literature on ML models and approaches currently used for GESM, especially those
producing susceptibility maps of permanent gullies, to facilitate user selection among
ML models, predictor variables and their spatial resolution and model development for
effective GESM. The paper is organized as follows: Section 2 presents a brief discussion
of some basic concepts applicable to widely used ML techniques. Section 3 describes and
discusses the common ML methodologies used in GESM studies. Section 4 is dedicated
to comparative performance analysis of various ML models applied to GESM. Section 5
presents the conclusion and recommendations. Table 1 provides a list of the abbreviations
used in the paper.

Table 1. Summary table of the abbreviations used (in alphabetical order) in the current paper.

Abbreviation Definition Abbreviation Definition

ADTree Alternating Decision Tree GLEAMS Groundwater Loading Effects of Agricultural
Management Systems

ALOS Advanced Land Observing Satellite GPS Global Positioning System
ANN Artificial Neural Network GWR Geographically Weighted Regression

AnnAGNPS Annualized Agricultural
Non-Point Source LMT Logistic Model Tree

ASTER Advanced Spaceborne Thermal Emission
and Reflection Radiometer MAE Mean Absolute Error

AUC Area Under the ROC Curve ML Machine Learning
AW3D30 World 3D-30 m MLFF-ANN Multi-Layer Feed-Forward ANN

BP Back Propagation MLP Multilayer Perceptron Neural Network
BRT Boosted Regression Tree NBTree Naïve Bayes Tree

CART Classification And Regression Trees NPV Negative Predictive Value
CCE Calcium Carbonate Equivalent OOB Out-Of-Bag

CDT-ADTree Credal Decision Tree-Alternative
Decision Tree PPV Positive Predictive Value

CDT-BA Credal Decision Tree-Bagging RBF Radial Basis Function
CDT-DA Credal Decision Tree-Dagging REGEM Revised Ephemeral Gully Erosion Model
CDT-RF Credal Decision Tree Rotation Forest RF Random Forest
Cforest Conditional Inference Forests RMSE Root Mean Square Error

CF Certainty Factor ROC Receiver Operating Characteristic

CREAMS Chemicals, Runoff, and Erosion from
Agricultural Management Systems SA Slope-Area

CTI Compound Topographic Index SLFF-ANN Single-Layer Feed-Forward ANN
DEMs Digital Elevation Models SOC Soil Organic Carbon
DLNN Deep Learning Neural Network SRTM Shuttle Radar Topography Mission
DS-BL DS-Binary Logistic SVM Support Vector Machine

DS-BLW DS-Binary Logitraw TN True Negative
DS-RL DS-Reg Linear TN Tree Net

DS-RLG DS-Reg Logistic TOL Tolerance
EGEM Ephemeral Gully Erosion Model TP True Positive
ETM+ Landsat Enhanced Thematic Mapper Plus TPI Topographic Position Index

FN False Negative TSS True Skill Statistic
FP False Positive TWI Topographic Wetness Index

GEFs Geo-Environmental Factors UAV Unmanned Aerial Vehicle
GEIM Gully Erosion Inventory Map VIF Variance Inflation Factor
GESM Gully Erosion Susceptibility Mapping WEPP Water Erosion Prediction Project
GESMs Gully Erosion Susceptibility Maps XGBoost Extreme Gradient Boosting
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2. Machine Learning Techniques Used in GESM

ML is a branch of computer science that is used for data analysis. It is also classified
as an artificial intelligence method since it enables computers to learn from experiences
in a similar way to humans or animals. In other words, ML techniques use computa-
tional methods to capture the relationship between predictors and targets without using a
predefined equation as a model [66]. This capability of ML models makes them flexible
techniques for solving non-linear problems with a large number of datasets from multiple
sources [49]. Typically, ML problems are categorized into two main classes: (i) supervised
and (ii) unsupervised learning. In supervised learning, the model is trained on known
inputs and the corresponding outputs to establish a rule which is used for the prediction of
future outputs [67]. In unsupervised learning, input data is processed to discover hidden
patterns or intrinsic structures in input data. Figure 1 shows the classification of the ML
techniques and the most commonly used models related to each category.

Figure 1. Classification of ML techniques.

Generally, the main objective of ML models is to map a set of “explanatory” or
“predictor” variables x = {x1, . . . xn} to an “output” or “predictand” variable y using a
set of “training” samples {yi, xi}N

i to obtain an approximate f(x) that minimizes the error
between y and ŷ = f (x) [66]. Different error functions are used to compute the error
between y and ŷ = f (x), but the most used functions are squared-error (y-ŷ)2 for regression
and negative binomial log-likelihood for classification. There are various ML techniques
in the literature that are used in the field of classification and regression or both; however,
only the classification types which are applied for gully erosion identification are explained
in the current review.

2.1. Random Forest

Random forest (RF), developed by [68], is a rapid learning algorithm that is used for
regression and classification problems. In RF, various trees are produced by the algorithm
and combined to form a forest. This procedure is based on the assumption that various
prediction models could produce more accurate results than one model [69]. To increase the
performance accuracy of the model, a classification and regression trees (CART) technique
is used to define each tree based on a bootstrapped sample of the dataset [70]. The CART
technique repeats k times to define the trees using a random subgroup of the variables
chosen at each node [71]. A majority vote is applied to all the trees to compute the
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final results of the model [69,72]. The main interesting features of RF are that it (i) is a
robust algorithm that avoids overfitting, (ii) shows low bias and low variance because of
computation of the average over a large number of trees, (iii) provides strong estimation of
errors using out-of-bag (OOB) data, and (iv) offers higher estimation performance [73,74].

2.2. Support Vector Machine

Support vector machine (SVM) is a control learning method proposed by Cortes and
Vapnik [75]. SVM is a powerful method due to its capability for working with non-linear
data and minimizes complexity [76]. SVM applies statistical learning theory and uses a
mathematical process to obtain an optimal hyperplane that creates the maximum margin
between two classes to separate them [77,78]. The following optimization problem is solved
to find the optimal hyperplane:

Min
n
∑

i=1
αi − 1

2

n
∑

i=1

n
∑

j=1
αiαjyiyj

(
xixj

)
Subject to

n
∑

i=1
αiyj = 0 and 0 ≤ αi ≤ C

(1)

where αi are the Lagrange multipliers and C denotes the penalty factor. Typically, when
dealing with non-linear data, SVM uses techniques called kernel functions. Kernel functions
can transfer data from a lower-dimensional space to a higher-dimensional space [79,80].
Although various kernel functions have been proposed, based on the literature, four kernel
types, including the radial basis function (RBF), and linear, polynomial, and sigmoid
functions, are the most used functions [81,82].

2.3. Alternating Decision Tree

The alternating decision tree (ADTree) is a model which incorporates the decision tree
with boosting algorithm [83]. Some studies have demonstrated that the ADTree model
produces better accuracy than the standard model trees in classification problems [84].
Generally, in ADTree, two types of nodes, including a splitter node and a prediction node,
are used instead of each decision node. The splitter node defines the data based on the
selected attribute values, while the prediction node includes the real-valued number, which
is used for prediction [83,85]. At each boosting iteration, two sets, including a set of
preconditions (Pt) and a set of base rules (Rt), are maintained by the algorithm. The base
rules that generate preconditions can be any real numbers, including a prediction c1, a base
condition c2, and two real numbers, a and b.

The first rule R1 is set to have a true precondition and condition; the first prediction
value can be defined as:

a =
1
2

ln
W+(True)
W−(True)

(2)

Then c1 and c2 are selected by minimizing Zt (c1,c2):

Zt(c1, c2) = 2
(√

W+(c1 ∧ c2)W−(c1 ∧ c2) +
√

W+(c1 ∧ ¬c2)W−(c1 ∧ ¬c2)

)
+ W(¬c2) (3)

The prediction is a when c1 ∧ c2 or b when c1 ∧¬c2. The values of a and b are computed
with the following formula:

a =
1
2

ln
W+(c1 ∧ c2)

W−(c1 ∧ c2)
, b =

1
2

ln
W+(c1 ∧ ¬c2)

W−(c1 ∧ ¬c2)
(4)

Suppose that R includes the base rules, then Rt+1 = Rt + rt creates the new rule, and all
base rules in Rt+1 are summed; the sign of the sum defines the classification rule as follows:

class(x) = sign

(
T

∑
t=1

rt(x)

)
(5)
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where T is the number of training instances, rt is the two prediction values (a and b) at each
layer of the tree, and x is a set of instances.

2.4. Naïve Bayes Tree

The naïve Bayes tree (NBTree) is a hybrid model that comprises the naïve Bayes and
decision tree classifiers [86]. It replaces the leaf node of the built decision tree with a naïve
Bayes classifier [87,88]. During the past few years, several researchers have shown great
interest in the application of the NBTree algorithm in the field of classification and its
satisfactory performance has been demonstrated [85–87,89]. The classification rule for
naïve Bayes is defined as follows:

C∗ = argmaxcj∈C P
(
cj
∣∣a1, a2, . . . , am

)
=

P(cj)
m
∏

i=1
p(ai|cj)

k
∑

j=1

[
p(cj)

m
∏

i=1
p(ai|cj)

]

= µargmaxcj∈CP
(
cj
) m

∏
i=1

p
(
ai
∣∣cj
) (6)

where cj is the output class of class set C, a1, a2, . . . , am are the conditionally independent
factors, and k is the total number of classes.

2.5. Logistic Model Tree

Logistic model tree (LMT) was proposed by Landwehr, et al. [90] for classification
purposes. This algorithm incorporates a decision tree and linear logistic regression in a
single tree to increase prediction accuracy [90]. This has led to various applications of LMT
in geoscience studies [62,91,92]. To use the capability of the two algorithms, LMT uses
the LogitBoost algorithm to fit the logistic regression at the nodes of the tree [93]. For the
fully-grown tree, LMT applies the CART algorithm [94] for pruning and a cross-validation
technique is applied to select the optimal subtree [95]. The LogitBoost incrementally refines
the logistic regression model by introducing least-squares fitting additive modeling; the
probability of each leaf nodes in class Mi is calculated by simple logistic regression [95–97]
as follows:

LM(x) =
n

∑
i=1

βixi + β0 (7)

P(M|x) = exp(LM(x))
D
∑

M′=1
exp(LM′(x))

(8)

where n is the number of factors in vector x, βi and β0 are the coefficient and intercept of
the regression, respectively, and D is the number of classes.

2.6. Artificial Neural Network

Artificial neural network (ANN) is a computational mechanism that has been devel-
oped as a crude attempted replication of the human brain [98]. An attractive feature of
ANN is its approach that does not consider any particular hypothesis with respect to the
statistical distribution of the information [78]. In contrast to classical statistical models, it
can model non-linear relationships between predictor and target variables [99]. The signifi-
cant abilities of ANNs, such as high learning ability, ability to work with high-dimensional
data and generalization [100,101], have led to it to being a widely used method for various
types of prediction problems [102].

Among the different types of ANN structures, three structures, including the single-
layer feed-forward ANN (SLFF-ANN), the multi-layer feed-forward ANN (MLFF-ANN),
and the recurrent ANN are the most used structures, among which the MLFF-ANN is the
most popular [103]. The MLFF-ANN consists of three layers, including an input layer,
output layer and a hidden layer, which is located between the input and output layers [104].
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At first, the network begins with multiplication of the random weights and data, which
are fed into the input neuron. The resulting values are summed to calculate the input to
the neurons in the next layer. Then, a non-linear activation function is used to convert the
input value to the known output, as in Equation (9):

Oj = f (net) = f

(
n

∑
i=1

wijxi + bj

)
(9)

where Oj is the calculated amount of the neuron j, f is the activation function, wij and bj are
the weight and bias of the jth neuron for ith input x.

Finding the appropriate connection weights is known as optimization of the network
which is performed in the training step using various learning algorithms. The most
widely used learning algorithm is the gradient descent algorithm incorporated with back
propagation (BP). To minimize the error between the estimated output and observed
value, the BP algorithm tries to find the optimized weights between the layers of the
network [105,106]. After finding the weights with the least error, the network is called a
trained network and will be evaluated with a new dataset to calculate its generalization
capability [103].

2.7. Boosted Regression Trees

The boosted regression tree (BRT) technique is an advanced model that combines
decision trees (weak learners) of fixed size and a robust boosting technique, as follows [107]:

Fm(x) =
M

∑
m=1

γmhm(x) (10)

where Fm(x) is the final model, γm is a learning rate, hm(x) are weak learners, and M is the
number of iterations.

The boosting technique enhances the accuracy of the prediction by reducing the final
model variance [108]. To do this, boosting interactively fits new trees to the residual errors
of the existing tree to build a large ensemble of small regression trees to demonstrate the
complex relationships between the target and predictor variables (Equation (11)) [109].

Fm(x) = Fm−1(x) + γmhm(x) (11)

Considering the loss function L(y, F(x)) and training dataset D = {(x1, y1), . . . (xnyn)},
at each step, weak learners hm(x) are used to minimize the loss function using the current
model Fm−1 and its fit Fm−1(xi):

Fm(x) = Fm−1(x) + argmin
h

(x)
n

∑
i=1

L(yi, Fm−1(xi)− hm(x)) (12)

BRT uses a stochastic gradient boosting approach to solve this minimization problem:

Fm(x) = Fm−1(x) + γm

n

∑
i=1
∇F(yi, Fm−1(xi)) (13)

The strong learning ability and flexibility of the BRT model in dealing with complex
data have been proven by several studies in different fields, such as urban expansion [110],
environmental science [111] and ecological modeling [112].

3. ML Methodology of GESM

To comprehensively review the state of the art of ML models for GESM, top peer-
reviewed papers were chosen by implementing search engines, such as Scopus, ScienceDi-
rect and the Web of Science (WOS) up to the present (2022). To select papers, the search
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criteria were the terms ‘gully erosion’ and ‘machine learning’ and consideration of three
types of quality measure, including the source-normalized impact per paper (SNIP), the
cite score and the h-index. On this basis, 19 high-quality published papers were selected
for the current review. Table 2 shows the detailed information for the selected papers.

Table 2. List of the reviewed publications, including the publisher’s name and journal characteristics.

Paper Year Publisher Journal SNIP CiteScore h-Index

[65] 2011 ScienceDirect Geomorphology 1.504 7.3 171
[18] 2011 ScienceDirect Computers & Geosciences 1.664 7 131
[113] 2014 ScienceDirect Geomorphology 1.504 7.3 171
[114] 2016 ScienceDirect Geomorphology 1.504 7.3 171
[98] 2017 ScienceDirect Geomorphology 1.504 7.3 171
[115] 2019 ScienceDirect Science of The Total Environment 2.175 14.1 275
[116] 2019 ScienceDirect Physics and Chemistry of the Earth, Parts A/B/C 1.119 5.4 86
[69] 2019 ScienceDirect Geoderma 2.048 11.1 177
[62] 2019 ScienceDirect Geoscience Frontiers 2.549 11.8 65
[117] 2019 ScienceDirect Science of The Total Environment 2.175 14.1 275
[118] 2019 ScienceDirect Journal of Environmental Management 1.907 11.4 196
[72] 2020 ScienceDirect Geoscience Frontiers 2.549 11.8 65
[119] 2020 ScienceDirect Geomorphology 1.504 7.3 171
[120] 2021 Nature Scientific Reports 4.54 7.1 242
[121] 2021 ScienceDirect Geomorphology 1.504 7.3 171
[122] 2021 ScienceDirect Ecological Informatics 1.436 5.4 60
[123] 2021 ScienceDirect Alexandria Engineering Journal 2.102 8.3 68
[124] 2021 ScienceDirect Geoscience Frontiers 2.549 11.8 65
[125] 2021 MDPI ISPRS International Journal of Geo-Information 0.72 5 52

From the reviewed papers, typically, four main steps are used in ML-related GESM
studies to obtain accurate results. These steps are (i) preparation of an inventory map
of gullies, (ii) creation of gully conditioning factors, (iii) multi-collinearity assessment,
and (iv) model development and performance evaluation. Each step is described and
discussed below.

3.1. Inventory Map of Gullies

A gully erosion inventory map (GEIM) is created to provide the location and spatial
distribution of the gullies in the study area [62]. Generally, for producing an inventory
map, the gullies are determined with an extensive field survey using the global positioning
system (GPS) and are validated with ancillary data, such as high-resolution images acquired
from Google Earth [62,64,115]. After selecting the pixels that show gully erosion, the non-
gully pixels, which are located in pixels other than the gully pixels, are selected and merged
with gully erosion pixels to create a dataset of gully presence (positive cases) and absence
(negative cases) for each set. The non-gully pixels are created randomly; it is recommended
that the ratio of gully and non-gully pixels should be equal to one [98,126,127]. In the
next step, the GEIM dataset is divided into two groups, the training and validation sets
to be used for ML model development. In the literature, it is suggested that 70% of the
dataset is used for model training, and that the other 30% is considered as a validation
set [62,72,98,100,128]. Table 3 shows the detailed characteristics of the study area, the
resolution of the imageries used, and the number of digitized gullies in each reviewed
GESM study. As illustrated in the table, the number of digitized gullies is different in each
study based on the attributes of the area. However, in most studies, the gully inventory has
been split into training and test datasets based on the 70/30 rule.
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Table 3. Characteristics of the study area, resolution of the imageries and information of GEIM used in GESM studies.

Paper Location Study
Area Size Study Area Climate Spatial Resolution

of the Data
Digitizing

Method GEIM Characteristics

Number of Digitized
Gullies (Areas)

Train Set Number
(Percentage)

Validation Set
Number (Percentage)

[65] Italy 42 km2 Mediterranean 10 m Not specified Not specified Not specified Not specified
[18] Turkey 424 km2 Arid 25 m Gully system areas – (20) 9 (–) 11(–)

[113] Morocco 390 km2 Sub-humid to Semi-arid 15 m Gully system areas Not specified Not specified Not specified
[114] Italy 9.5 km2 Mediterranean 2 m Individual gullies 260 (–) –(75%) –(25%)
[98] Iran 245 km2 Semi-arid 10 m Individual gullies 65 (–) 45(70%) 20(30%)

[115] Iran 18.5 km2 Semi-arid 10 m Individual gullies Not specified Not specified Not specified
[116] South Africa 59 Km2 Subtropical 10 m Individual gullies 83(–) 58 (70%) 25 (30%)
[69] Iran 4274 km2 Semi-arid 10 m Individual gullies 207(–) 146(70%) 61(30%)
[62] Iran 1329 km2 Semi-arid 12.5 m Individual gullies 303(–) 212(70%) 91(30%)

[117] India 709 km2 Monsoon 20 m Individual gullies 174(–) 121(70%) 53(30%)
[118] Iran 5757 km2 Arid 12.5 m Individual gullies 215(–) 150(70%) 65(30%)
[72] Iran 3430 km2 Semi-arid 30 m Individual gullies 462(–) 323(70%) 139(30%)

[119] Iran 2820 km2 Arid to Semi-arid 30 m Individual gullies 359(–) 251(70%) 107(30%)
[120] Iran 505 km2 Arid 12.5 m Individual gullies 293(–) 206(70%) 87(30%)
[121] India 442 km2 Monsoon 12.5 m Individual gullies 120(–) 84(70%) 36(30%)
[122] India 357 km2 Tropical monsoon 12.5 m, 30 m Individual gullies 199(–) 139(70%) 60(30%)
[123] Iran 75 km2 Semi-arid 12.5 m Individual gullies 103(–) 72(70%) 31(30%)
[124] Iran Not specified Arid 12.5 m, 30 m Individual gullies Not specified Not specified (70%) Not specified (30%)
[125] China 10.9 km2 Semi-arid 1 m Individual gullies 353(–) 247(70%) 106(30%)
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3.2. Gully Conditioning Factors

The choice of appropriate geo-environmental factors (GEFs) is an important step for
the construction of an accurate gully erosion susceptibility map [98,115,129]. A wide range
of GEFs, such as primary topographic attributes (e.g., slope, elevation, slope degree, aspect)
and secondary topographic attributes (e.g., stream power index, terrain ruggedness index,
topographic wetness and position indices) that contribute to the spatial distribution of
gullies has been employed by different researchers in the literature [1]. Table 4 presents a
review of the different gully erosion studies with a focus on GEFs that have been used in
each publication.

Table 4 shows that some GEFs, such as primary and secondary topographic attributes
are the most used factors in GESM. On the other hand, some factors (e.g., convergence
index, terrain ruggedness index, topographical position index) have not been used in most
studies. This means that a standard methodology has not yet been accepted by scientists as
a globally accepted procedure for the selection of GEFs [130]. However, some authors have
tried to investigate the importance of different GEFs to identify the most effective GEFs that
significantly affect the accuracy of GESM. For example, Akgün and Türk [18] in their study
for GESM in the Ayvalık region, located northwest of Turkey, investigated the importance
of different GEFs for erosion susceptibility. Among seven GEFs considered, the weathering
grades of rocks, lineament density and drainage density were the most effective factors for
erosion, while slope gradient and land cover achieved a second importance ranking.

Soil surface properties represent another set of factors that significantly affect the
quality of GESM due to their influence on resistance to erosion, infiltration and runoff
rate [131,132]. Thus, soil texture has attracted much attention from different researchers in
the investigation of gully erosion susceptibility [98,129,133–138]. In addition to soil texture,
Garosi, Sheklabadi, Conoscenti, Pourghasemi and Van Oost [115] used two other soil
properties, soil organic carbon (SOC) and calcium carbonate equivalent (CCE), as predictor
variables for GESM, in addition to other controlling factors. A variable importance analysis
showed that three GEFs factors, including distance from rivers, CCE, and the topographic
position index (TPI), significantly affected the accuracy of GESM. Roy and Saha [121] also
found that the soil type factor had the most marked effect on GESM.

In another study, Amiri, Pourghasemi, Ghanbarian and Afzali [69] concluded that,
among all the applied factors, three factors, including distance from the river, clay percent,
and land use, noticeably affected GESM. Results obtained by Arabameri, Chen, Loche,
Zhao, Li, Lombardo, Cerda, Pradhan and Bui [62] showed that, among eighteen GEF
factors, drainage density, rainfall and slope were the most effective factors for predicting
gully occurrences. A variable importance analysis conducted by Pourghasemi, Sadhasivam,
Kariminejad and Collins [72] showed that the distance from rivers and the plan curvature
had the most and the least importance, respectively, with respect to finding the zones most
prone to gullying.

It is common in the field of GESM that a variable identified as the most important
factor in one study is not found to be important in another study. For example, a variable
importance analysis conducted by Pourghasemi, Sadhasivam, Kariminejad and Collins [72]
showed that slope had the highest effect on gully erosion, but Gayen, Pourghasemi, Saha,
Keesstra and Bai [117], in their study, concluded that slope had the lowest importance.
As suggested by Gutiérrez, et al. [139] and Garosi, Sheklabadi, Conoscenti, Pourghasemi
and Van Oost [115], this could be because some variables do not contribute to the spatial
distribution of gullies, because there are some uncertainties related to the accurate quantifi-
cation of these variables, or because there is significant variation in the effect of variables
in different environments. However, most studies have suggested that the primary to-
pographic attributes (e.g., elevation, slope and plan curvature), hydrological properties,
such as rainfall, and anthropogenic factors, such as land use/cover are among the most
important factors that significantly affect the quality of GESM [72,98,117,118].
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Table 4. List of most widely used GEFs in different ML-based publications for GESM.

Paper Primary
Topographic Attributes

Secondary
Topographic Attributes Hydrological Properties Anthropogenic Factors Soil Surface Properties Other Factors
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[65] * * * * * * * * * * *
[18] * * * * * *
[113] * * * * * * * * * *
[114] * * * * * * * * * * *
[98] * * * * * * * * * * * *
[115] * * * * * * * * * * * * * * * *
[116] * * * * *
[69] * * * * * * * * * * * * *
[62] * * * * * * * * * * * * * * * * * *
[117] * * * * * * * * * *
[118] * * * * * * * * * * * *
[72] * * * * * * * * * * * *
[119] * * * * * * * * * * * * * * *
[120] * * * * * * * * * *
[121] * * * * * * * * * * * * * * *
[122] * * * * * * * * * * * * * * * *
[123] * * * * * * * * * * * * * * *
[124] * * * * * * * * * * * * * *
[125] * * * * * * * * * * * * * *

For a detailed description of the GEF factors, see Garosi, Sheklabadi, Conoscenti, Pourghasemi and Van Oost [115] and Arabameri, Chen, Loche, Zhao, Li, Lombardo, Cerda, Pradhan
and Bui [62].
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The spatial resolution of the GEFs is the most important factor that significantly affects
the accuracy of GESM. As can be seen in Table 3, different spatial resolutions from 1 m to
30 m have been used in different studies to derive GEFs. However, choosing the proper
spatial resolution of imageries for the extraction of GEFs depends on the extent of the study
area and the availability of the data, and only a few studies have sought to assess the effect
of the spatial resolution on the accuracy of the ML models developed on the same study
area. For example, Chowdhuri, Pal, Saha, Chakrabortty and Roy [122] compared five types
of DEM, i.e., shuttle radar topography mission (SRTM), advanced spaceborne thermal
emission and reflection radiometer (ASTER), Cartosat-1, advanced land-observing satellite
(ALOS) World 3D-30 m (AW3D30) with a spatial resolution of 30 m, and ALOS PALSAR
with a spatial resolution of 12.5 m, to evaluate the scale-dependence of DEM-derived GEFs
in GESM. The results obtained showed that the developed models with ALOS PALSAR
produced higher accuracy than the developed models with other types of DEM. The results
also showed that, although the DEMs with 30 m spatial resolution produced comparable
results, of these, the AW3D30 produced the most appropriate results. In a similar study,
Arabameri, Rezaie, Pal, Cerda, Saha, Chakrabortty and Lee [124] compared the predictive
ability of GEFs derived from three types of DEM (i.e., ALOS PALSAR = 12.5 m, AW3D30
and ASTER = 30 m). The results showed that the ML models developed by GEFs derived
from ALOS PALSAR produced the most appropriate results followed by the models
developed by AW3D30 and ASTER.

Although the results of the studies described have demonstrated the superiority of
the developed ML models with finer resolution images, the results of studies conducted by
Gayen, Pourghasemi, Saha, Keesstra and Bai [117], Akgün and Türk [18], and Pourghasemi,
Sadhasivam, Kariminejad and Collins [72] showed that ML models developed with coarser
spatial resolution data (e.g., 20, 25 and 30 m) can provide satisfactory results for gully
detection. Among the papers reviewed, only two papers used high resolution images
for the preparation of GEFs. Angileri, Conoscenti, Hochschild, Märker, Rotigliano and
Agnesi [114], in their study, used a DEM with 2 m spatial resolution to produce a gully
erosion susceptibility map in a river catchment with an area of 9.5 km2. In another study,
Yang, Wang, Pang, Long, Wang, Cruse and Yang [125] used 1 m digital surface models
obtained by UAV to produce a gully erosion susceptibility map in a small watershed with
an area of 10.9 km2. Although both studies obtained good predictive performance for the
ML models, the applied high-resolution imageries in these studies cannot easily be used in
large areas because of the difficulties associated with the acquisition of the high-resolution
data and the computation costs. Therefore, the application of these types of data is limited
to small areas.

3.3. Multi-Collinearity Assessment

Due to the large number of built GEFs in GESM, multi-collinearity problems occur
that can lead to a reduction in model accuracy. The multi-collinearity issue arises when
several factors are strongly correlated, which can lead to mistakes and misinterpretation in
the model estimations [137,140]. Therefore, a multi-collinearity evaluation is considered an
essential step after preparing the GEFS [72,115]. Generally, two statistical indicators, namely,
the tolerance (TOL) and the variance inflation factor (VIF) are utilized to calculate the multi-
collinearity of variables. These two indicators are defined in Equations (14) and (15):

TOL = 1− R2
i (14)

VIF =
1

1− R2
i

(15)

where R2
i is the coefficient of determination, calculated for the ith variable (e.g., x1, . . . , xn)

against every other variable in the model. Bui, et al. [141] suggested that a TOL < 0.1 and a
VIF > 10 indicate a multi-collinearity problem.
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3.4. Model Development and Performance Evaluation

In this step, all ML models are trained using a training set to find the optimum
parameters of each model that produce the best results for detection of the gully and
non-gully pixels in the training set and then the trained models are tested on the vali-
dation set. Validation of the developed models is an important task for the evaluation
of the predicted gully erosion susceptibility maps (GESMs) [18]. The validation process
includes goodness of fit and predictive accuracy steps, whereby the former is used for
model evaluation in the training dataset and the latter computes the model performance
in predicting a validation dataset [141]. Typically, two types of performance measures,
including threshold-dependent and threshold-independent methods, are used for vali-
dation of the predicated GESMs in related studies [98]. In most studies, three indicators
are employed to assess the model performance: accuracy and Kappa coefficients for the
threshold-dependent methods, and the receiver operating characteristic (ROC) curve for
the threshold-independent method.

3.4.1. Accuracy

To compute the accuracy, predicted gully susceptibility maps are divided into gully or
non-gully classes. Then, a contingency matrix (Table 5) is applied that has four components:
true positive (TP) and true negative (TN), which show the total number of gully occurrence
and non-gully occurrence pixels that are correctly classified, false positive (FP) that shows
the number of non-gully pixels that are misclassified and incorrectly considered as gully
pixels, and false negative (FN) that shows the number of gully pixels which are incorrectly
detected as non-gully pixels.

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Table 5. Contingency matrix employed for calculation of accuracy and Kappa coefficients.

Observed Predicted

Non-Gully (−) Gully (+)

Non-gully (−) (−|−) True negative (TN) (+|−) False positive (FP)
Gully (+) (−|+) False negative (FN) (+|+) True positive (TP)

3.4.2. Kappa Coefficient

The Kappa coefficient (Equation (17)) demonstrates the ability of the models for
classification based on the proportion of the observed agreements (Po) and the hypothetical
probability of expected agreements (Pe), which account for the occurrences that happened
by chance [142].

Kappa =
Po − Pe

1− Pe
(17)

Po and Pe can be defined as in Equations (18) and (19):

Po =
TP + TN

TN + TP + FP + FN
(18)

Pe =

(
(TN+FN)∗(TN+FP)

TN+TP+FP+FN

)
+
(
(TP+FP)∗(TP+FN)

TN+TP+FP+FN

)
TN + TP + FP + FN

(19)

Landis and Koch [143] categorized the model performance based on the Kappa
coefficient into six groups: ≤0 (poor), 0–0.2 (slight), 0.2–0.4 (fair), 0.4–0.6 (moderate),
0.6–0.8 (substantial) and 0.8–1 (almost perfect).
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3.4.3. Receiver Operating Characteristic (ROC) Curve

The ROC curve is a well-known technique for quantitatively describing the efficiency
of probabilistic tests [144,145]. To obtain ROC, two vectors are required, where one vector
indicates the binary condition of the presence-absence of a given problem and the other
demonstrates the corresponding probability estimates [89,146]. The shape of the ROC curve
can be used to assess the ability of the model for prediction, where the higher performance
is near the upper left part of the curve [18]. In addition to the shape, the accuracy can be
computed using the area under the ROC curve (AUC), which has been widely applied
as a measure to quantify the performance of predictive models [147]. According to the
literature [147,148], AUC values for the accuracy assessment of models can be classified
as follows: poor (0.5–0.6), moderate (0.6-0.7), good (0.7–0.8), very good (0.8–0.9) and
excellent (0.9–1.0).

3.5. Software and Programming Languages Used for GESM

To accomplish the aims of the GESM using the four main steps described above, dif-
ferent software programs and programming languages are used by researchers, as follows:

1. ArcGIS and SAGA-GIS software are typically implemented for preprocessing steps,
such as preparing the inventory map of gullies and GEFs.

2. MATLAB, Python, and R programming languages are used for multi-collinearity
assessment, ML model development and performance evaluation.

4. Comparative Performance Analysis of ML

In this section, the predictive ability of ML models used in the studies reviewed is
compared and discussed to identify the models that are the most appropriate for GESM.
Some researchers have highlighted the suitability of certain ML techniques, such as support
vector machine (SVM), artificial neural network (ANN), random forest (RF), decision tree
(DT), and boosted regression tree (BRT), for gully erosion studies [64,114,149–151].

Märker, Pelacani and Schröder [65] compared RF with stochastic gradient boosting
(TreeNet: TN) to produce susceptibility maps (rill–interrill erosion and gullies) for the Orme
River, Italy. The comparison of the models using AUC, the Kappa coefficient, and pseudo
R2 showed that, although both models provided good accuracy, TN outperformed RF.
However, TN showed instability between the training and validation accuracy that occurred
due to overfitting. In contrast, RF was more stable during the training and validation phases.
Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi and Feizizadeh [98], in a study that
was carried out in the Kashkan–Poldokhtar Watershed, Iran, compared seven ML models,
including SVM, with four well-known kernel types (radial basis function, polynomial,
linear and sigmoid), RF, ANN, and BRT for GESM. All the applied models were tested
on three different sample sets to comprehensively assess the performance of each model.
To produce the GESMs, 12 GEFs were employed as predictors. It was concluded that
the accuracy ranking was RF > SVM-RBF > BRT > SVM-polynomial. The RF and SVM-
RBF showed the most predictive accuracy for GESM. The superiority of RF over other
models has also been reported by other researchers [69,72,115,117] (Table 6). The excellent
prediction performance of RF for gully detection is accounted for by the following: (1) RF
is capable of using all predictors with different types without removing any parameter
during the modeling; (2) RF can work with very large datasets; (3) since RF can create
multiple predictions of each phenomenon using a combination of trees, it can find the
non-linear relationships between predictors and predictands; (4) RF combines different
types of data in the analysis to overcome the problems associated with lack of distribution
of assumptions related to the input data; and (5) RF shows less sensitivity to the noise in
data [152–154].
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Table 6. List of recent studies in the area of GESM using ML techniques.

Paper Evaluation Criteria Results

[65] AUC, Kappa, R2 TreeNet: TN > RF; RF was more stable
[18] AUC Logistic regression is accurate

[113] User’s and producer’s accuracy RF is useful
[114] AUC SGT is outstanding
[98] AUC, Kappa, accuracy RF > SVM-RBF > BRT > SVM-polynomial > ANN

[115] AUC, Kappa, accuracy, RMSE, MAE RF > SVM > NB > GAM
[116] User’s and producer’s accuracy SVM is useful
[69] AUC RF > SVM > BRT
[62] AUC LMT > NBTree > ADTree

[117] AUC RF > MARS > SVM > FDA
[118] AUC, SCAI a, FR b GWR-CF-RF > CF-RF > RF > CF
[72] AUC RF outperformed the other 9 models

[119] AUC, accuracy, TSS c DS-BL > DS-RLG> DS-RL> DS-BLW> DS
[120] AUC, Kappa, RMSE, F-score, accuracy CDT-RF > CDT-ADTree > CDT-BA > CDT-DA > CDT
[121] AUC, MAE, RMSE MLP-Dagging> MLP-Bagging> MPL

[122] Sensitivity, specificity, accuracy, precision, F-score, Kappa
and AUC DLNN > CNN > ANN

[123] Sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and AUC OB RF > OB BRT > OB SVM

[124] Accuracy, sensitivity, specificity, Kappa coefficient, and AUC Cforest > elastic net > cubist
[125] AUC XGBoost > RF > GBDT

(a) SCAI is the ratio of the surface area of the class to the gully surface area of that class. (b) FR is the ratio of the
gully surface area in each class to the surface area of that class. (c) TSS is the true skill statistic.

For these reasons, RF has received significant attention in gully erosion studies. For
example, Shruthi, Kerle, Jetten and Stein [113], in their study for gully system prediction
using object-oriented analysis and ASTER data, employed an RF technique to find the
relationship between the explanatory variables and gully erosion. Their results showed
that satellite images with medium resolution had enough information for GESM based
on an overall performance of 81% (OOB error of 19%). Kuhnert, Henderson, Bartley
and Herr [151] proposed a methodology for the assessment of errors associated with
gully density mapping in the Burdekin catchment in Queensland, Australia, using an RF
modeling approach.

Among all the applied models for GESM, after RF, SVM is the second most used method
in gully erosion studies and its ability has been demonstrated by different researchers. For
example, results obtained by Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi and Feiz-
izadeh [98], Garosi, Sheklabadi, Conoscenti, Pourghasemi and Van Oost [115], and Amiri,
Pourghasemi, Ghanbarian and Afzali [69], showed that SVM achieved the second rank-
ing after RF for GESM. The good performance of SVM is related to its ability to ana-
lyze non-linear relationships [155] and also because it is less sensitive to the input data,
which makes SVM a powerful tool for the detection of a wide range of geo-environmental
problems [156–158]. Therefore, this model has also been used by researchers for gully ero-
sion mapping. Makaya, Mutanga, Kiala, Dube and Seutloali [116] assessed the applicability
of a Sentinel-2 MSI multispectral sensor for GESM in the Okhombe Valley, South Africa.
The SVM model was applied for gully classification, and the accuracy of the model was
assessed using a confusion matrix. The results showed that SVM achieved an overall
classification accuracy of 77% for GESM.

In addition to the RF and SVM, other ML models, such as logistic regression [18];
stochastic gradient treeboost [114], the logistic model tree (LMT), the alternating deci-
sion tree (ADTree), the naïve Bayes tree (NBTree) [62], deep learning neural network
(DLNN) [122], conditional inference forests (Cforest) [124], and extreme gradient boosting
(XGBoost) [125], have shown high predicative accuracy for GESM (Table 6).

Comparison of published papers in the field of GESM using ML techniques shows
that several developments have occurred in ML applications from 2011 to 2021 (Table 2).
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For example, recent studies have attempted to develop novel/hybrid models to produce
better predictive performance than the ML techniques that are currently used for GESM.
Arabameri, Pradhan and Rezaei [118] combined three methods, including the geographi-
cally weighted regression (GWR) technique, the certainty factor (CF) and random forest,
(RF) to generate GESMs. The results showed that use of the GWR-CF-RF model resulted
in better accuracy than the individual CF and RF models. In another study, a GIS-based
hybrid model was proposed by Arabameri, Cerda, Pradhan, Tiefenbacher, Lombardo and
Bui [119] for GESM. The Dempster–Shafer (DS) statistical model was combined with four
kernels of BRT, including binary logistic, reg logistic, binary logitraw, and reg linear to
create four hybrid models, including DS-binary logistic (DS-BL), DS-reg logistic (DS-RLG),
DS-reg linear (DS-RL), and DS-binary logitraw (DS-BLW). Their results showed that the
integration of the models increased prediction accuracy and DS-BL outperformed the other
hybrid models. The individual DS model exhibited the worst performance among all the
applied models.

In another study, Arabameri, Sadhasivam, Turabieh, Mafarja, Rezaie, Pal and San-
tosh [120] introduced novel hybrid ensemble models to detect gully-prone areas in the
Bastam plain, Iran. Four new ensemble techniques, including credal decision tree-dagging
(CDT-DA), credal decision tree-bagging (CDT-BA), credal decision tree-alternative decision
tree (CDT-ADTree), and credal decision tree rotation forest (CDT-RF) were evaluated for
GESM and compared with the results for an individual CDT. The results showed that use
of CDT-RF resulted in greater accuracy than the other applied models.

Roy and Saha [121] evaluated gully erosion susceptibility in the Hinglo river basin,
India, by utilizing the multilayer perceptron neural network (MLP) as the base classifier
and two hybrid ensemble ML techniques, including bagging and dagging. Therefore, three
models, including MLP, MLP-bagging, and MLP-dagging were developed and tested. The
results of the accuracy assessment by AUC, MAE, and RMSE showed that MLP-bagging
performed better than the other models.

Although many studies have been carried out in the field of GESM using ML tech-
niques, researchers still contest the choice of the most accurate model because, in addition
to the quality of the user data, the selection of the best model relies on the model struc-
ture [63]. For example, Märker, Pelacani and Schröder [65], in their study, concluded that
the TreeNet model gives better results than RF, but Pourghasemi, Sadhasivam, Kariminejad
and Collins [72] compared RF with nine ML methods with the results showing that RF
outperformed the other models. Therefore, it is difficult to provide a ranking of ML models
for GESM and more attention needs to be paid to comparison of the different ML techniques
to draw reasonable conclusions and gain insights into the drawbacks and advantages of
the techniques.

5. Conclusions and Recommendations

Gully erosion is an important problem that has a great impact on agricultural activities
and economics by promoting land and water degradation. ML techniques have been
applied in GESM to produce valuable tools for regional managers via identification of
locations where gullies occur, as well as those that are susceptible to gully initiation, to
assess the environmental impacts of gullies and plan gully erosion controls to mitigate its
negative environmental effects. This paper presented a review of ML models employed
in the field of GESM. To produce reliable gully erosion maps using ML techniques, four
main steps are typically used: (i) producing inventory maps of gullies, (ii) extracting gully
conditioning factors, (iii) multi-collinearity assessment, and (iv) model development and
performance evaluation. With respect to GEFs, most studies have suggested that primary
topographical attributes (e.g., elevation, slope and plan curvature), hydrological properties,
such as rainfall, and anthropogenic factors, such as land use/cover, are among the factors
that particularly affect the quality of GESM. The spatial resolution of GEFs is an important
attribute of GEFs and different studies indicate that a spatial resolution of 1 m to 30 m can
be used for GESM. However, the most suitable spatial resolution should be selected based
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on different criteria, such as the objectives of the study, the extent of the study area, the
availability of data, and computational resources. As shown in the present paper, there
are many ML models used to estimate gully erosion susceptibility, some are more widely
used (e.g., RF and SVM), and some are often used (e.g., logistic regression, ANN, NBTree).
The two methods that have generally been found to be the best methods for gully erosion
mapping are RF and SVM. Nonetheless, each method yields different results in different
areas, and the selection of the best method greatly depends on the reliability of the training
data. Therefore, further investigation is required to compare their capabilities for various
regions that have different environmental conditions. Comprehensive validation of the
applied models is another important step, for which, according to the literature, two types
of performance measure are mostly used: threshold-dependent methods, such as accuracy
and the Kappa coefficient, and threshold-independent methods, such as ROC.

Despite the promising results for the ML models in GESM, some suggestions to
improve the quality of gully erosion susceptibility assessment prediction by ML models
can be proposed. First, it is recommended to conduct further studies to test various factors
(e.g., topographic and hydrologic) in different geospatial locations that may influence the
accuracy of ML models. Second, data-mining models should be used to improve the quality
of datasets based on a comprehensive analysis of the relationship between historical gully
occurrence and causative factors. Third, an ensemble of models should be implemented to
combine the ability of the models to increase the accuracy and decrease the uncertainty of
the prediction.

Among the reviewed papers, besides mapping the prone areas to permanent gully
erosion, some studies sought to use ML techniques for rill–interill erosion mapping [65,114]
and ephemeral gully mapping [115]. Since rill–interill and ephemeral gully erosion are
other important types of soil erosion, more studies are required to explore the ability of ML
methods to predict these types of erosion to gain insights into the relationships between
these erosion processes and their controlling factors.

Considering the published papers in GESM using ML techniques, although the GESMs
can be used as a valuable tool for the detection of degraded lands by gully erosion, the
maps produced cannot reliably identify the gully trajectories which are the main input
of some process-based models (e.g., CREAMS) for quantifying the soil loss from gullies.
Therefore, it is recommended to combine topographic indices and ML models to provide
more accurate estimation of gully trajectories that can be used in process-based models
for the estimation of soil loss from gullies. With the help of ML models that can consider
the combined effect of different GEFs on gully development, maps which show the spatial
distribution of gully erosion occurrence can be produced. Topographic indices can use
these distribution maps to extract gully trajectories based on topographic attributes.
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