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Abstract: In the western Cameroon, crop out several dyke swarms of Paleozoic–Mesozoic age. These
dykes intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon
Volcanic Line. In the Njimom area, two groups of mafic dykes that crosscut the Neoproterozoic
basement rocks have been observed. A first group intrudes the mylonites whereas the second group
intrudes the granites. The dykes are alkaline basalts and hawaiites. The mineralogical assemblage
of both groups of dykes consists of plagioclase, clinopyroxene, altered olivine, and opaque oxides.
The dykes that cross-cut the Precambrian mylonitic gneisses show moderate TiO2 (1.7–2.0 wt.%),
low MgO (4.4–7.1 wt.%), and compatible trace element concentrations (e.g., Cr = 70–180 ppm;
Ni = 30–110 ppm). The dykes that intrude the granites have TiO2 contents between 2.3 and 2.5 wt.%
and moderate compatible trace element concentrations (e.g., Cr = 260–280 ppm; Ni = 170–230 ppm).
MgO varies from 5.9 to 9.2 wt.%. All mafic dykes are enriched in light lanthanide element and show
moderate Zr/Nb and high Zr/Y, Nb/Yb, and Ti/V ratios similar to those of average ocean island
basalt (OIB)-type magmas. Some dykes that intrude the mylonites show evidence of contamination
by continental crust. The composition of the clinopyroxenes of the dykes that intrude the mylonites
clearly indicate different and unrelated parental magmas from dykes that intrude the granites.
Contents and fractionation of the least and the most incompatible elements suggest low degrees
of partial melting (3–5%) of heterogeneous source slightly enriched in incompatible elements in
the spinel stability field. The geochemical features of Njimom dykes (in particular the dykes that
intrude the granites) are similar to those of Paleozoic and Mesozoic dykes recorded in the southern
continental part of the Cameroon Volcanic Line, suggesting multiple reactivations of pre-existing
fractures that resulted in the fragmentation of western Gondwana and the opening of the South
Atlantic Ocean.

Keywords: mafic dykes; mineralogy; geochemistry; petrogenesis; Njimom; western Cameroon

1. Introduction

Volcanic activity in Cameroon is concentrated along the well-known Cameroon Vol-
canic Line (CVL), an alignment of oceanic and continental magmatic centers that straddle
the boundary continental/oceanic crust in Central Africa (e.g., [1]). The CVL extends
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(with a N30◦ E direction) over more than 1000 km in Cameroon, Equatorial Guinea, Sao
Tome, and Principe. According to some authors, the CVL extends also in Nigeria in the
Biu Plateau and in Chad (e.g., [2,3]). Volcanic rocks of the Cameroon Line cover the Pre-
cambrian basement of Neoproterozoic age (e.g., [4]). In the southern continental part
of the CVL, the Paleozoic–Mesozoic dyke swarms show mineralogical and geochemical
characteristics different from the common CVL rocks (e.g., [5,6]). While in CVL the rocks
are mainly alkaline, the dykes are essentially transitional and/or tholeiitic. The oldest
basalts of the CVL are of Tertiary age while the dykes span over Paleozoic and Mesozoic
eras with youngest know age (192.10 ± 7.45 Ma) being found for the Kendem dyke which
is the only NW-SE dyke dated [7]. On a structural basis, orientations of basaltic dykes are
aggregate to the range NNE-ENE with a predominance of the ENE orientation which is
locally known as the Adamawa Shear Zone (ASZ) which runs from the Gulf of Guinea to
Sudan and in a pre-drift reconstitution, is thought to prolong to Brazil as the Pernambuco
Shear Zone. Tectonic studies evidence a Riedel fracture model with a dextral shearing along
the ASZ (e.g., [8,9]) with a NW-SE shortening (σ1) associated to the formation of the Benue
aulacogen, a NE-SW stretching (σ3) corresponding to the CVL. Our field works along the
ASZ in the Njimom area indicate the existence of NW-SE oriented basaltic dyke swarms.
Here we present a study of the Njimom dykes. With field, petrographic and whole-rock
geochemical (major and trace element) data, we decipher the petrogenesis of this dyke
suite and the signification of the NW-SE dykes group in the framework of the opening of
the Southern Atlantic Ocean.

2. Geological Setting

The studied dykes are located to the West of the city of Njimom, in the southern
continental part of the CVL (Figures 1 and 2). The area lies on a ~0.6 Ga granitic–gneissic
basement (e.g., [10,11]) strongly mylonitized along the Central Cameroonian Shear Zone, a
segment of the regional Adamawa Shear Zone. The rocks that compose the Pan-African
basement in the area are coarse grained granitoids, granoblastic orthogneisses, migmatites,
metagabbros, and mylonites [12]. Structural features and kinematic indicators point to a
syntectonic emplacement of the basement rocks and provide detailed information on the
relative timing of deformation [13,14]. Younger mafic dykes and quartz-feldspathic veins
crosscut mylonites and granites while amphibolitic enclaves are widespread in gneisses.
Migmatites are associated with orthogneisses and display high K to shoshonitic charac-
ters [12]. The spatial distinction in pre- to syn-orogenic magmatism allows recognition of a
north to south potassium increasing trend, compatible with the existence of a northwestern
trending Pan-African subduction (e.g., [15]). This sheared margin is marked by the super-
position of two mylonitic foliations operating in opposing sense (at constant direction),
under high and low metamorphic conditions (e.g., [13]). Volcanic activity in the studied
area consists of relics of basaltic plateau (ca. 51 Ma; [16]) of the CVL in the Foumban area
(60 km to the SW of the dykes studied in this work).
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Figure 1. Geological sketch map of Cameroon [17]. CCSZ = Central Cameroon shear zone, SF = 
Sanaga Fault, TBF = Tcholliré-Banyo fault, RLSZ = Rocher du Loup shear zone, ASZ = Adamawa 
shear zone, GGSZ = Godé-Gormaya shear zone, MNZ = Mayo Nolti shear zone. The insert is the 
position of the studied area in pre-drift reconstruction [11]. PA = Patos shear zone, KF = Kandi Fault, 
PSZ = Pernambuco shear zone. The locations of the mafic dyke swarms (Njimom, Kendem, Dschang, 
Bangangte, Manjo, Nyos) are also shown. 

Figure 1. Geological sketch map of Cameroon [17]. CCSZ = Central Cameroon shear zone,
SF = Sanaga Fault, TBF = Tcholliré-Banyo fault, RLSZ = Rocher du Loup shear zone, ASZ = Adamawa
shear zone, GGSZ = Godé-Gormaya shear zone, MNZ = Mayo Nolti shear zone. The insert is the
position of the studied area in pre-drift reconstruction [11]. PA = Patos shear zone, KF = Kandi Fault,
PSZ = Pernambuco shear zone. The locations of the mafic dyke swarms (Njimom, Kendem, Dschang,
Bangangte, Manjo, Nyos) are also shown.
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exposed along the Foumban-Magba newly tarred road. The dykes in mylonites (5°49′ 
58.8′’ N/10°59′50.0′’ E, 5°50′00.1′’ N/10°59′51.7′’ E) occur as slabs and blocks (Figure 3a) 
with a thickness between 0.5 and 6 m. The second group of dykes (5°51′04.3′’ N/11°04′18.6′’ 
E, 5°51′04.2′’ N/11°04′16.8′’ E) with a thicknesses between 0.2 to 1 m cuts sub-parallel to 
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altered (Figure 4a,b). Alteration effects are seen mostly in the presence of clay minerals, 
chlorite, quartz and calcite in the interstices, and iddingsitization of olivine phenocrysts 
in the sample NK2A (Figure 4b). The dyke NK2C shows an intergranular texture and con-
tain altered olivine, clinopyroxene, plagioclase, and Fe-Ti oxides (Figure 4c). The dyke 
NK6 that intrudes the granites has phenocrysts and microlites of corroded olivine, with 
plagioclase, clinopyroxene, and Fe-Ti oxides in the groundmass. The mesostasis is altered 
and also has scarce alkali feldspar. Calcite-filled amygdales are common (Figure 4d). 

Figure 2. Geology sketch map of the Njimom area with location of the studied samples.

3. Field Occurrence and Petrography

The Njimom dykes strike mainly 135◦ N and 155◦ N and cross-cut respectively my-
lonitic gneisses and granites of the Precambrian basement of the area. The dykes are
well exposed along the Foumban-Magba newly tarred road. The dykes in mylonites
(5◦49′ 58.8′ ′ N/10◦59′50.0′ ′ E, 5◦50′00.1′ ′ N/10◦59′51.7′ ′ E) occur as slabs and blocks (Figure 3a)
with a thickness between 0.5 and 6 m. The second group of dykes (5◦51′04.3′ ′ N/11◦04′18.6′ ′ E,
5◦51′04.2′ ′ N/11◦04′16.8′ ′ E) with a thicknesses between 0.2 to 1 m cuts sub-parallel to
parallel (to the NW-SE direction) the granites (Figure 3b).
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Figure 3. Field geology of Njimom area. (a,b) Dykes cross-cutting the Precambrian basement
(mylonitic gneiss) in (a) and (granite) in (b).
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The Njimom dykes that intrude the mylonitic basement show a weakly porphyritic to
aphyric texture (Figure 4a–c). The groundmass of the dykes NK0 and NK2A is strongly
altered (Figure 4a,b). Alteration effects are seen mostly in the presence of clay minerals,
chlorite, quartz and calcite in the interstices, and iddingsitization of olivine phenocrysts in
the sample NK2A (Figure 4b). The dyke NK2C shows an intergranular texture and contain
altered olivine, clinopyroxene, plagioclase, and Fe-Ti oxides (Figure 4c). The dyke NK6 that
intrudes the granites has phenocrysts and microlites of corroded olivine, with plagioclase,
clinopyroxene, and Fe-Ti oxides in the groundmass. The mesostasis is altered and also has
scarce alkali feldspar. Calcite-filled amygdales are common (Figure 4d).
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Figure 4. Main petrographic features of the Njimom dykes. (a) Altered aphyric basalt NK0; (b)
sub-ophitic texture in basalt NK2A. The olivine phenocrysts are completely altered; (c) intergranular
texture in aphyric basalt NK2C with plagioclase, altered olivine, clinopyroxene and opaque oxides;
(d) porphyric texture in basalt NK6. The olivine is completely iddingsitized. The dykes in (a–c)
cross-cut the mylonitic gneiss. The dyke NK6 intrudes (d) the granitic basement. Mineral names are
abbreviated as cpx clinopyroxene; pl, plagioclase; ol, olivine; cc, calcite.

4. Analytical Methods

Four dykes of the Njimom area, were chosen for mineral chemical analysis. The
mineral compositions (Tables 1–3) were obtained at the University of Naples, using an
Oxford Instruments Microanalysis Unit equipped with an INCA X-act detector and a JEOL
JSM-5310 microscope in energy-dispersive spectrometry (EDS). The standard operating
conditions included a primary beam voltage of 15 kV, filament current of 50–100 µA and
spot size of 5–10 µm, 20 mm WD. Measurements were made with an INCA X-stream pulse
processor and with the Energy software. The quant optimization is carried out using cobalt
(FWHM—full width at half maximum peak height—of the strobed zero = 60–65 eV). The
following standards were used for calibration: anorthite (Ca), San Carlos olivine (Mg),
anorthoclase (Si, Al, Na), albite (Na), rutile (Ti), fayalite (Fe), chromite (Cr), serandite (Mn),
microcline (K), Durango apatite (P), fluorite (F), barite (Ba), strontianite (Sr), zircon (Zr, Hf),
synthetic Smithsonian orthophosphates (La, Ce, Nd, Sm, Y), pure vanadium and niobium
(V, Nb), Corning glass (Th and U), sphalerite (Zn), pyrite (S), galena (Pb), sodium chloride
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(Cl), and pollucite (Cs). The Kα, Lα, or Mα lines were used for calibration, according to the
element. Further analytical details can be found in [6].

Fourteen samples from the Njimom area were analyzed for whole-rock major and
trace element (including rare earth element) concentrations at Activation Laboratories
(Actlabs), Ancaster, Ontario (Canada). Rock powders were mixed with fluxes lithium
metaborate and lithium tetraborate and fused in an induction furnace. The molten samples
were immediately poured into a solution of 5% nitric acid containing an internal standard
and mixed continuously until completely dissolved (~30 min). The samples were analyzed
for major oxides and selected trace elements (Ba, Be, Sc, Sr, V, Y, and Zr) on a combination
simultaneous/sequential Thermo Jarrell-Ash ENVIRO II ICP or a Varian Vista 735 ICP.
Calibration was performed using seven USGS and CANMET certified reference materials.
One of the seven standards was used during the analysis for every group of ten samples.
The fused sample solutions were diluted and analyzed by a Perkin Elmer Sciex ELAN 6000,
6100 or 9000 ICP/MS for other trace elements (Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Nb, Mo,
Sn, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Bi, Th, and U).
Three blanks and five control samples (three before the sample group and two after) were
analyzed per group of samples. Duplicates were fused and analyzed after every 10 samples.
Analyses of international standards are reported in Table 4. The weight loss on ignition was
determined with gravimetric techniques, by firing at 1000 ◦C small aliquots of powders
previously dried at 110 ◦C overnight. Major and trace element (including the rare earth
element) data are presented in Table 4.
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Table 1. Representative chemical analyses (in wt.%) and structural formulas of clinopyroxenes of Njimom dykes (western Cameroon).

Sample NK0 NK0 NK0 NK0 NK0 NK0 NK0 NK0 NK0 NK0 NK0 NK2C NK2C

Group dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

Description gm gm gm gm gm gm gm gm gm gm gm gm gm

SiO2 47.73 49.33 50.73 47.07 50.54 50.65 50.37 47.66 49.95 48.97 47.76 46.70 46.10
TiO2 2.35 1.13 1.10 3.29 0.17 0.05 1.25 1.59 0.93 1.22 1.58 2.54 2.77
Al2O3 6.35 2.48 2.41 6.79 1.33 1.38 2.48 4.63 1.79 4.08 5.20 5.84 5.84
FeO 10.75 10.29 10.00 10.32 18.63 17.37 9.90 12.09 12.75 12.40 10.16 9.44 9.23
MnO - 0.73 0.23 0.08 0.89 0.80 0.32 0.46 1.13 0.90 0.54 0.36 -
MgO 11.77 12.54 12.64 11.77 7.80 7.92 12.73 11.35 11.75 10.08 11.80 12.94 12.76
CaO 21.75 21.20 21.73 21.33 21.26 21.91 21.02 21.04 21.31 20.91 20.93 20.40 20.21
Na2O 0.50 0.15 0.51 0.59 0.92 1.01 0.40 0.82 0.40 0.49 0.52 0.53 0.58
Cr2O3 0.15 - - 0.13 - 0.25 - 0.10 0.06 0.13 - - 0.12
V2O3 0.08 - 0.06 0.17 0.10 0.15 0.29 - - 0.10 0.01 0.32 -
sum 101.45 97.86 99.42 101.53 101.63 101.48 98.76 99.74 100.08 99.28 98.51 99.06 97.59
Mg# 66 68 69 67 43 45 70 63 62 59 67 71 71
Si 1.768 1.897 1.912 1.743 1.929 1.928 1.913 1.799 1.893 1.876 1.818 1.760 1.762
AlIV 0.218 0.097 0.081 0.246 0.048 0.048 0.085 0.174 0.089 0.120 0.169 0.222 0.223
Ti 0.066 0.033 0.031 0.092 0.005 0.001 0.036 0.045 0.027 0.035 0.045 0.072 0.080
AlVI 0.059 0.016 0.026 0.051 0.011 0.014 0.026 0.032 −0.009 0.064 0.065 0.037 0.040
Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 0.333 0.331 0.315 0.319 0.595 0.553 0.315 0.382 0.404 0.397 0.323 0.298 0.295
Mn 0.000 0.024 0.007 0.003 0.029 0.026 0.010 0.015 0.036 0.029 0.018 0.012 0.000
Mg 0.650 0.719 0.710 0.650 0.444 0.449 0.721 0.639 0.664 0.576 0.670 0.727 0.727
Ca 0.863 0.873 0.878 0.846 0.869 0.894 0.855 0.851 0.865 0.859 0.854 0.824 0.827
Na 0.036 0.011 0.037 0.042 0.068 0.074 0.030 0.060 0.030 0.036 0.039 0.038 0.043
Cr 0.005 0.000 0.000 0.004 0.000 0.008 0.000 0.003 0.002 0.004 0.000 0.000 0.004
V 0.002 0.000 0.002 0.005 0.003 0.005 0.009 0.000 0.000 0.003 0.000 0.010 0.000
sum 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
Ca 47 45 46 47 45 47 45 45 44 46 46 44 45
Fe * 18 18 17 18 32 30 17 21 22 23 18 17 16
Mg 35 37 37 36 23 23 38 34 34 31 36 39 39

gm = groundmass; Mg# = atomic 100 ×Mg/(Mg + Fe).
Ca, Fe * (Fe + Mn) and Mg in mol%.
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Table 1. Cont.

NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
gm gm gm gm gm gm gm gm gm gm gm gm gm gm

48.73 46.93 47.44 45.20 47.94 46.95 49.02 47.19 48.31 48.52 47.50 49.69 49.67 49.15
1.73 1.93 2.17 3.64 2.74 2.35 1.82 2.28 1.87 2.55 1.72 0.87 0.68 1.98
3.79 4.89 3.96 6.55 5.32 5.06 3.87 4.97 4.00 4.76 4.43 2.16 1.97 4.34

11.03 11.48 10.27 9.23 8.54 10.92 11.77 11.06 10.10 10.09 10.71 10.78 11.29 11.44
0.42 0.12 0.04 0.23 0.19 0.41 - 0.17 0.47 0.07 0.44 0.25 0.17 0.26

11.87 11.88 12.47 12.27 12.81 11.81 12.12 11.43 12.20 12.24 11.79 13.84 13.28 12.47
20.67 19.82 20.61 20.11 20.32 20.32 20.17 19.36 19.79 20.41 20.12 19.85 19.63 20.77
0.52 0.59 0.59 0.58 0.63 0.50 0.45 0.55 0.55 0.31 0.49 0.46 0.29 0.33
0.18 0.58 0.08 0.52 0.43 - 0.21 0.09 - 0.15 - 0.02 0.32 0.14
0.22 0.03 - - 0.09 0.39 0.33 - 0.11 - 0.49 0.42 - 0.02

99.15 98.25 97.62 98.32 99.00 98.71 99.78 97.11 97.41 99.11 97.70 98.32 97.32 100.89
66 65 68 70 73 66 65 65 68 68 66 70 68 66

1.852 1.798 1.821 1.723 1.808 1.792 1.853 1.831 1.861 1.842 1.830 1.889 1.915 1.835
0.139 0.186 0.163 0.264 0.188 0.195 0.141 0.166 0.135 0.162 0.160 0.095 0.076 0.157
0.049 0.056 0.062 0.104 0.078 0.067 0.052 0.067 0.054 0.073 0.050 0.025 0.020 0.056
0.031 0.035 0.016 0.030 0.048 0.033 0.032 0.061 0.047 0.051 0.041 0.001 0.013 0.034
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.350 0.368 0.330 0.294 0.269 0.349 0.372 0.359 0.325 0.320 0.345 0.343 0.364 0.357
0.014 0.004 0.001 0.007 0.006 0.013 0.000 0.006 0.015 0.002 0.014 0.008 0.006 0.008
0.673 0.678 0.713 0.697 0.720 0.672 0.683 0.661 0.701 0.693 0.677 0.784 0.763 0.694
0.842 0.814 0.848 0.822 0.821 0.831 0.817 0.805 0.817 0.830 0.831 0.808 0.811 0.831
0.038 0.043 0.044 0.043 0.046 0.037 0.033 0.041 0.041 0.022 0.037 0.034 0.022 0.024
0.005 0.018 0.003 0.016 0.013 0.000 0.006 0.003 0.000 0.005 0.000 0.001 0.010 0.004
0.007 0.001 0.000 0.000 0.003 0.012 0.010 0.000 0.004 0.000 0.015 0.013 0.000 0.001
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

45 44 45 45 45 45 44 44 44 45 44 42 42 44
19 20 17 17 15 19 20 20 18 17 19 18 19 19
36 36 38 38 40 36 36 36 38 38 36 40 39 37
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Table 1. Cont.

NK2C NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6
dyke in

mylonites
dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites dyke in granites

gm gm gm gm gm gm gm gm gm gm gm gm gm

46.99 42.58 42.41 41.10 42.23 42.27 43.10 43.30 42.18 40.14 41.46 42.08 41.29
2.02 6.10 5.56 6.58 5.28 5.49 5.42 6.12 6.36 6.67 7.24 5.39 6.76
5.13 8.40 8.15 9.15 8.82 8.73 6.79 6.97 8.36 7.33 8.30 7.34 9.27
9.23 12.02 11.54 10.73 10.76 10.81 14.00 13.74 13.08 11.67 11.23 11.28 12.93
0.12 0.19 0.04 - - 0.17 0.35 - 0.17 0.33 0.11 0.05 -

12.31 8.72 8.80 8.42 9.56 10.20 7.82 7.92 8.46 8.34 9.04 8.52 8.52
20.85 21.04 21.38 20.95 22.35 21.69 22.15 21.61 21.34 20.81 21.19 20.68 21.54
0.57 0.61 0.93 0.50 0.53 0.61 0.58 0.43 0.87 0.49 0.88 0.57 0.67
0.00 - - - - 0.31 0.06 0.56 - 0.24 0.11 0.41 0.22
0.49 0.08 0.28 0.61 - 0.30 0.19 0.29 0.11 0.03 0.08 0.13 0.22

97.72 99.75 99.09 98.05 99.52 100.59 100.46 100.94 100.93 96.04 99.63 96.44 101.42
70 56 58 58 61 63 50 51 54 56 59 57 54

1.797 1.636 1.632 1.608 1.612 1.595 1.66 1.66 1.60 1.61 1.59 1.67 1.56
0.189 0.357 0.350 0.393 0.369 0.382 0.32 0.33 0.38 0.38 0.39 0.32 0.42
0.058 0.176 0.161 0.194 0.151 0.156 0.16 0.18 0.18 0.20 0.21 0.16 0.19
0.043 0.023 0.019 0.029 0.028 0.006 −0.02 −0.02 0.00 −0.03 −0.02 0.02 0.00
0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.295 0.386 0.371 0.351 0.344 0.341 0.45 0.44 0.42 0.39 0.36 0.37 0.41
0.004 0.006 0.001 0.000 0.000 0.006 0.01 0.00 0.01 0.01 0.00 0.00 0.00
0.702 0.499 0.505 0.491 0.544 0.574 0.45 0.45 0.48 0.50 0.52 0.50 0.48
0.854 0.866 0.882 0.878 0.914 0.877 0.91 0.89 0.87 0.89 0.87 0.88 0.87
0.043 0.046 0.069 0.038 0.039 0.045 0.04 0.03 0.06 0.04 0.07 0.04 0.05
0.000 0.000 0.000 0.000 0.000 0.009 0.00 0.02 0.00 0.01 0.00 0.01 0.01
0.015 0.003 0.008 0.019 0.000 0.009 0.01 0.01 0.00 0.00 0.00 0.00 0.01
4.000 4.000 4.000 4.000 4.000 4.000 4.00 4.00 4.00 4.00 4.00 4.00 4.00

46 49 50 51 51 49 50 50 49 50 50 50 50
16 22 21 20 19 19 25 25 24 22 21 21 23
38 28 29 29 30 32 25 25 27 28 30 29 27
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Table 2. Representative chemical analyses (in wt.%) and structural formulas of feldspars of Njimom dykes (western Cameroon).

Sample NK2A NK2A NK2A NK2A NK2A NK2A NK2A NK2A NK2A NK2A NK2A

Group dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

Mineral
Name pl pl pl pl pl pl pl pl pl pl pl

Description gm gm gm gm gm gm gm gm gm gm gm

SiO2 53.45 52.66 53.71 51.39 53.49 53.99 52.37 54.22 53.26 52.94 56.05
Al2O3 29.29 27.93 30.20 30.49 29.59 30.11 28.59 29.53 29.17 27.69 27.71
FeO 0.75 0.62 0.45 0.05 0.79 0.55 0.31 0.24 0.80 0.89 0.47
CaO 11.45 11.49 11.93 12.42 12.06 12.02 11.57 11.55 11.59 11.26 9.67
Na2O 4.59 4.09 4.11 3.98 4.46 4.32 4.24 4.48 4.52 4.11 5.21
K2O 0.55 0.36 0.36 0.43 0.55 0.47 0.59 0.44 0.65 0.64 0.61
BaO - 0.05 - - - 0.46 0.21 0.22 0.09 0.17 -
sum 100.1 97.2 100.8 98.8 100.9 101.9 97.9 100.7 100.1 97.7 99.7
An 56 59 60 62 58 58 58 57 56 58 49
Ab 41 38 38 36 39 38 38 40 40 38 48
Or 3 2 2 3 3 4 4 3 4 4 4
Si 9.675 9.858 9.686 9.434 9.611 9.642 9.718 9.774 9.652 9.873 10.158
Al 6.250 6.166 6.420 6.600 6.268 6.338 6.254 6.276 6.231 6.088 5.921
Fe 0.114 0.097 0.069 0.007 0.119 0.083 0.048 0.036 0.121 0.140 0.071
Ca 2.221 2.305 2.306 2.443 2.321 2.301 2.301 2.231 2.250 2.250 1.877
Na 1.612 1.485 1.436 1.416 1.554 1.497 1.525 1.566 1.588 1.485 1.831
K 0.128 0.085 0.083 0.100 0.127 0.107 0.139 0.101 0.151 0.151 0.142
Ba 0.000 0.003 0.000 0.000 0.000 0.033 0.015 0.016 0.007 0.012 0.000
sum 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000

pl = plagioclase; alk feld = alkali feldspar; gm = groundmass. An, Ab and Or in mol%.
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Table 2. Cont.

NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C NK2C
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
pl pl pl pl alk feld pl alk feld pl pl alk feld pl alk feld

gm gm gm gm gm gm gm gm gm gm gm gm

54.68 53.00 52.21 51.13 64.98 53.91 62.36 60.08 54.23 60.73 52.10 64.14
27.79 29.10 30.66 29.48 21.15 30.58 20.07 25.09 29.69 19.83 30.04 20.56
0.59 0.62 0.26 0.38 0.62 0.74 0.58 0.54 0.41 0.32 0.70 0.36
10.87 12.06 12.04 12.13 1.79 12.39 1.03 6.73 11.15 0.64 11.81 0.87
4.83 4.20 4.09 3.92 8.16 4.51 4.81 6.50 5.00 4.36 3.99 5.71
0.59 0.34 0.59 0.52 3.12 0.58 8.35 1.39 0.61 8.27 0.53 7.35
0.40 - 0.18 0.18 - 0.62 2.64 0.27 - 3.64 - 1.86
99.8 99.3 100.0 97.7 99.8 103.3 99.8 100.6 101.1 97.8 99.2 100.85
53 60 60 61 9 58 5 33 53 3 60 4
43 38 37 36 73 38 42 58 43 40 37 50
4 2 4 3 18 4 53 9 3 57 3 46

9.954 9.696 9.475 9.510 11.587 9.492 11.482 10.747 9.684 11.513 9.546 11.579
5.965 6.277 6.558 6.464 4.447 6.348 4.356 5.291 6.250 4.433 6.487 4.376
0.090 0.094 0.040 0.059 0.092 0.109 0.089 0.082 0.061 0.051 0.107 0.055
2.120 2.365 2.340 2.417 0.343 2.337 0.203 1.290 2.133 0.130 2.318 0.169
1.705 1.488 1.438 1.412 2.821 1.541 1.719 2.254 1.731 1.602 1.418 1.997
0.137 0.079 0.137 0.124 0.711 0.131 1.961 0.317 0.140 2.001 0.124 1.693
0.029 0.000 0.013 0.013 0.000 0.043 0.191 0.019 0.000 0.271 0.000 0.131

20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
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Table 2. Cont.

NK2C NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6 NK6
dyke in

mylonites
dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

pl pl alk feld pl pl pl pl pl pl pl pl pl
gm gm gm gm gm gm gm gm gm gm gm gm

54.00 53.16 65.78 53.38 53.50 54.04 52.12 53.73 56.82 62.83 53.42 53.92
27.45 29.44 19.04 29.30 29.42 28.14 29.97 28.73 28.92 21.58 29.31 29.16
0.64 0.99 0.41 0.47 0.87 0.93 1.24 0.44 0.53 0.45 1.37 0.75
9.22 12.57 0.57 11.60 12.13 10.16 12.54 11.26 10.98 3.20 12.14 11.38
5.29 4.27 5.49 4.37 4.19 4.80 3.99 4.77 5.05 8.24 4.29 4.31
0.71 0.11 8.76 0.41 0.23 0.30 0.40 0.49 0.50 2.39 0.34 0.41
0.16 - 0.45 0.05 0.14 0.10 0.49 0.53 0.06 0.89 0.40 0.18
97.46 100.54 100.50 99.57 100.47 98.48 100.76 99.96 102.86 99.58 101.27 100.12

47 62 3 58 61 53 61 54 53 15 59 58
49 38 47 40 38 45 35 42 44 70 38 40
5 1 50 3 2 2 3 4 3 15 3 3

10.000 9.613 11.833 9.727 9.694 9.951 9.443 9.759 10.004 11.275 9.623 9.797
5.993 6.277 4.039 6.296 6.284 6.110 6.403 6.152 6.004 4.566 6.224 6.246
0.099 0.149 0.062 0.072 0.131 0.142 0.188 0.066 0.078 0.067 0.207 0.113
1.829 2.436 0.109 2.264 2.356 2.005 2.435 2.191 2.072 0.615 2.343 2.215
1.899 1.498 1.916 1.543 1.472 1.713 1.403 1.680 1.725 2.866 1.498 1.519
0.168 0.026 2.010 0.095 0.052 0.071 0.094 0.114 0.113 0.548 0.078 0.096
0.011 0.000 0.032 0.003 0.010 0.007 0.035 0.038 0.004 0.063 0.028 0.013

20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
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Table 2. Cont.

NK6 NK6 NK6 NK6
dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

pl alk feld pl alk feld
gm gm gm gm

55.74 66.85 65.47 65.34
29.34 20.08 21.65 20.01
0.94 0.43 0.06 0.52
11.95 1.49 2.37 1.78
4.60 8.51 8.18 7.64
0.40 3.47 2.44 3.83
0.23 0.06 0.20 0.21

103.21 100.90 100.36 99.33
57 7 12 9
40 73 73 68
3 20 15 23

9.826 11.786 11.627 11.768
6.098 4.173 4.532 4.249
0.139 0.063 0.009 0.078
2.258 0.282 0.450 0.343
1.572 2.911 2.815 2.667
0.091 0.780 0.553 0.879
0.016 0.004 0.014 0.015

20.000 20.000 20.000 20.000
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Table 3. Representative chemical analyses (in wt.%) and structural formulas of chromiferous spinels, magnetites, and ilmenites of Njimom dykes (western Cameroon).

Sample NK6 NK6 NK6 NK2C NK2C NK2C NK2C NK6 NK6 NK6

Group dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
granites

dyke in
granites

dyke in
granites

Mineral Name cr-sp cr-sp cr-sp mgt mgt mgt mgt mgt mgt mgt
Description incl incl incl gm gm gm gm gm gm gm

TiO2 3.16 12.40 3.36 24.63 21.14 25.36 19.77 20.37 20.37 20.59
Al2O3 24.30 9.90 25.06 2.06 0.16 0.00 4.23 3.83 3.06 4.41
FeO 29.57 54.97 31.14 68.64 74.02 68.22 64.04 67.72 67.10 64.55
MnO 0.40 - 0.67 0.51 0.48 0.88 0.86 1.90 1.71 1.51
MgO 11.43 3.57 11.88 0.19 - - 0.10 - 0.40 0.58
Cr2O3 27.18 18.30 26.58 0.20 0.71 0.55 7.21 1.66 2.89 2.97
V2O3 0.67 0.55 0.86 0.66 0.59 1.10 1.05 1.03 0.80 0.59
NiO - - - - - - 0.55 - 0.56 0.99
sum 96.70 99.70 99.54 96.90 97.10 96.10 97.80 96.50 96.88 96.21
Fe2O3 wt% 10.65 17.14 12.08 17.28 26.48 16.82 16.77 21.51 21.47 18.73
FeO wt% 19.98 39.55 20.27 53.09 50.19 53.09 48.95 48.37 47.77 47.70
sum 97.8 101.4 100.8 98.6 99.8 97.8 99.5 98.7 99.0 98.1
Ti 0.599 2.567 0.619 0.697 0.601 0.732 0.550 0.573 0.572 0.579
Al 7.225 3.212 7.227 0.091 0.007 0.000 0.184 0.169 0.135 0.194
Fe3+ 2.022 3.549 2.225 0.489 0.753 0.486 0.467 0.605 0.603 0.527
Fe2+ 4.215 9.103 4.148 1.670 1.585 1.703 1.513 1.513 1.492 1.491
Mn 0.085 0.000 0.138 0.016 0.015 0.029 0.027 0.060 0.054 0.048
Mg 4.298 1.464 4.333 0.011 0.000 0.000 0.005 0.000 0.022 0.032
Cr 5.420 3.983 5.142 0.006 0.021 0.017 0.211 0.049 0.085 0.088
V 0.135 0.122 0.168 0.020 0.018 0.034 0.031 0.031 0.024 0.018
Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.017 0.030
sum 24.000 24.000 24.000 3.000 3.000 3.000 3.004 3.000 3.004 3.007
Ulv - - - 77 62 75 81 71 71 76
Ilm - - - - - - - - - -
Mg# 50 14 51 - - - - - - -
Cr# 43 55 42 - - - - - - -

Chromiferous spinels structural formulas were calculated on the basis of 32 oxygens and 24 cations; magnetites were calculated on the basis of 4 oxygens and 3 cations; ilmenites were calculated
on the basis of 3 oxygens and 2 cations; Cr# = atomic 100 × Cr/(Cr + Al), Mg# atomic 100 ×Mg/(Mg + Fe2+).
Ulv = ulvöspinel mol.%; Ilm = ilmenite mol.%; gm = groundmass; incl = inclusion; cr-sp = chromiferous spinel; mgt = magnetite; ilm = ilmenite.
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Table 3. Cont.

NK6 NK6 NK6 NK6 NK0 NK0 NK0 NK2A NK2A NK2A NK2A
dyke in
granites

dyke in
granites

dyke in
granites

dyke in
granites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

mgt mgt mgt mgt ilm ilm ilm ilm ilm ilm ilm
gm gm gm gm gm gm gm gm gm gm gm

24.02 22.90 26.06 24.65 49.46 51.46 48.97 47.36 49.79 50.41 50.34
2.75 2.86 2.71 2.97 0.14 0.29 0.00 0.65 0.00 0.09 0.37

66.83 65.87 65.65 67.52 42.94 45.06 43.89 46.73 45.81 44.56 45.35
1.61 2.30 1.42 1.79 3.95 4.21 4.63 1.31 1.06 2.24 1.14
0.35 - - - 0.17 - - - 0.29 - 0.04
0.72 2.60 0.13 0.62 0.06 - - 0.10 0.60 0.12 -
0.36 0.60 0.85 - 0.04 0.06 0.92 0.66 0.07 0.12 0.88
0.00 - 0.54 - - - - 0.33 0.22 0.07 0.05

96.64 97.14 97.36 97.55 96.78 101.07 98.42 97.15 97.84 97.62 98.15
17.35 17.39 13.20 16.74 3.07 3.36 5.04 6.07 2.90 1.65 1.43
51.22 50.22 53.77 52.46 40.18 42.03 39.36 41.27 43.20 43.08 44.06
98.4 98.9 98.7 99.2 97.1 101.4 98.9 97.8 98.1 97.8 98.3

0.678 0.645 0.735 0.691 0.967 0.964 0.942 0.921 0.964 0.980 0.971
0.121 0.126 0.120 0.130 0.004 0.008 0.000 0.020 0.000 0.003 0.011
0.490 0.490 0.372 0.469 0.060 0.063 0.097 0.118 0.056 0.032 0.028
1.607 1.572 1.686 1.635 0.873 0.875 0.842 0.892 0.929 0.931 0.945
0.051 0.073 0.045 0.056 0.087 0.089 0.100 0.029 0.023 0.049 0.025
0.020 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.011 0.000 0.001
0.021 0.077 0.004 0.018 0.001 0.000 0.000 0.002 0.012 0.002 0.000
0.011 0.018 0.025 0.000 0.001 0.001 0.019 0.014 0.001 0.003 0.018
0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.007 0.005 0.002 0.001
3.000 3.000 3.004 3.000 2.000 2.000 2.000 2.002 2.002 2.001 2.000

77 78 84 79 - - - - - - -
- - - - 97 97 95 94 97 98 99
- - - - - - - - - - -
- - - - - - - - - - -
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Table 3. Cont.

NK2A NK2A NK2A NK2C NK2C NK2C NK2C
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
dyke in

mylonites
ilm ilm ilm ilm ilm ilm ilm
gm gm gm gm gm gm gm

48.63 49.61 49.91 50.20 49.53 48.67 49.13
0.20 0.00 0.20 0.14 0.10 0.04 0.15

46.53 46.34 45.62 44.94 45.91 47.85 46.17
1.43 1.78 0.87 1.27 0.87 0.83 1.27
0.00 0.21 0.12 0.43 0.06 0.24 -
0.00 0.24 0.21 - 0.10 0.39 0.13
0.47 0.18 - 0.54 0.31 - 0.18
0.03 - 0.28 0.81 0.18 - 0.51

97.29 98.36 97.21 98.33 97.05 98.02 97.54
4.71 4.33 2.02 2.05 2.60 5.94 3.63

42.29 42.45 43.80 43.10 43.56 42.51 42.91
97.8 98.8 97.4 98.5 97.3 98.6 97.9

0.946 0.954 0.973 0.967 0.968 0.938 0.956
0.006 0.000 0.006 0.004 0.003 0.001 0.005
0.092 0.083 0.039 0.040 0.051 0.114 0.071
0.915 0.908 0.949 0.923 0.946 0.911 0.928
0.031 0.039 0.019 0.028 0.019 0.018 0.028
0.000 0.008 0.005 0.017 0.002 0.009 0.000
0.000 0.005 0.004 0.000 0.002 0.008 0.003
0.010 0.004 0.000 0.011 0.006 0.000 0.004
0.001 0.000 0.006 0.017 0.004 0.000 0.011
2.000 2.000 2.002 2.006 2.001 2.000 2.004

- - - - - - -
95 96 98 98 97 94 96
- - - - - - -
- - - - - - -
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Table 4. Major (wt.%) and trace (ppm) element data for Njimom dykes (western Cameroon).

Sample NK0 NK1 NK2A NK2B NK2C NK2D NK2E NK2F NK3 NK4

Group dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

dyke in
mylonites

Rock Type haw haw alk bas alk bas alk bas alk bas alk bas alk bas haw alk bas

SiO2 48.23 51.19 46.32 47.87 47.07 46.08 47.66 46.79 51.32 49.54
TiO2 1.75 1.73 1.90 1.78 1.91 1.85 1.94 1.93 1.67 1.60
Al2O3 16.24 15.51 14.80 14.94 15.28 15.16 15.57 15.27 14.95 14.80
Fe2O3tot 11.42 10.06 10.89 11.13 11.18 10.72 11.59 11.45 9.96 10.00
MnO 0.17 0.14 0.14 0.15 0.17 0.15 0.14 0.17 0.15 0.15
MgO 4.19 4.23 5.88 6.61 6.44 6.70 6.65 6.50 4.39 4.67
CaO 6.16 6.15 7.98 7.33 7.37 7.36 6.59 7.57 6.43 6.79
Na2O 3.70 2.49 2.71 3.03 3.29 3.35 3.08 3.12 3.11 2.65
K2O 2.91 3.67 1.31 1.90 2.04 1.97 1.81 1.84 2.77 2.97
P2O5 0.84 0.60 0.56 0.48 0.59 0.52 0.59 0.61 0.59 0.51
LOI 3.34 4.83 6.05 4.55 5.29 6.59 4.72 5.26 4.34 4.95
Total 98.95 100.60 98.54 99.76 100.63 100.45 100.34 100.51 99.68 98.62
Be 3 2 1 1 2 2 1 1 2 2
V 96 118 149 144 151 148 153 156 119 122
Cr 70 90 170 170 170 170 180 170 100 100
Co 33 29 38 40 39 39 40 39 30 30
Ni 30 40 90 110 100 110 100 100 70 50
Cu 50 40 50 50 50 50 60 50 50 40
Zn 100 100 100 90 100 90 100 90 110 100
Ga 18 20 17 17 18 17 18 17 20 20
Rb 75 122 41 54 53 48 47 54 107 94
Sr 578 475 437 473 505 513 490 493 449 481
Y 35 34 28 26 28 27 27 29 32 31
Zr 295 278 211 216 221 209 222 216 286 252
Nb 51 40 27 26 28 27 28 27 40 35
Sn 3 3 2 2 1 2 2 2 3 3
Cs < 0.5 3.6 1.4 1.2 1.2 1 0.9 1.2 2.2 4
Ba 785 935 402 609 694 710 669 591 784 741
La 52 50.5 31 30 32.1 30.3 30.5 30.2 48.4 51.8
Ce 104 104 66.4 63.9 67.7 64.9 66 65.7 101 107
Pr 12.1 12.6 8.39 7.83 8.51 8.07 8.25 8.17 11.9 12.7
Nd 46.3 47.5 33.4 31.6 34.3 32 33.1 32.7 45.3 47.7
Sm 8.7 9.4 7.2 6.7 7.4 6.7 6.9 7 9 9.7



Geosciences 2022, 12, 12 18 of 29

Table 4. Cont.

Eu 2.29 2.13 1.95 1.91 2.02 1.96 1.87 2.01 2.12 1.93
Gd 7.90 8.10 6.80 6.60 6.60 6.20 6.30 6.80 7.70 8.00
Tb 1.10 1.20 1.00 0.90 1.00 1.00 1.00 1.00 1.20 1.20
Dy 6.80 7.00 6.10 4.90 6.10 5.60 5.70 6.00 6.60 7.20
Ho 1.30 1.30 1.20 1.00 1.20 1.10 1.10 1.10 1.30 1.40
Er 3.60 3.60 3.30 3.00 3.10 2.90 3.10 3.10 3.50 3.80
Tm 0.50 0.51 0.44 0.38 0.46 0.41 0.42 0.42 0.47 0.54
Yb 3.30 3.40 2.80 2.50 3.00 2.60 2.90 2.90 3.10 3.40
Lu 0.51 0.52 0.39 0.39 0.44 0.39 0.42 0.43 0.51 0.53
Hf 6.1 6.2 4.9 4.4 4.7 4.4 4.7 4.6 6.2 6.0
Ta 3.5 2.8 1.8 1.7 1.9 1.8 1.8 1.7 2.7 2.8
Pb 6 7 < 5 < 5 < 5 < 5 < 5 < 5 6 6
Th 5 8 2.7 2.5 2.6 2.6 2.5 2.5 7.7 9.1
U 1.4 1.6 0.6 0.6 0.7 0.6 0.6 0.6 1.5 1.7

Notes: Major oxides are in weight percent (wt.%) and trace elements in parts per million (ppm). LOI is loss in weight on ignition; alk bas, alkali basalt; haw, hawaiite.
“Cert.” are the recommended values and “Meas.” the measured values on USGS and CANMET reference materials.

NK5 NK6 NK7 NK8 W-2a Meas W-2a Cert SY-4 Meas SY-4 Cert JR-1 Meas JR-1 Cert
dyke in

mylonites
dyke in
granites

dyke in
granites dyke in granites

alk bas alk bas alk bas alk bas

51.43 42.18 41.98 43.73 52.48 52.40 49.71 49.90 - -
1.61 2.24 2.31 2.15 1.06 1.06 0.29 0.29 - -

15.02 12.85 13.44 12.20 15.55 15.40 20.35 20.69 - -
9.97 10.78 10.74 12.49 10.77 10.70 6.06 6.21 - -
0.14 0.20 0.16 0.19 0.17 0.16 0.11 0.11 - -
4.25 5.37 6.58 8.45 6.25 6.37 0.51 0.54 - -
5.89 13.94 11.91 8.96 11.03 10.90 8.14 8.05 - -
2.42 2.47 2.69 2.52 2.23 2.14 6.96 7.10 - -
2.55 0.93 1.06 0.98 0.62 0.63 1.66 1.66 - -
0.57 0.31 0.38 0.32 0.13 0.13 0.13 0.13 - -
4.49 9.21 9.16 8.24 - - - - - -

98.33 100.48 100.42 100.23 100.29 99.89 93.91 94.68 - -
2 2 2 1 < 1 1.3 3 2.6 - -

113 208 215 205 266 262 9 8 - -
90 260 270 280 90 92 - - - -
29 51 54 53 43 43 - - - -
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Table 4. Cont.

40 210 170 230 80 70 - - < 20 1.67
40 60 70 60 110 110 - - < 10 2.68

100 110 120 100 80 80 - - 30 30.6
20 18 19 17 18 17 - - 15 16.1
96 18 22 22 20 21 - - 252 257

468 683 608 528 200 190 1194 1191 - -
32 18 21 17 20 24 117 119 - -

249 130 128 123 95 94 538 517 - -
35 26 28 25 - - - - 15 15.2
3 1 2 1 - - - - 3 2.86
4 2.8 3.5 4.9 - - - - 20.6 20.8

725 268 263 256 173 182 348 340 - -
50.6 19.3 21.8 18.1 10.1 10 - - 19 19.7
105 38.1 43.7 36.7 24.3 23 - - 44.9 47.2
12.5 4.63 5.36 4.46 - - - - 5.6 5.58
47.1 18.4 21.9 18.2 13.2 13 - - 21.9 23.3
9.3 4.2 5.3 4.2 3.4 3.3 - - 5.5 6.03
1.89 1.58 1.79 1.51 - - - - 0.27 0.3
8.00 4.40 5.20 4.40 - - - - 5.5 5.06
1.20 0.70 0.80 0.70 0.6 0.63 - - 1.1 1.01
7.10 4.00 4.40 3.70 - - - - 6 5.69
1.40 0.70 0.80 0.70 0.8 0.76 - - - -
3.70 2.00 2.20 1.90 - - - - - -
0.51 0.25 0.30 0.27 - - - - 0.62 0.67
3.30 1.50 1.80 1.60 2.1 2.1 - - 4.6 4.55
0.50 0.23 0.25 0.23 0.31 0.33 - - 0.7 0.71
6.0 2.9 2.9 2.8 - - - - 4.4 4.51
2.8 1.6 1.7 1.5 0.5 0.5 - - 2 1.86
6 <5 <5 <5 - - - - 18 19.3

9.1 2.1 2.2 2.1 2.4 2.4 - - 25.4 26.7
1.8 0.6 0.6 0.5 0.5 0.53 - - 8.6 8.88
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5. Results
5.1. Mineral Chemistry
5.1.1. Pyroxenes

Clinopyroxene is a typical groundmass phase of Njimom dykes. It is diopside/salite
(Ca49–51Fe19–20Mg29–32; Table 1; Figure 5a) in the dyke NK6 that intrudes the Precambrian
granites (Mg# = 50–59, where Mg# = atomic Mg × 100/(Mg + Fe + Mn)). TiO2 and Al2O3
contents range from 5.28–6.76 wt.% and from 6.79 to 9.27 wt.%, respectively (Figure 5b,c).
Clinopyroxene of the dykes (NK0 and NK2C) that intrude the Precambrian mylonitic
gneisses is diopside and augite with rare hedenbergite (Ca42–47Fe18–30Mg23–40, Mg# = 59–73;
Figure 5a). The clinopyroxenes of the dykes NK0 and NK2C have less TiO2 and Al2O3
contents compared to the clinopyroxenes of the dyke NK6. The clinopyroxene compositions
are thus highly distinctive of the different magma types (Figure 5b,c).
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Figure 5. (a) Pyroxene compositions projected in the Ca-Mg-Fe diagram for the Njimom dykes. The
data of clinopyroxenes of basaltic dykes from the Kekem, Dschang, and Manjo [5–7] are shown for
comparison. (b) Ti vs. Mg (in apfu; atoms per formula unit) for Njimom clinopyroxenes. (c) AlIV vs. Mg
(in apfu) for Njimom clinopyroxenes.

5.1.2. Feldspars

Plagioclase in the dyke NK6 is labradorite (An53–62) and is accompanied by ground-
mass anorthoclase and minor sodic sanidine (Table 2; Figure 6). In the dykes NK2A and
NK2C, plagioclase ranges from An62 to An33 (Figure 6). Anorthoclase and sodic sanidine
have also been found in the groundmass.



Geosciences 2022, 12, 12 21 of 29Geosciences 2022, 12, x FOR PEER REVIEW 22 of 32 
 

 

 
Figure 6. Feldspar compositions observed in the Njimom dykes. 

5.1.3. Oxides 
Cr-rich spinel has been found as inclusions in altered olivine in the dyke NK6 (Figure 

7). The Cr# (100 × Cr/(Cr + Al) in atoms) and Mg# (100 × Mg/(Mg + Fe2+ in atoms) range 
from 42 to 55 from 14 to 51, respectively (Table 3). These spinels clearly have chemical 
composition different from spinels of Kekem dykes [5]. Titaniferous magnetite and ilmen-
ite are the main oxides found in the Njimom dykes. Titaniferous magnetite in the dyke 
NK6 and NK2C has 62–84 mol% ulvöspinel (Table 3). Ilmenite is compositionally less var-
iable than titaniferous magnetite (ilm94–99). 

 
Figure 7. Chemical variations of chromium-rich spinels in the Njimom dykes. The field of spinels of 
the Kekem dykes is also shown [5]. 

5.2. Whole-Rock Geochemistry 
The Njimom dykes described above range from alkali basalt through hawaiite to 

mugearite on the total alkali vs silica diagram from [18] (Figure 8). The variability in major 
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Figure 6. Feldspar compositions observed in the Njimom dykes.

5.1.3. Oxides

Cr-rich spinel has been found as inclusions in altered olivine in the dyke NK6 (Figure 7).
The Cr# (100 × Cr/(Cr + Al) in atoms) and Mg# (100 ×Mg/(Mg + Fe2+ in atoms) range
from 42 to 55 from 14 to 51, respectively (Table 3). These spinels clearly have chemical
composition different from spinels of Kekem dykes [5]. Titaniferous magnetite and ilmenite
are the main oxides found in the Njimom dykes. Titaniferous magnetite in the dyke NK6
and NK2C has 62–84 mol% ulvöspinel (Table 3). Ilmenite is compositionally less variable
than titaniferous magnetite (ilm94–99).
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Figure 7. Chemical variations of chromium-rich spinels in the Njimom dykes. The field of spinels of
the Kekem dykes is also shown [5].

5.2. Whole-Rock Geochemistry

The Njimom dykes described above range from alkali basalt through hawaiite to
mugearite on the total alkali vs silica diagram from [18] (Figure 8). The variability in
major element chemistry of the Njimom dykes could be the result of secondary or deu-
teric alteration of the rocks. Some care must be taken in interpreting the chemical data,
for alteration has variably but visibly affected all the samples. Like hand specimen and
petrographic observations indicate that some Njimom samples are altered indicating that
their compositions may have been modified by late- or post-crystallization fluid–rock
interactions. Alteration is reflected in a very general way in LOI (loss on ignition) values,
which range widely from 3.34 to 9.21 wt.% in the mafic dykes. Correlations between Ca and
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more alteration-resistant elements such as Ti or Zr are poor, suggesting that Ca contents
have been affected significantly in some dykes. However, the alteration typically has little
effect on the immobile trace elements (e.g., [19,20]). For these reasons, in this study we
use only the alteration-resistant elements (Ti, Zr, Nb, Y, Th, and REE) and their ratios for
geochemical interpretations. To classify the mafic volcanic rocks, we use the incompatible
trace-element classification scheme for altered volcanic rocks (Figure 9: [21]), which indi-
cates that Njimom samples are alkaline basalts and hawaiites. Major and trace element
contents of dykes from the Njimom area are listed in Table 4. The major element analyses
are recalculated to 100 wt.% LOI-free. The dykes that cross-cut the Precambrian granites
have SiO2 contents between 46.0 and 47.5 wt.%, TiO2 between 2.3 and 2.5 wt.% and moder-
ate compatible trace element concentrations (e.g., Cr = 260–280 ppm; Ni = 170–230 ppm).
MgO varies from 5.9 to 9.2 wt.% and Mg# (Mg# = Mg × 100/(Mg + Fe2+ )) from 53 to 60
indicating that the samples moderately evolved. In contrast, the dykes that cross-cut
the Precambrian mylonitic gneisses are more evolved. They have higher SiO2 contents
(49.1–54.8 wt.%) and lower TiO2 (1.7–2.0 wt.%), MgO (4.4–7.1 wt.%; Mg# = 45–58), and
compatible trace element concentrations (e.g., Cr = 70–180 ppm; Ni = 30–110 ppm). Major
and trace element variations, using Zr as a differentiation index, are shown in Figure 10.
The data for the two groups of dykes identified in the Njimom area plot in distinct fields
in most major and trace element variation diagrams, particularly in the SiO2, TiO2, Nb,
Y, and REE (Figure 10). The dykes that cross-cut the Precambrian granites (Figure 11a)
are moderately light lanthanide element (LREE) enriched (Lan = 58 to 70 and Lan/Ybn
from 7.6 to 8.7, the subscript “n” means chondrite normalized). The dykes that intrude
the Precambrian mylonitic gneisses are variably LREE enriched (Lan/Ybn = 7.2–10.6) and
show small negative anomalies in Eu (Eun/Eu* = 0.67–0.92, where Eun is chondrite nor-
malized europium and Eu* = (Smn × Gdn)0.5; Figure 11b). Primitive mantle-normalized
multielement patterns for dykes that intrude the granites have marked peaks in Sr are
and smoothly decreasing normalized abundances from Nb to Lu (Figure 11c). Primitive
mantle-normalized incompatible element patterns for dykes that intrude the mylonites
show marked troughs at Th and Ti and weak troughs at Nb and Sr (Figure 11d).
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these dykes show small negative Nb anomalies on the primitive mantle-normalized multi-
element patterns (Figure 11d), reflecting small crustal contamination. In contrast, the 
dykes that cross-cut the granites show higher Nb/U (43.3–50.0) and lower Th/Nb (~0.08) 
and La/Nb (0.7–0.8) (Figure 12). These values are close to those of MORB and OIB sug-
gesting no crustal contamination. Interestingly, the same observations can be made for 
other mafic dykes coming from the southern continental part of the CVL [5–7], thus sug-
gesting that these mafic dykes remained preserved from crustal influence during their 
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Figure 11. (a,b) Chondrite-normalized REE diagrams for Njimom dykes. The chondrite values used
for normalization are those of [24]. Promethium is interpolated. N-MORB and E-MORB and OIB
patterns are plotted with the values of [25]. (c,d) Primitive mantle-normalized incompatible element
diagrams for Njimom dykes. Primitive mantle values are from [26]. Data from Manjo [6]; Kekem [5];
Bangoua, Maham, Dschang, and Kendem [7] are shown for comparison.



Geosciences 2022, 12, 12 25 of 29

6. Discussion
6.1. Crustal Contamination

The parental melts of the Njimom dykes must have experienced some differentia-
tion before intruding the upper crust, as reflected in the evolved compositions of all the
samples of this study. The Njimom dykes were derived by fractional crystallization of
olivine, clinopyroxene, and plagioclase from Mg-rich basaltic melts, consistent with the
petrographic assemblages observed in these dykes and their low magnesium numbers
(45–60). Trace element ratios such as Nb/U, Th/Nb, and La/Nb have been used to assess
the role of crustal contamination in Njimom dykes because they are not strongly modified
from their source material by partial melting or fractional crystallization processes. The
continental crust has low Nb/U (4.4–25) and high La/Nb (1.6–2.6) and Th/Nb (0.24–0.88)
ratios (e.g., [27]). Ocean island basalt (OIB) and mid-ocean ridge basalt (e.g., E-MORB
and N-MORB) are both characterized by high Nb/U (>45) and low La/Nb (0.8–1.1) and
Th/Nb (<0.1) ratios (e.g., [25,28]). In Njimom area, four dykes that intrude mylonites have
Nb/U (19.4–26.7), Th/Nb (0.19–0.26), and La/Nb (1.2–1.5) ratios suggesting small crustal
input. Furthermore, these dykes show small negative Nb anomalies on the primitive
mantle-normalized multi-element patterns (Figure 11d), reflecting small crustal contam-
ination. In contrast, the dykes that cross-cut the granites show higher Nb/U (43.3–50.0)
and lower Th/Nb (~0.08) and La/Nb (0.7–0.8) (Figure 12). These values are close to those
of MORB and OIB suggesting no crustal contamination. Interestingly, the same observa-
tions can be made for other mafic dykes coming from the southern continental part of
the CVL [5–7], thus suggesting that these mafic dykes remained preserved from crustal
influence during their evolution.
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Figure 12. La/Nb vs Nb/U for the Njimom dykes. Data for upper continental crust (UCC) and
lower continental (LCC) (star symbols) are from [27]. Data for oceanic basalts (OIB) and MORBs
are from [25,28]. Data from Manjo [6]; Kekem [5]; Bangoua, Maham, Dschang, and Kendem [7] are
shown for comparison.
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6.2. Petrogenesis

Two different dykes groups are present in the Njimom area. There are sufficient
geochemical and mineralogical evidences to deduce that the dykes that cross-cut the
granites and mylonites are not comagmatic. For example, the different TiO2 and Al2O3
contents in the clinopyroxenes of the Njimom dykes, as well as their different incompatible
element patterns (Figure 11) cannot be produced by closed-system crystal fractionation of
olivine, plagioclase, clinopyroxene, and opaque oxides.

Because none of the compositions observed in Njimom area can be considered as a
mantle-derived primary magma, it is likely that multiple saturation of Cr-spinel, olivine,
clinopyroxene, and plagioclase occurred before the emplacement of all the magmas to shal-
low crustal levels. Therefore, we have modelled the extent of partial melting utilizing ratios
of elements that are not modified by low to moderate fractionation of the phases mentioned
in the preceding. In the Nd/Sm versus Tb/Yb diagram (Figure 13), the Njimom appear to
have formed by small-degree melts (2–5%) of sources slightly enriched in incompatible ele-
ments in the spinel stability field. The melts from garnet-bearing sources could be present
only in very minor amounts. The mildly enriched geochemical characteristics of the Njimom
dykes are evident from ratios of Zr/Nb (5–8), Zr/Y (6–9), Nb/Yb (9–17), and Ti/V (68–114)
that are similar to the values of (OIB) and E-MORB worldwide (e.g., [25]). Njimom dykes
plot in the OIB field in the Ti-V diagram (Figure 14). The chemical composition of the
Nijmom dykes is generally similar to that observed in Kendem, Dschang, Bangangte, and
Manjo dyke swarms, particularly in the abundance of relatively immobile incompatible
elements. These similarities warrant that broadly similar mantle sources, possibly melted
in different degrees, and petrogenetic histories were involved in the petrogenesis of the
Paleozoic–Mesozoic Cameroon dykes. From the genetic point of view, the geochemical
characteristics of the Paleozoic–Mesozoic Cameroon dykes indicate that they cannot be
considered as typical of plume-derived melts. We therefore argue that the genesis of these
dykes could be referred to as passive rifting and melting of the shallow lithosphere, possibly
followed by crustal contamination of the mafic magmas during the ascent through the
Precambrian crust. This intracontinental extensional setting could have been caused by the
opening of the South Atlantic Ocean.
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6.3. Geodynamic Implications

The Njimom mafic dykes have a strong NW-SE preferred orientation. In the Riedel
fracture model for lineaments of Cameroon [8,9], it corresponds to the direction of major
σ1 regional constraints. Previous studies on basaltic dykes in the southern continental part
of the CVL record measurements of ca. 30 dykes (e.g., [9,32,33]). Two dykes at Kendem
(near Mamfe) show a similar orientation. The Ar/Ar age of 192.10 ± 7.45 Ma recorded in
Kendem (the lonely existing age for basaltic dykes of the southern continental part of the
CVL) is older compared to the age of 125 million years considered as the beginning of the
opening of the South Atlantic Ocean. Ar/Ar age significantly older (421.3 ± 3.5 Ma) has
been obtained for a basaltic dyke outcropping along the ‘’Dschang’s cliff’ road at ca. 10 km
to the west of the city of Dschang [7]. On a regional basis, the NW-SE direction is also
known as the Benue direction in Cameroon which is linked to the Benue Through aulacogen
initiated during the opening of the southern Atlantic (e.g., [34]). Alkaline magmatism and
abundance of crustal xenoliths in some studied dykes can thus be linked to the paroxysmal
stage preceding the opening of the Atlantic Ocean while transitional/tholeiitic affinities
recorded for older (Paleozoic) basaltic dykes may better indicate simple reactivations of
Precambrian fractures. The Njimom dykes could represent the transition between an older
tholeiitic magmatism and the dominant Cretaceous alkaline magmatism of the Cameroon
Volcanic Line.

7. Conclusions

On the basis of field, mineralogical and whole-rock geochemical data of the Njimom
dykes, we present the following conclusions:

(1) Two groups of mafic dykes that crosscut the Neoproterozoic basement rocks have
been observed. A first group intrudes the mylonites whereas the second group intrudes
the granites;

(2) The Njimom dykes are alkaline basalts and hawaiites with a weakly porphyritic
to aphyric texture and contain clinopyroxene, plagioclase, ± altered olivine and opaque
oxides;

(3) Geochemical variations at each dyke group are compatible with fractional crys-
tallization with no or little crustal contamination, whereas the two dyke groups represent
distinctive magma sources in the mantle;

(4) Geochemical characteristics of the Njimom dykes can be modelled by partial
melting (2–5%) of lherzolite slightly enriched in incompatible elements in the spinel
stability field;
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(5) The geochemical features of Njimom dykes are similar to those observed in the
Paleozoic and Mesozoic dykes recorded in the southern continental part of the Cameroon
Volcanic Line, suggesting a similar mantle source evolution;

(6) The magmatic activity in the Njimom area probably was synchronous with the
initial phase of the opening of the southern Atlantic Ocean.
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