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Abstract: The use of data-driven surrogate models to produce deterministic flood inundation maps
in a timely manner has been investigated and proposed as an additional component for flood early
warning systems. This study explores the potential of such surrogate models to forecast multiple
inundation maps in order to generate probabilistic outputs and assesses the impact of including
quantitative precipitation forecasts (QPFs) in the set of predictors. The use of a k-fold approach for
training an ensemble of flood inundation surrogate models that replicate the behavior of a physics-
based hydraulic model is proposed. The models are used to forecast the inundation maps resulting
from three out-of-the-dataset intense rainfall events both using and not using QPFs as a predictor,
and the outputs are compared against the maps produced by a physics-based hydrodynamic model.
The results show that the k-fold ensemble approach has the potential to capture the uncertainties
related to the process of surrogating a hydrodynamic model. Results also indicate that the inclusion
of the QPFs has the potential to increase the sharpness, with the tread-off also increasing the bias of
the forecasts issued for lead times longer than 2 h.

Keywords: rapid flood forecasting; flood inundation; flash flood; surrogate model; machine learning;
ensemble forecasting

1. Introduction

Changes in land cover related to urbanization and an expected higher frequency and
intensity of extreme rainfall events driven by climate change are mechanisms that are
assumed to lead to an increase in the occurrence of flash flood events in different cities
in the upcoming years, a trend already reported worldwide in the literature [1–3]. To
reduce the impact caused by flash floods in terms of property damage and loss of lives,
forecasting centers are established and flood early warning systems are implemented to
support decision makers with information regarding the potential occurrence, location,
and intensity of hazardous inundation conditions [4]. The closure of roads, evacuation
of buildings, and interruption of mass transportation vehicles are examples of important
preventive actions that can be taken in the imminence of urban floods if a timely and
informative warning of an upcoming flooding event is available.

Forecasts produced by early warning systems are usually based on hydrographs
issued for specific point locations of an open channel, which are extremely important for
identifying scenarios of river overflow. However, the absence of flood inundation maps
forecasted in real time can limit the ability of decision makers to take informed actions
due to the importance of spatio-temporal data for first responders. Using conventional
two-dimensional (2D) and quasi-2D hydraulic models based on physical representation of
the water flow is considered the most accurate approach for simulating the development of
flood inundations, especially for flashy catchments, given the relevance of momentum in
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the water movement [5]. Such simulations require solving large sets of intercorrelated Saint-
Venant equations, which leads to extensive computational demands that limit the real-time
execution of the hydraulic models as part of operational flood forecasting chains. Instead,
such hydrodynamic models are usually executed “offline”, when processing time is not a
constraint, and the generated maps are used for the establishment of flood risk maps [6,7],
which are valuable resources for the management of catchments. While new hydrodynamic
models are being proposed to explore growing sources of processing power, such as graphic
processor units and cloud computing [8–10], adopting such new technologies by members
of established forecasting centers may be challenging considering the need to migrate
already-implemented models and implement potentially demanding structural changes in
the data system.

Several workarounds were proposed for making use of the valuable outputs produced
by hydraulic models already implemented and validated. Usually, such approaches involve
the steps of (1) pre-simulation (offline) of a variety of realistic rainfall-runoff scenarios,
(2) identification of empirical relationships between the inputs used in the simulation
and the output maps generated, and (3) inexpensive application of such relationships
in real time (online) as hydrological observations or forecasts become available. In this
context, Bhola et al. [11] and Crotti et al. [12] proposed a database-based approach in which
pre-recorded simulated inundation maps can be retrieved through comparisons between
their antecedent hydrographs and discharge timeseries forecasted by hydrological models.
Despite its efficiency, the approach has limited potential to extrapolate (or interpolate)
predictions for scenarios outside the records in the database. Alternatively, different
machine learning techniques to surrogate hydraulic models have been explored through
a variety of approaches; however, the high dimensionality of 2D inundation maps is
a challenging aspect of such methods. Usually, 2D inundation maps are composed of
thousands of grid cells to which a water depth value is assigned individually. The higher
the number of individual values to be predicted, the higher the complexity of the data-
driven model tends to be, which leads to a higher chance of the models trained to be
overfit giving a limited dataset [13]. One approach to overcome this high-dimensionality
issue is to set up multiple lower-dimensional machine learning models for individual [14]
or spatially close 2D cells [15], which has the drawback of requiring the training and
maintenance of a potentially high number of independent models, as one model is needed
for each flood-prone point or region. Alternatively, the use of hybrid tools in which a
clustering model is used to reduce the dimensionality of the maps has been proposed.
Chang et al. [16], for example, combined the potential of self-organizing maps (SOMs) to
cluster highly dimensional records and nonlinear autoregressive recurrent networks with
exogenous inputs (NARX) to successfully generate multi-step regional flood inundation
maps. The method was adapted to predict floods in urban areas caused by the overflow of
sewer systems [17,18] and by the river overflow in a flashy catchment [19].

While multiple approaches have been proposed for rapidly producing flood inunda-
tion maps, to the best of the authors’ knowledge, only results for deterministic forecasts
were reported in the present literature despite the recognized importance of representing
prediction uncertainties [20–22]. In this context, the surrogating of a 2D hydraulic model,
as well as any other data-driven technique, has the drawback of having additional sources
of uncertainties derived both from the process of abstracting the complex mechanisms of
surface water flow and from the finite amount of data used for training.

In this study, surrogate models with hybrid NARX + SOM structures are trained
and set up to reproduce the forecasting of ensemble inundation maps in an operational
scenario. For the estimation of the uncertainties associated with the model-surrogating
step, we propose a k-fold ensemble approach for the segmentation of a pre-simulated
dataset of flood inundation maps used for model training. The surrogate models are used
to produce ensemble forecasts, which are converted into probability distributions. The
outputs are assessed both using and neglecting precipitation forecasts issued by numerical
weather models for three intense rainfall events observed in the Don River Basin, Toronto,
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Canada, two of which are further analyzed as study cases. The outputs of the surrogate
models are compared and a discussion about (1) the resulting uncertainty range and (2) the
impact of including forecasted precipitation in the set of predictors to the model’s outputs
is presented.

2. Study Area

The Don River Basin, located in the Greater Toronto Area, Ontario, Canada (Figure 1a),
has a total area of approximately 350 km2, baseflow of approximately 4.5 m3/s, and land
cover predominantly characterized by urban infrastructure (Figure 1b). The catchment is
managed by the Toronto and Region Conservation Authority (TRCA). The high level of soil
imperviousness, the channelization of large portions of the Don River and its tributaries,
and a smooth relief result in a scenario of high propensity to flash flood [23], as also
observed in other urban catchments surrounding the Great Lakes [24]. The response time
of the catchment is in the order of 2.5 to 3 h and the southern region of the catchment
recurrently reaches river overbank conditions, which results in significant socio-economic
impacts mainly related to the inundation of high-traffic areas [25]. In this context, two
points of interest (POIs) are taken into consideration: POI 1 refers to the location in which
an urban train became stranded during the historical flood of July 2013, while POI 2 refers
to a point on Bayview Avenue usually closed due to floods (Figure 1c). Properly predicting
the occurrence/absence and the intensity of inundation scenarios in such locations is of
particular interest for decision makers to drive the choice of taking (or not) actions with
significant impact to local commuters, such as temporarily stopping train services (for POI
1) and blocking access to affected streets (POI 2).
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(c) its region prone to flash floods. Adapted from [19].

The Don River Basin was selected as the study case as it may be considered a good
representative of urban catchment prone to flash flooding, for which one (or more) hydro-
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dynamic model(s) is already implemented and calibrated by the agency responsible for
its management, but is so computationally expensive that it is not used in real-time appli-
cations (further information about the hydrodynamic model is provided in Section 3.1.2).
Any other catchment meeting the data requirements and physical model availability and
with similar characteristics could have been selected for this study.

3. Materials and Methods
3.1. Materials
3.1.1. Data

The catchment management agency maintains the four rain gauges (HY016, HY021,
HY027, and HY036) and the stream gauge (HY019) considered in this study (Figure 1b). The
observed timeseries of such gauges are made publicly available at a temporal resolution of
15 min. In this study, the historical data used spans from 2012 to 2020 due to the mutual
data availability for the five gauges.

Quantitative precipitation forecasts (QPFs) from the Rapid Refresh system (RAP) [26]
are included in the predictors of half of the data-driven models. Among the systems that
produce QPF products covering the study area, RAP was selected for this study due to the
large archive publicly available, with predictions issued as early as May 2012, and due to
the hourly temporal resolution and hourly update rate, which are the closest available for
the needs of a flash flood forecasting system [27].

Official point intensity-duration-frequency (IDF) curves are provided to the public by
the governmental agency Environment and Climate Change Canada (ECCC) [28] for the
Toronto Pearson International Airport, located near the study catchment. Such IDF is used
in the design of synthetic storms.

3.1.2. Hydrodynamic Model

The catchment management agency developed a calibrated hydrological model of
the Don River Basin in Storm Water Management Model (SWMM) [29] using the software
PCSWMM [30]. The hydrological model was originally composed of 462 sub catchments:
2703 conduits (river or channel segments) that represent the water flow unidirectionally
and do not count in a 2D hydraulic component to simulate flood inundation maps. This
work used the modified version of the model described by Zanchetta and Coulibaly [19],
in which a hydraulic flow surface component for the flood-prone area (region of Figure 1c)
is included. The spatial resolution of the hydraulic surface flow component is in the order
of 2 m, following the granularity of the digital elevation model (DEM) on which it is based
and meeting the high degree of spatial discretization required for urban environments [31].
Such a model is hereafter referred to simply as “hydrodynamic model”.

3.2. Methodology Overview

This work is organized in three major stages: the setup (offline), the emulation of
the operational use (online), and the performance assessment of the surrogate models, as
represented in Figure 2 and as further described in Sections 3.3–3.5.
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Figure 2. Flowchart of the methodology used in this study.

3.3. Setting Up the Ensemble Surrogate Model System (Offline Stage)

This work follows a modified sequence of steps adopted by Zanchetta and Coulibaly [19]
for setting up the surrogate models used. Initially, an extensive set of significant observed
and synthetic rainfall events is established. For each such event, the hydrodynamic model is
used to simulate the response hydrographs in the main inputs of the inundation area and the
resulting inundation maps. A database is constructed in which each instant inundation map
is stored with its antecedent simulated conditions. A representative subset of the records in
the database is selected as the training/validation dataset, which is split into subsets of equal
size using the k-fold approach. For each such subset, one hybrid surrogate model system,
composed of pairs of one recurrent and one classifier network, is trained.

3.3.1. Establishing a Dataset of Significant Rainfall Events

We considered an observed rainfall event to be significant if the observed discharge
captured by the gauge HY019 exceeded 2 times the baseflow (i.e., 9 m3/s) within 3 h from
a rainfall input recorded by at least one of the rain gauges. In order to capture eventual
long-standing precipitation records and most parts of the recession curve, all rainfall and
discharge data from 36 h centered around the discharge peak was considered as part of
each event. To avoid the potential influence of rain-over-snow and snowmelt, only events
occurring in the warm season of the years were considered.

Two sets of synthetic events were included in the dataset. Such augmentation is
inspired by the work of Crotti et al. [12], which identified that using datasets composed of
a hybrid of synthetical and historical pre-simulated events has the potential to improve the
performance of offline 2D models.

The first set of synthetic events is generated by the perturbation of the observed
rainfall events identified in the previous step through spatial random redistribution of
the timeseries recorded by the rain gauges. Such a set simulates scenarios with the same
rainfall intensity, which was observed as having the potential to result in different outcomes
if they had different spatial configurations. Considering the small size of the catchment
and the mutual proximity between the rain gauges, the rainfall timeseries are expected
to be highly correlated during stratiform precipitation events and less correlated during
convective events due to the limited coverage area of such types of rainfall.

The second set of synthetic events consists of design storms derived from the local
point IDF curve for return periods of 100, 200, and 500 years. For such, the following
procedure was adopted: (1) the aerial reduction factor (ARF) was estimated empirically as
the conventional ratio between the aerial precipitation observed in the catchment and the
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respective maximum-point gauge records for a fixed accumulation interval of 24 h; (2) the
accumulation-duration-frequency curve (ADF) was derived from the IDF curve; (3) the
mean point accumulated precipitation for each return period was converted into mean
aerial accumulated precipitation and; (4) for each of the converted mean aerial accumulated
precipitation values, design storms with the 4 shapes of Huff design storms [32] and
based on the alternating blocks method [33] were generated to produce a wide diversity of
climatic-based rainfall shapes.

Other more advanced methods for generating synthetic rainfall events, such as the
stochastic storm transposition [34], could also have been applied; however, the two above-
mentioned approaches for generating synthetic rainfall data were selected for being intu-
itive and of simple implementation.

Figure 3a presents the observation values used to define the ARF. Each 24-h precip-
itation record with accumulation values higher than 46 mm (i.e., the total accumulated
precipitation estimated for rainfalls within a return period of 50 years) is represented as a
point. The respective regression line is characterized by a slope (the aerial-point rainfall
ratio) of 0.6, which was used as the ARF.
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For each return period (frequency) f (in years) and total rainfall duration T (in hours),
ECCC characterizes the respective point IDF curves by:

I(T, f ) = A f ∗ TB f , (1)

in which I(T, f ) is the mean point rainfall intensity (in mm/hour), and A f and B f are
site-specific constants. Thus, the associated point ADF curve used to calculate Pp(T, f ) is
given by:

Pp(T, f ) = I(T, f ) ∗ T = A f ∗ T1+B f . (2)

ECCC provides estimations of A f and B f for return periods of up to 100 years for
the Toronto International Airport. To obtain the same coefficient values for return periods
of 200 and 500 years, a linear extrapolation was performed using the values of A f and
B f available for the longest return periods available, i.e., 25, 50, and 100 years (Table 1).
Using Equation 2, the obtained accumulated point rainfall for a duration T of 24 h and
return periods of 100, 200, and 500 years was 139 mm, 153 mm, and 172 mm, respectively.
Considering the reduction factor (0.6), the mean aerial accumulated precipitation for the
100-, 200-, and 500-years return periods was estimated as 83 mm, 92 mm, and 103 mm,
respectively (Figure 3b). For each of the three mean aerial accumulated precipitation values,
five storm designs were created based on the four Huffs shapes and one based on the
alternating blocks method. The 15 resulting pluviograms were used as spatially uniform
inputs for simulations in the hydrodynamic model of the catchment.
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Table 1. Coefficient values of the IDF curve estimated by ECCC (regular font) and extrapolated (bold).

Coefficient
Return Period (Years)

25 50 100 200 500

A f 41.0 46.0 50.9 55.7 61.9
B f −0.689 −0.686 −0.684 −0.683 −0.680

3.3.2. Construction of the Simulations Database

The hydrodynamical model was used to simulate the response of the catchment to
the rainfall events of the hybrid dataset. All model runs started from a stable baseflow
condition, generating both discharge hydrographs at the two main inlet points of the flood-
prone area (Q1 and Q2, Figure 1c) and instant inundation maps for the 36 h of each rainfall
event at 15-min intervals, resulting in a total of 144 inundation maps per rainfall event. An
additional scenario of no-rainfall event was also included for the sake of completeness of
the dataset.

For each simulated instant t, the resulting inundations map (IMt), the discharge values
simulated for points Q1 and Q2, and the 15-min accumulated mean aerial precipitation
P15min, t were stored in the database. It is worth noting that a complete IMt stored in the
database is composed of water depth values in all 101,577 cells of the 2D space, including
points both within and outside the river boundaries. Considering that flood conditions in
the considered area are predominantly driven by the overflow of the Don River, which is
triggered by intense precipitation in the upstream area, other usually relevant hydrological
components—such as evapotranspiration, soil moisture, and drainage/sewer pipeline—
were not stored or considered in further steps. The same applies to precipitation occurring
over the 2D domain, as such an area represents a small fraction of the total area of the
catchment; thus the influence of the runoff generated in this component is assumed to be
negligible compared to the runoff routed to Q1 and Q2.

Once all of the inundation maps were generated, the 2D cells in the floodplain domain
were classified into three groups. The first group, referred to as “wet cells”, is composed of
the 2D cells that presented non-zero water depths on the maps produced by the simulation
without rainfall forcing (i.e., the 2D cells within the river boundaries). The second group,
referred to as “dry cells”, is composed of the 2D cells that presented zero water depths
during all instances of all simulations (i.e., points that are extremely unlikely to be inun-
dated). The remaining 2D cells, referred to as “inundation cells”, represent locations on the
land surface that can be potentially flooded during intense rainfall events. The inundation
maps considered in further steps are comprised solely of the inundation cells to reduce the
overall complexity and computational burden of the machine learning models.

3.3.3. Selection of the Training/Validation and Test Dataset

For each IMt, an average inundation depth (AIDt) was calculated as the simple mean
of the instant water depths of all inundation cells of IMt. The AIDt is used in this work as
a univariate value representing the overall instant magnitude of the inundation process.

The historical rainfall event that produced the IMt with highest AIDt was considered
the most extreme real event in the database and was reserved for testing. Such an event
represents a real scenario outside the historical events in the learning space of the surrogate
models. Additionally, one event of intermediate magnitude and one event that occurred
posteriorly to all historical events were included in the test set so that the performance
of the model could include one rainfall event that was not expected to trigger responsive
actions and one event temporarily outside the training set.

To reduce the redundancy of the data used for training/validation, a subset of the
remaining simulated events was selected using the conventional Computer Aided Design
of Experiments (CADEX) sampling method [35]. Given a set S in which each of its records
is defined by F features f1, f2, . . . , fN , the objective of CADEX is to select a sample Z
maximizing the heterogeneity of the selected records in the feature space. For such, a
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function ∆
(
ri, rj

)
is defined to estimate the distance between two records ri and rj in the

feature space. Initially, the two records of S that are the most distant from each other in
terms of ∆ are selected to compose Z. Additional records are iteratively added to Z based
on the criteria of maximizing the total mutual distance among all members of Z until Z
reaches a size defined a priori. The reader is referred to Kennard and Stone [35] for further
details on the method.

In this work, for the application of the CADEX method, each simulated rainfall event
ri is represented as a record with 144 features, each feature being the AID of the y-th IM of
ri (i.e., AIDi,y). The distance between two rainfall events ri and rj is given by:

∆
(
ri, rj

)
=

∑144
y=1
∣∣AIDi,y − AIDj,y

∣∣
144

(3)

which can be interpreted as the mean absolute distance between the AID timeseries of the
two events.

The CADEX method requires the size of the sample to be defined a priori. To evaluate
multiple values for k in the k-folding implemented in posterior steps, as further discussed
in Section 3.3.5, the size of the sample was set to be 36. Other sampling algorithms, such as
SELECT [36] and Poisson Disk Sampling [37], adopt stopping criteria that do not ensure
a number of elements in the selected subsample defined a priori, thus they were not
considered in this study.

Figure 4 presents the timeseries of the AID of all 108 simulated rainfall events in the
simulations database and of the 36 rainfall events selected using the CADEX method. It
is possible to note that, despite being composed of only one-third of the total number of
records, the AID timeseries of the rainfall events in the training/validation set (Figure 4b)
present a variety of forms comparable with the full dataset (Figure 4a). The majority of
events that were not included in the training/validation set are characterized by their lower
intensity and high recurrency due to their mutual similitude. Conversely, all simulations
using design storms, which are designed to have heterogeneous shapes and less recurrent
intensities, were included in the training/validation set. A summary of the composition of
each set is given in Table 2.
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Table 2. Number of events in each set of simulations.

Type of Precipitation

Set of Simulations Observed Disturbed Observation Design Storm Total

Full database 31 62 15 108
Training/Validation 5 16 15 36
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3.3.4. Establishing the Hyperparameters of the Surrogate Models

Each surrogate model member of the ensemble forecasting system consists of a hy-
brid structure composed of a NARX and a SOM [38] in a configuration similar to the
one adopted by Zanchetta and Coulibaly [19], which demonstrated the suitability of the
NARX-SOM approach for surrogating the same hydrodynamic model of this study. It is
worth noting that in the aforementioned study only deterministic predictions were gener-
ated and assessed, while this work targets the generation and the analysis of probabilistic
predictions. In addition, in the previous work the use of QPFs as one of the predictors is
not considered, while in this paper the performance of QPF-aware models is compared
with the performance of their QPF-absent counterpart.

The SOM component has the objective of reducing the dimensionality of flood inunda-
tion maps, which is usually composed of hundreds or thousands of water depth values,
one for each cell in the modeled 2D space. For such, an extensive collection of instant flood
inundation maps is used to train the SOM, which is a non-supervised clustering method
capable of efficiently handling highly dimensional datasets using a rectangular 2D topolog-
ical space [39]. Before training, the number of topological nodes (in terms of W columns, H
rows in a rectangular topological organization) must be defined as a hyperparameter. After
training, the content of each topological node can be interpreted as an inundation map that
represents the shared characteristics of the inundation maps assigned to it.

There is not a consensus on how to determine the number of topological nodes of a
SOM. In this work, an empirical approach is adopted taking into consideration that a SOM
model is valuable as long as it is able to identify patterns shared by different inundation
maps (generalization power) without losing the capability to differentiate records distant
between each other in the feature space (discretization power). For such, the following
algorithm was applied: (1) a SOM with small topological dimension, W = 3 and H = 3, is
trained using all of the training/validation dataset; (2) if all of the topological nodes had
2 or more inundation maps associated to them, the trained SOM is considered “valid”, the
value of W (or H if H < W) is increased by 1, and the algorithm returns to step 1; and (3) the
iterations proceed until at least one topological node in the trained SOM is composed of a
single record of the training dataset (SOM considered “invalid”). The values of H and W of
the last “valid” SOM are then fixed and adopted in further steps. Figure 5 presents how
the number of records of each topological node varied with the change of the topological
map size. As the SOM with topological dimensions of 05 × 05 was considered “invalid”, it
was not included in the plot and the immediate antecedent topological configuration (of
05 × 04) was selected as the fixed dimensionality for the SOMs trained and used in the
subsequent steps.
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The NARX model adopted in this work consists of a regular feed-forward neural
network with three neuron layers (input, hidden, and output) that predicts the topological
node of its associated SOM given limited antecedent and forecasted data.

Each NARX model was trained to perform a prediction at a specific lead time L. The
total number of input neurons (one per predictor) varied from 7 to 10 (Table 3). All models
have, as part of their predictor set, antecedent values of mean aerial quantitative precip-
itation estimate (QPE), simulated inflow discharge at points Q1 and Q2, and antecedent
simulated AID. The number of hourly accumulated quantitative precipitation forecasted
(QPF) values ranged from 1 to 4 depending on the L, as represented in Figure 6.

Table 3. Listing of all potential NARX predictors.

Predictor Meaning On Lead Time L

QPEL Mean estimated precipitation, 2-h accumulation All
Q1,L Earlier inflow discharge at Q1, 30-min mean All

Q1,L−1 Later inflow discharge at Q1, 30-min mean All
Q2,L Earlier inflow discharge at Q2, 30-min mean All

Q2,L−1 Later inflow discharge at Q2, 30-min mean All
AID−1 (or D−1) Average antecedent simulated inundated depth, instant All

QPFL+1 Mean predicted forecast, 1-h accumulation, 1 h ahead All
QPFL+2 Mean predicted forecast, 1-h accumulation, 2 h ahead L > 60 min
QPFL+3 Mean predicted forecast, 1-h accumulation, 3 h ahead L > 120 min
QPFL+4 Mean predicted forecast, 1-h accumulation, 4 h ahead L > 180 min
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It is worth mentioning that other hydrological forcings usually considered relevant
for predicting river discharge were not included in this work due to the particularities
of the study catchment and the events selected. Examples of such include the influence
of (1) snow, usually represented in the form of snow water equivalent (SWE), which was
neglected due to the fact that the rainfall events used were restricted to the warm seasons;
(2) temperature, which was expected to have neglectable impact on the time span of the
events; and (3) soil moisture, which is expected to have limited impact on the rainfall-runoff
process due to the low level of soil permeability driven by intense urbanization.

The number of nodes in the hidden layer was defined empirically, with multiple values
ranging from 10 to 50 being tested on the training of each network so that the configuration
that presented the highest validation performance (in terms of minimum loss) was selected.

Softmax is used as the activation function in the output layer with a total of
20 (5 × 4) neurons, each output neuron representing one topological node of the asso-
ciated SOM. As the output in each neuron of a softmax layer provides the probability
of such a neuron being the correct one in a classification problem, we consider that the
two topological nodes that were assigned with highest probabilities by the NARX model
are the best candidates to represent the forecasted IM. The IM effectively produced by the
hybrid model is composed of a weighted average of such pair of best candidates IMs. A
schematic representation of the application of such a system operationally is provided in
Figure 7.
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Figure 7. Diagram representing the dataflow of the hypothetical operational setup. Ei indicates the
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Number of inputs, neurons, and topological nodes are hypothetical and for illustrative purposes only.

3.3.5. Training the Surrogate Models

The conventional k-fold cross-validation method was applied to train multiple sur-
rogate models. In such an approach, the full training/validation dataset is split into k
equally sized subsets. For each subset (“fold”), a model is tuned using all of the other
subsets (“fold-in”) for training and its own subset (“fold-out”) for validation, resulting in k
models trained at the end of all iterations. The establishment of multiple surrogate models
using a limited dataset can also be performed by having the subsets used for training and
validation being selected independently, i.e., without the segmentation in equally sized
folds. In this case, each subset is composed of elements of the full dataset selected randomly,
thus it is not possible to ensure that the subsets will be composed of a significant number
of different elements, which ultimately may result in the undesired scenario of different
surrogate models being trained with very similar sets of inputs. The splitting of the dataset
in k-folds ensures a minimum overlap between the subsets used for training.

There are multiple approaches for selecting the number k. In our work, for the sake of
simplicity, the most empirical approach is applied, i.e., multiple values of k are explored and
the one that resulted in the best performance in terms of Continuous Ranked Probability
Score (CRPS, described in Section 3.5) is selected. The training/validation dataset was set
to have a size of 36 simulated rainfall events so that four values of k (4, 6, 9, 18) could be
tested under the condition of equal number of records per fold.

As can be observed in Table 4, the CRPS of the configuration composed of 12 folds has
the lowest value for the 4 lead times evaluated, indicating that such a data split leads to the
best performance among the explored alternatives and justifies the fixing of k = 12 in the
following steps.
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Table 4. CRPS of the ensemble surrogate models for different cross-fold ensemble configurations in
the training/validation dataset. The lowest (best) value of each column is highlighted in bold.

Lead Time (h)

Number of Folds 1 2 3 4 Mean

04 0.026 0.030 0.034 0.032 0.030
06 0.033 0.029 0.029 0.029 0.030
09 0.026 0.034 0.042 0.049 0.038
12 0.021 0.023 0.026 0.029 0.024
18 0.021 0.027 0.031 0.032 0.028

3.4. Forecasting the Probabilistic Inundation Maps
3.4.1. Generating Ensemble Forecasts

The ensemble of trained surrogate models was used to forecast the three events in the
test dataset. RAP precipitation forecasts, bias-corrected through quantile mapping against
gauge records, were used as QPF values. Thus, 16 sets of k flood inundations maps were
produced, one for each lead time distant 15 min apart from 15 min to 4 h in the future. The
water depth value predicted by the i-th ensemble member for an inundation cell c at a time
t for a lead time L is hereafter denoted as Di

c,t,L.

3.4.2. Converting Ensembles into Probabilistic Forecasts

In probabilistic forecasts, values are provided in the form of a probability distribution
rather than a univariate numeric value. In this work, the predicted probability distributions
of the water depth for an inundation cell c for a time t at a lead time L, P(Dc,t,L), is defined
by nine values τ0.1

c,t,L, τ0.2
c,t,L, . . . , τ0.9

c,t,L, in which τi
c,t,L indicates the i-th quantile value in the

distribution. In this work, for the sake of simplification, the model ensemble members are
assumed to be equally likely to issue the correct forecast, and the quantile estimation from
an ensemble of predicted values is performed by simple linear interpolation.

3.5. Evaluation

In the absence of observed flood inundation maps, the probabilistic flood inundation
maps produced by the hybrid surrogate models for the three events in the test set were
compared against the maps produced by the hydrodynamic model. Thus, what is evaluated
in this work is the ability of the surrogate model to properly reproduce the behavior of the
hydrodynamic model in a significantly reduced time interval and capture the additional
uncertainties resulting from the surrogating process. The mean CRPS is used to evaluate
the overall goodness of fit of the surrogate models. Assume a simulated inundation
map representing the instant t and composed of C deterministic water depth values D1,t,
D2,t, . . . , DC,t, with C being the total number of inundation cells. For a probabilistic forecast
map issued for t at a lead time L and consisting of C random variables D′1,t,L, D′2,t,L, . . . ,
D′C,t,L, the mean CRPS is calculated as:

CRPSt,L =
1
C

C

∑
c=1

x=∞∫
x=−∞

(
Prob.

(
D′C,t,L ≤ x

)
− H(Dc,t, x)

)2dx (4)

in which H is the Heaviside step function, i.e.,:

H(Dc,t ≤ x) =
{

0 i f Dc,t > x,
1 otherwise.

(5)

CRPSt,L values range from 0 (perfect fit) to ∞, unitless. In this work, CRPS is applied
in two sets of data. The first set consists of every inundation cell c at every instant time t,
regardless of the values of Dc,t and D′1,t,L. The second set consists only of the pairs of c and
t in which Dc,t > Dthreshold, i.e., only when a local inundation was effectively present in the
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simulation. The constant Dthreshold represents the minimum water depth for an inundation
cell to be considered “inundated” (or “wet”), fixed as 0.01 m in this work.

The accuracy of the probabilistic model to predict the condition of an inundation cell
in terms of dry/wet is measured using the mean Brier Score (BS). The BS is similar to the
CRPS, with the difference that only one value of x (Dthreshold in this work) is evaluated, i.e.,:

BSt,L =
1
C

C

∑
c=1

(
Prob.

(
D′c,t,L ≤ Dthreshold

)
− H(Dc,t, Dthreshold)

)2 (6)

with values ranging from 0 (perfect accuracy) to 1 (null accuracy), unitless.
The reliability of the forecasts is estimated based on the containing ratio (CRα) [40],

which is defined as the percentage of times that observed values fall within specific pre-
dicted bounds α. If α represents a confidence interval, the closer the value of CRα is to α, the
more reliable the predictor is considered. In this work, as the lower and higher predicted
quantiles are 0.1 (τ0.1) and 0.9 (τ0.9), respectively, the bandwidth of the 80% confidence
interval (CR80) is used. Thus, given N water depth records calculated by the hydraulic
model, Nh of which have values between the τ0.1 and τ0.9 quantiles predicted by a hybrid
surrogate model, CR80,t,L is given by a percent value as:

CR80,t,L =
Nh
N
× 100%, (7)

in which the closer CR80,t,L is to 80%, the more reliable the forecast is considered.
Average Bandwidth [40] is used to estimate the sharpness of a prediction. Similar to

the CR80, in this work the bandwidth of the 80% confidence interval (B80) is used. Given
the quantiles τ0.9

c,t,L − τ0.1
c,t,L forecasted for an inundation cell c at instant t issued at a lead

time L, B80,c,t,L is given by:

B80,c,t,L = τ0.9
c,t,L − τ0.1

c,t,L. (8)

The value of B80,c,t,L is always non-negative, and the higher the value of the bandwidth,
the lower is the sharpness of the prediction. As B80 values are in the same unit as the
analyzed variable and the water depths values associated with each inundation cell have
different magnitudes, this metric is assessed pointwise.

Two metrics are considered for bias. For the general case, in which all records are
considered, the Mean Fractional Bias (MFB) is used [41]. It is given by:

MFBt,L =
1
C

C

∑
c=1

τ0.5
c,t,L − Dc,t

τ0.5
c,t,L + Dc,t

(9)

and has unitless values bounded by +2 (biased high) and −2 (biased low), with a value of
zero meaning a perfectly unbiased model. MFB is used in this work for the general case
due to the fact that the evaluated variable (surface water depth in individual inundation
cells) recurrently has value zero, which would result in divisions by zero if other more
conventional metric biases were used. Additionally, it is applied in a specific case metric,
named event Peak Bias (PB), which is calculated by:

PBc,E,L =
max

(
τ0.5

c,E,L

)
−max(Dc,E)

max(Dc,E)
∗ 100% (10)

in which, for a cell c during an event E, max(Dc,E) is the maximum water depth value

simulated by the hydrodynamic model and max
(

τ0.5
c,E,L

)
is the respective maximum median

value forecasted at a lead time L.
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4. Results and Discussion

To facilitate visual interpretation, only timeseries and inundation maps of forecasts
issued for lead times of 1, 2, 3, and 4 h are presented, despite results being available at a
15-min time step. For the sake of simplicity, the surrogate models that do not include QPF
values in their set of predictors are referred to as “no-QPF” or “No QPF”, while the models
that have RAP QPF values as part of their predictors are referred to as “QPF-aware” or
“RAP QPF” hereafter.

4.1. Overall Performance

When all data is considered, the forecasts produced by the no-QPF models tend to
have a better goodness of fit, lower bias, higher reliability, and higher accuracy than their
QPF-aware counterparts for most of the lead times (Figure 8a,c,e,f, respectively). This result
contradicts the initial expectations that including QPFs would improve the performance of
the surrogate models at longer lead times. Such a decay in performance is driven by the
presence of additional inputs of precipitation from the QPF products that are not present
in the QPE, which leads to the prediction of false inundation points (further illustrated in
Section 4.2). Interestingly, for the instants when an inundation is present in the simulation,
outputs from the QPF-aware models presented an overall better fit to the simulations,
especially for the lead time of four (Figure 8b). Such a gain in performance for the longer
lead time is probably due to the increase in confidence (lower B80) that is derived from the
additional information present in the QPF products (Figure 9). Another relevant difference
is that the peak water depths predicted for each rainfall event are significantly less biased
in the outputs of the QPF-aware model then in its no-QPF counterpart (Figure 8d).
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For all metrics, there is an overall trend of loss in performance with the increase of
the forecast lead time. Such a decay is expected, given that the longer the time interval
between the last observed data and forecasted map, the lower the amount of information
potentially relevant to the predictor.

4.2. Study Cases

The performance of the surrogate models was assessed at the POIs and their surround-
ing areas in two events of the test set. The event of 8 July 2013, is the most extreme of the
observed dataset, and the resulting flood caused the stranding of an urban train carrying
passengers in the POI 1 and the stranding of several cars in the POI 2 [42]. The second
event, of 2 August 2020, raised local flood warning alerts and lead to the closure of the road
at the POI 2; however, no interruption of the urban train services was noticed [43,44].

4.2.1. 8 July 2013

The hydrographs in Figures 10 and 11 show the predicted water depths at POIs 1 and
2, respectively, for the event of 8 July 2013, issued at different lead times. In both figures, it
is possible to note a first peak in the predictions issued by the QPF-aware models for longer
lead times. Such first peaks are not reproduced by the hydrodynamic model and are absent
in the no-QPF forecasts, likely being driven by the higher bias and higher overall number
of errors with respect to longer lead times already reported in RAP products [45]. As lead
time decreases, the over-forecasted first peak also decreases and the similarity between the
effective peak and the predictions produced by the QPF-aware products also increases.

An additional difference between the QPF-aware and no-QPF scenarios is that the
inclusion of QPF reduced the spread of the ensemble, which indicates that the additional
information increases the confidence of the forecasts. Such a decrease of the ensemble
spread is more pronounced for longer lead times and illustrates the general metrics obtained
for the bandwidth of the forecasts (Section 4.1, Figure 9).

For both no-QPF and QPF-aware scenarios, the overall shape of the main water depth
curve simulated by the hydrodynamic model is within, or very close to, the boundaries
of the 80% confidence interval of the ensemble forecasts, which indicates an appropriate
representation of the uncertainties originated from the surrogating of the hydrodynamic
model. As observed in the overall performance analysis (Section 4.1), major disagreements
are observed in longer lead times, which, as indicated by the reliability measurements, can
be related to an overconfidence of the models (Figure 8e).

The overall shape of the probability of exceedance maps produced by both the no-QPF
and the QPF-aware scenarios is similar to the simulated water depth exceedance map,
considering the maximum depth at each location as threshold (Figures 12 and 13). While
some overestimation is observed at lead times up to 2 h in both cases, such overestimation
is also present in the forecasts for 3 and 4 h in the future when the surrogate model is based
solely on QPEs.
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4.2.2. 2 August 2020

The forecasting of this event shares many similarities with the forecasts issued for the
event of 8 July 2013. The no-QPF surrogate model produced higher peaks than its QPF-
aware counterpart for longer lead times; however, the inclusion of QPF products resulted
in preliminary forecasted peaks that are not produced by the hydrodynamic model in both
the POI 1 (Figure 14) and POI 2 (Figure 15). Conversely, for earlier lead times, the shape of
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the QPF-aware ensemble timeseries resembles more the output from the simulation than
the no-QPF counterpart, indicating a gain in performance for less intense events.
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The inundation maps forecasted by both surrogate models are also characterized by
overestimating the flooded area at shorter lead times (Figures 16 and 17). The overall
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shape of the simulated and forecasted maps is comparable for the POI 1. However, it is
possible to note that, regardless of the inclusion of the QPF in the feature set, the maps
incorrectly forecasted a relatively large area as flooded in the south-west of the POI 2
(lower-left corner of the maps in Figure 17). Such an area has a significantly lower elevation
compared to its surroundings in the DEM, which results in recurrent retention of inundated
water in the form of a “pound” for long periods of time. Thus, a significant number of the
inundation maps that compose the simulations database represent this region as inundated,
which probably leads the data-driven model to overestimate the water depths for this
area. Such an overestimation is not observed for the inundation cells related to traffic
surfaces, however.
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4.3. Discussion Summary

The overall spread of ensemble forecasts is significantly low (overconfidence) due
to the fact that all ensemble members are trained to mimic the behavior of the same
hydrodynamic model and from the same set of predictors; moreover, they all share similar
network structures. This can be interpreted as a limitation of the single-model k-fold
ensemble approach, in which the difference between the ensemble members lies solely in
the configuration of the subsets used for their training and validation.

From an operational perspective, the inclusion of QPF products does not significantly
impact the performance of the surrogate models for predictions for lead times up to
two hours. For longer lead times, however, outputs from the QPF-aware setup tend to
produce early false inundations, which may lead to the undesirable issue of false alerts
and to the adoption of unnecessary preventive actions. Yet, the maximum event water
depths predicted by the QPF-aware models tend to be closer to the peak simulated. The
peak inundation may be considered the most important variable for decision makers as it
represents the total extent of an inundation at locations that deserve specific actions in the
upcoming hours. Thus, forecasting centers may consider that the benefit of improving the
prediction of such a variable overcomes the drawback of potential false early inundations
associated with the adoption of QPF-aware surrogate models.

The k-fold ensemble approach is intuitive, easily implemented, and model-agnostic,
and it showed acceptable performance on estimating the uncertainties associated with the
process of surrogating 2D inundation models; thus, it can be taken as a benchmark for
future research in this field.

4.4. Runtime

Both deterministic simulations using the hydrodynamic model and ensemble forecasts
from surrogate models were generated using a desktop computer with 64 GB random-
access memory (RAM) and a CPU Intel I9 with 3.6 GHz, eight codes, and 16 logical
processors. While the runtime of the hydrodynamic model demanded approximately 4 h
and 30 min to produce 4 h of inundation maps, the ensemble of forecasts for the same
time interval required between 13 to 17 min to be generated, which may be considered
applicable for real-time setups.

5. Conclusions, Limitations, and Future Works

The present work evaluates the applicability of the NARX-SOM hybrid surrogate
models for forecasting probabilistic flood inundation maps at a flashy catchment in the
region of the Great Lakes, as well as analyzing the performance impact of including RAP
QPF as a predictor. A k-fold approach is used to produce ensemble models that are trained
to surrogate an SWMM-based hydrodynamic model in a forecasting setup. The forecasted
maps are compared with the simulated maps to assess the efficiency of the surrogate models
on rapidly reproducing the hydrodynamic model outputs.

For the most part of the simulated timeseries, the outputs produced by the hydrody-
namic model were within, or close to, the 80% confidence interval of the forecasts produced
by the surrogate models, indicating that the use of the k-fold ensemble was successful
in capturing the additional uncertainties of the surrogating step. The inclusion of QPF
products did not significantly impact the maps forecasted for lead times up to 2 h. For
longer lead times, the no-QPF models tend to produce forecasted peaks biased high and
with high spread. Conversely, the inclusion of QPF results in less biased peaks with the
tread-off of producing more peaks that were not present in the hydrodynamic simulations,
which could trigger false alarms during operational time. Such findings suggest that a
forecasting system composed of a combination of no-QPF and QPF-aware surrogate models
has the potential to produce more accurate and less biased forecasts for longer lead times;
however, exploring strategies for such combination is beyond the scope of this study.

A limitation identified for the k-fold ensemble approach is that, by using a single hy-
drodynamic model as reference and a single approach for model surrogating (SOM-NARX
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hybrid structures), the forecasts were characterized by overconfidence (low spread), which
limits the potential gains in performance of a post-processing step based on dynamic model
weighting, for example. Such an observation motivates the use of multi-model ensemble
forecasts; however, the availability of multiple hydrodynamic models for the same flood-
prone area may be uncommon in forecasting centers given the highly demanding tasks of
producing and maintaining each individual model and keeping them updated to reflect
changes in the land cover. Alternatively, surrogate models with different structures can be
explored to compose the multi-model ensemble. Other recurrent algorithms commonly
applied for river flow forecasting, such as the Gated Recurrent Unit (GRU) [46] and the
Long Short-Term Memory (LSTM) [47–50], are suggested alternatives for the NARX struc-
ture adopted in this work, while convolutional neural networks can be used to compose
the flood inundation maps [51]. Additionally, Mosavi et al. [52] (Section 4.2 of their work)
listed a series of hybrid models already explored for short-term forecasting that potentially
can be adapted for the prediction of flood inundation maps. How the use of alternative
structures in the hybrid model impacts the model outputs is beyond the scope of this study
and suggested for future work. The results presented are specific for the Don River Basin
and for the data products utilized, and the evaluation of this approach at a broader scope is
suggested as future research.
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Abbreviations

Acronym Meaning
2D Two-dimensional
ADF Accumulation-Duration-Frequency
AID Average Inundation Depth
ARF Aerial Reduction Factor
Bα Bandwidth of α confidence interval
BS Brier Score
CADEX Computer Aided Design of Experiments
CRα Containing Ratio of α confidence interval
CRPS Continuous Ranked Probability Score
DEM Digital Elevation Model
ECCC Environment and Climate Change Canada
GRU Gated Recurrent Unit
IDF Intensity-Duration-Frequency
IM Inundations Map
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LSTM Long Short-Term Memory
MFB Mean Fractional Bias
NARX Nonlinear Autoregressive Recurrent Networks with eXogenous inputs
POI Points of Interest
QPE Quantitative Precipitation Estimate
QPF Quantitative Precipitation Forecasts
PB Peak Bias
RAM Random-Access Memory
RAP Rapid Refresh system
SOM Self-Organizing Maps
SWE Snow Water Equivalent
SWMM Storm Water Management Model
TRCA Toronto and Region Conservation Authority
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