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Abstract: The application of Ground Penetrating Radar (GPR) prospecting to the search of fossil
structures, particularly using advanced techniques like Finite-difference time-domain (FDTD) mod-
elling and GPR attribute analysis, is currently poorly exploited in paleontology. Here, we promote the
use of such a GPR workflow at Bargiano (Umbria, central Italy), a unique paleontological site known
for the discovery of cetacean skeletons, dolomitized sperm-whale cololites (Ambergrisichnu salleronae),
and layered fossil assemblages. The study site is characterized by a very uneven topography shaping
highly conductive clayey deposits, representing not exactly ideal conditions for GPR surveying.
After generating models encompassing a real topography and variable electrical properties of media,
we simulated buried fossil structures at variable depth with different size and geometry, using
different operative frequencies. After obtaining information on the characteristics of reflections,
investigation depth, and detectability, we provide a comparison with experimental data, also used to
compute instantaneous amplitude and phase attributes. Upon depicting a peculiar GPR signature
for our targets, we discuss the results in light of ground-truthing performed through trenching. Our
workflow allowed us to restrict the excavation areas, extending the surface information in depth
in a non-invasive way, and optimizing the field operations, necessary for the preservation of the
study site.

Keywords: GPR; fossils; clay; attenuation; modelling; attributes analysis; early Pleistocene

1. Introduction

The discovery of fossil remains of vertebrates, as well as that of other buried biogenic
structures, is often an occasional event during random and time-consuming excavations
across promising study sites. In addition, excavations are clearly invasive, resulting in
the destruction of surveyed ground and are done or at punctual sites, or along relatively
short trenches, which cannot provide complete knowledge of the spatial distribution of
fossils. Important paleontological sites are often incidentally discovered during excavation
activities related to the construction of infrastructures or arise in protected areas. Therefore,
as for archaeological studies, prior non-invasive screening of the area is mandatory to plan
only targeted trenching.

Different geophysical methods are used with varying degrees of success in many
applications of Earth Science. Among the available geophysical tools, the Ground Pene-
trating Radar (GPR) is frequently used in geology in particular for shallow prospections
requiring high resolution [1–4]. Over time, GPR has proven useful in soil studies [5],
sedimentology [6], in fault and fracture characterization [7–10], in hydrogeology [11–19],
and in archeological applications [20–23].
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A few studies regarding the GPR detection of fossiliferous beds and/or large fossil
remains are available in literature, well summarized by [24]. The authors report results
of a GPR survey aiding the discovery of a lower Pliocene sirenian skeleton in the Arcille
site close to Grosseto (Tuscany, Italy). The remains were found embedded in shallow
marine siliciclastic deposits, mainly consisting of bioclastic sandstone overlain greyish
mudstone [24]. Using a 200 MHz antenna, the authors detected distinct GPR signatures,
which correlate with the skeleton bones and fossiliferous beds, and encouraged the use of
GPR in paleontological applications. More recently, [25] verified, in the laboratory, the GPR
resolution capability of two 1.0 GHz and 1.5 GHz frequency antennas on three biomicrite
samples, for the detection of paleontological remains. Both studies report the GPR has the
resolution capability to identify fragments or concentrations of fossils with a decametric-
centimetric size [24,25], as known clearly depending on different factors (e.g., the type of
antenna used, physical properties of surveyed media, the type and size of fossils). GPR
was also revealed to be effective in map anomalies arising from the skeletal remains of a
late Pleistocene mammoth frozen in ice [26] at the Bering Land Bridge National Preserve in
Alaska, as well as in providing tridimensional imaging of human-megafauna footprints
(“ghost tracks”) at the White Sands National Monument in New Mexico (USA) [27].

In this study, we report the results of a GPR survey carried out at the Bargiano site
in central Italy. This study site is located in the vicinity of the Allerona village, in the
southwestern sector of the Umbria Region (Figure 1). Pleistocene sediments, mainly
consisting of clayey/silty and clayey marine deposits, widely outcrop across the area
(Figure 1a). The site is already known in paleontological records for the exceptional first
fossil report of sperm-whale cololites (Ambergrisichnus alleronae, [28,29]). The Allerona area
also returned, in recent years, three partially preserved whale skeletons, and the recent
discovery and recovery of a fourth whale skeleton [30]. Following the tales of the residents,
which are frequently plowing and tilling the soil on the site during agricultural activities,
the occurrence of such types of structures and fossils is suspected to be spread across a
wider area. As for other studies, also at Bargiano, past excavations were executed mostly
randomly or nearby occasional remain outcroppings after intense erosional processes.
Although these fieldworks provided excellent results, they required several operators
and efforts, such as staying for long working sessions excavating in the field. For these
reasons, we considered a GPR survey ideal to support additional excavations and to focus
the fieldwork of the paleontologists in more restricted areas. However, the Bargiano site
presents severe environmental conditions for a GPR survey, due to the presence of a steep
slope as well as a very irregular topographic surface. The latter is caused by pervasive gully
erosion characterizing the area, which exhibits deep grooves along the maximum slope
(Figure 1b). This characteristic is strictly due to the lithology of the sedimentary deposits
covering the site, mainly made by marine silty clays [30], thus potentially representing
another severe limiting factor for GPR prospecting. On the other hand, the environmental
complexity of the study site was an additional motivation for the study, and the vertebrate
fossil aggregates, bones fragments, as well as the occurrence of large Ambergrisichnus
biostructures represent interesting targets for a GPR investigation. We aimed to (i) test
the GPR methodology in such severe conditions, by exploiting the advantages and the
limits of an experimental GPR survey in a clayey soil environment; (ii) use modern GPR
interpretation tools to promote an innovative approach to paleontology; (iii) report and
delineate a GPR signature for the fossil remains to use in future studies; (iv) drive and
optimize the paleontological field operations at the study site; and (v) contribute to the
paleoenvironmental reconstruction of the studied area.

In this work, we firstly propose some results obtained from synthetic GPR simulations
supporting the field operations; secondly, we report the results of experimental GPR data
interpretation also accomplished using GPR attributes, thus associating GPR anomalies to
unknown fossil remains and mapping their location and depth.
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Figure 1. Geographic localization of the study area (Umbria region, Italy) and main features of the
study site; (a) simplified geological map of the study site: Information on outcropping formations
and faults are reported in the legend, and the study site highlighted by the black star (redrawn
after [29,30]); (b) clayey/silty clayey deposits at Bargiano, showing diffuse and pervasive gully
erosion on steep flanks; (c) slightly horizontal uppermost surface, showing large mound-shaped
fossil structures of Ambergrisichnus alleronae.

Geological Overview

The study site is located in western Umbria (central Italy), about 2 km NE from the
Allerona village (Figure 1). At least from early Pliocene onwards, the whole area pertains to
the evolution of the South Valdichiana extensional basin, with its complex palaeogeographic
scenario and the interplay between continental and marine environments [31,32]. During
the early Pleistocene, the Allerona sector was characterized by a coastal environment
(gravely to sandy beach-face deposits) and by its relatively shallow offshore, estimated to
be no deeper than 100–150 m [31].

This environment is widely dominated by massive, thinly laminated silty clay sedi-
ments at the Bargiano site [28–30]. All these deposits are referred to as the informal Chiani-
Tevere Lithostratigraphic Unit [33–35] (Gelasian-Calabrian) or Valdichiana Cycle [32]. Par-
ticularly, the calcareous nannoplankton and planktonic foraminifers indicate a Calabrian
age for the Bargiano Section (CNPl8 Nannofossil Zone [36]; MPle1 Foraminifer Zone [37]).

At Bargiano, clayey silt (silt/clay ~2:1 up to 3:1) beds are weakly tilted north-eastwards
(dip dir. = 20◦ N, dip-angle = 12◦ to East), and outcrop at the top of the badlands
(Figure 1b,c). Although the uppermost area is fairly plain (altitude about 363 m a.s.l.), the
flanks abruptly recline southwards; furthermore, they are deeply and pervasively incised
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by gullies (averagely 1 m deep), which form or deepen during almost every winter sea-
son [38]. The plain area at the top matches the main Ambergrisichnus field [28–30], whereas
other cololites and the whale skeleton crop out at a lower altitude range (359–357 m a.s.l.)
among the gullies.

Former mineralogical analyses from clay sediments in a wider area (Table S1; [39])
indicate the occurrence of clay minerals between 55 and 69 wt.%, with a prevalence of
kaolinite (16–27 wt.%), a significant presence of chlorite and illite (both between 15 and
19 wt.%), and a minor presence of mixed phases. At Allerona and Bargiano sites, deposits
are silty clay (more than 80% of fines with Φ < 63 µm), with clay fractions between 20 and
50% (Figure S1, [40]). High-plasticity clays (smectite group) were never found. Quartz,
feldspars, and calcite (<15 wt.%) commonly occur, while a few instances of dolomite
(2 wt.%) were only locally detected. These data substantially agree with preliminary,
partial data from the Allerona clay quarries near Bargiano ([40], and from the Bargiano site
itself [29] (Table S1, Figure S1).

Through the years, the Bargiano site was productive from a paleontological point
of view (Figure 2). From clay sediments, bivalves, gastropods, scaphopods, echinoids,
decapod crustaceans, fish remains, and shark teeth were commonly reported, along with
cetacean remains or cetacean-related ichnofossils. Three Whale-Fall Events were recog-
nized (WFE 1–3, Figure 2a,d), with their accompanying peculiar macro- and micro-fauna
(decapods, mollusks, and foraminifers, [30,41]; Figure 2e). As one event is associated
with the presence of a baleen-whale skeleton, the other two are related to a sperm-whale
and Ambergrisichnus cololites [30]. The larger ones are hummocky-like structures of vari-
able dimensions, with a biconvex shape only partly protruding from the embedding clay
(Figure 2b,c), reported as complex cololites in the ichnological description [29]. Characteris-
tic diagnostic features of the ichnotaxon, such as striae, bulges, and concentric pattern, are
often recognizable only on isolated, relatively smaller structures, or as disarticulated por-
tions of complex structures (simple cololites: [29]). Less frequent, almost straight cylindrical
structures connect close, larger cololites below the surface. Mineralogical analyses of colo-
lites showed a prevailing dolomitic composition (72 to 81 wt.%, [29]), with subordinated
quartz and phyllosilicates, and traces of calcite and plagioclases.
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Figure 2. General geo-paleontological overview of the Bargiano site; (a) composite stratigraphic
section. (b,c) Aspect of Ambergrisichnus cololites in the field (WFE3); (d,e) fossils from the Bar-
giano site: (d) Whale skeleton, WFE2, (e) crab; (f) spatial distribution of largest Ambergrisichnus
structures (red dots numbered from 1 to 27, data derived from [30]) and of cetacean skeleton: rect-
angles indicate position of photos in figures (orthophoto by Regione Umbria—URL: http://geo.
umbriaterritorio.it/arcgis/services/public/ORTOFOTO_2011_WGS84/MapServer/WMSServer, ac-
cessed on 8 July 2021).

2. Methods and Field Data Acquisition

Ground Penetrating Radar (GPR) is a geophysical technique typically used for high-
resolution prospecting at a shallow depth [4]. A GPR system normally operates at a
frequency range between 10 MHz and 1 GHz for geologic applications. A GPR record
is based on the recording of two-way (TWT) travel-time electromagnetic pulses reflected
by buried targets. These pulses are generated and recorded by transmitting (Tx) and
receiving (Rx) antennae, respectively.

GPR reflections are convolved in GPR traces, which are displayed within GPR profiles,
also called “radargrams”, showing trace number (or distance) vs. samples. The samples
correspond to a specific TWT value, of which knowing the medium velocity can be con-
verted to depth. After the application of a customized processing flow, the GPR data are

http://geo.umbriaterritorio.it/arcgis/services/public/ORTOFOTO_2011_WGS84/MapServer/WMSServer
http://geo.umbriaterritorio.it/arcgis/services/public/ORTOFOTO_2011_WGS84/MapServer/WMSServer
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able to provide a reliable representation of the shallow subsurface, averagely within ~10 m
depth in good dielectrics. The geological interpretation process is pursued by correlating
and interpreting radar reflections with outcropping formations at the surface or, when
available, with direct data obtained from pits or trenches. The Em waves propagation and
attenuation are governed by electrical properties of the surveyed materials, particularly
the relative dielectric permittivity εr in low loss media [42,43], which is linked to velocity
by the formula:

v =
c0√
εr

(1)

where εr is the relative permittivity and c0 is the velocity of Em waves in free space
(~3 × 108 m/s). The permittivity of a material is a measure of the extent to which the
charge distribution within the material is polarized in an external electric field, and it is
better described by complex quantity ε*, with the real and imaginary components repre-
senting the ‘instantaneous’ energy storage–release mechanism and the energy dissipation,
respectively [4]:

ε* = ε′ − jε” (2)

In (2), the j =
√
−1 (imaginary number) and ε” = σ/ωε0 describes the losses [42]

principally caused by ionic conduction, where σ = DC conductivity, ω is the angular
frequency, and ε0 is the electric constant 8.85 × 10−12 F/m [15,44,45]. Considering the
operative frequency range typically used with a GPR, ε” is often small compared to ε′

and many soils are not affected by the dispersion [46]. A considerable increment of the
measured permittivity in a porous material (e.g., sandy soils) is due to the presence of water
(εr ~ 80), whose polar molecules are permanently polarized and oriented with the applied
field [42]. The conductivity component can usually be considered frequency independent,
only related to ionic conductivity (internal fluids) or to surface charge conductivity (related
to clay minerals) [4]. Therefore, the increase of surface conductivity is often crucial as it
affects the investigation depth [47]. In lossy media, variable EM attenuation is observed, in
the worst cases up to the loss of the majority of the Em energy as heat [4].

As a consequence, the investigation depth reached by a GPR prospecting can change
from 5 to 30 m in sandy units or in mixed soils with high sandy percentages [48,49], to less
than 1 m (or even to no more than 0.25 m) with a minimal presence of humid clays [49,50]
or in sodic terrains [3].

The Bargiano site is characterized by clayey formation, extensively cropping out, and
by a very irregular topography due to gully erosion that hampered the acquisition of
a regular 2D or 3D grid of GPR profiles and also limited the antenna-ground coupling.
We carried out a GPR survey at the Bargiano site (Figure 1) using a Zond 12e Advanced
GPR system (Riga, Latvia, www.Radsys.lv, accessed on: 8 September 2021) equipped with
two different antennas of 300 and 500 MHz of center frequencies, which we considered
in this case the best trade-off for portability and resolution. The centimeter accuracy of
GPR trace positioning was ensured by the integrated use of a survey wheel and a Global
Navigation Satellite System (GNSS) receiver. The latter device is a Topcon GR-5 (Tokyo,
Japan, https://www.topconpositioning.com, accessed on: 8 September 2021) providing
coordinates and elevation data through a differential correction operated in a Network Real
Time Kinematic (NRTK) configuration [51]. In addition, gullies, obstacles, and targets of
interest visible at the surface were constantly annotated and mapped during the acquisition.
Our entire single-fold dataset was collected using a Common Offset (CO) configuration [52].
Table 1 reports the main acquisition parameters used during the collection of the dataset
(location in Figure 3).

www.Radsys.lv
https://www.topconpositioning.com
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Table 1. Main GPR parameters used during the acquisition at the study site. Another table reporting
the detailed parameters for each GPR profile can be found in the Supplementary Material (Table S2).

GPR Acquisition Parameters Value

Total number of profiles 33
Total profiles length (m) 911.32
Total number of traces 22118
Trace distance (∆x, m) 0.05 (300 MHz) 0.02 (500 MHz)
Recording time window (ns) 100
Samples number per trace 512
Sampling time (ns) 0.195
Scan rate 80
Positioning Survey Wheel + GNSS NRTK

Figure 3. Tracks of the GPR profiles collected at Bargiano site.

The first part of the survey was dedicated to the acquisition of some test profiles,
by crossing different areas with exposed stratified clayey beds (compact, with cracks at
the surface) or a cover of alternating vegetation as well as fine deposits generated by the
erosion and accumulation on topographic lows. The aim was to quickly look on site at the
electromagnetic response across different materials and to set up optimized acquisition
parameters once the investigation depth and resolution achievable onsite were evaluated.

Then we recorded 33 GPR profiles mainly spreading in the central and easternmost
sectors (Figures 3 and 4a–c), whilst a zone characterized by a high density of deep channels
(central-western sector, in Figure 4d) was immediately discarded due to the high density
and depth of the channels hampering GPR data collection. The rugged topographic surface
prevented us from recording 2D GPR profiles using straight GPR profiles as part of a regu-
larly spaced survey grid. For this reason, the antenna was pulled along crooked lines, where
the surface was flatter and more regular, to maintain an optimal antenna/ground coupling
and avoid crossing the gullies, thus reducing signal reverberations in the air. In a few cases,
we passed very closely or directly across the outcropping cololites (Figures 2–5) that were
mapped and accurately measured on site during former fieldworks and successively in
the laboratory [29].

The results of GPR investigation were integrated with GPR Finite-Difference Time
Domain numerical simulations (FDTD) [53], with the aim of highlighting the cololites and
fossiliferous beds buried in a relatively homogeneous clayey formation. Synthetic GPR data
can provide important information during the survey planning as well as for an advanced
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GPR interpretation. By returning the presence and timing of complex reflection patterns,
simulation aids the interpretation of subtle information embedded in field experimental
data, for example to infer the electrical properties of materials, determining the geometry of
reflection patterns, and distinguishing the primary reflections from multiples. Several GPR
numerical modelling methods are currently available for various GPR applications [3,4,54].
The Finite-difference time-domain (FDTD) method of approximation is based on Maxwell’s
equations describing the behavior and effect of electromagnetism [53,55–58]. Among
the most-used commercial and open-source GPR modelling software there are Reflex-
Win [59], gprMax [60–62], and matGPR [63]. All these programs allow for modelling the
effects of electromagnetism on a target or material, by dividing both space and time into
discrete segments.

Figure 4. Pictures of the survey area, with detail of the different sectors surveyed of Figure 1;
(a) alternation of compacted marine clay (1), thin unconsolidated sedimentary cover resulting from
weathering processes and grass at surface (2); (b) GPR profile acquisition in a sector alternating
compact clayey beds, weathering fine deposits, grass, and cololites outcropping at the surface;
(c) compact clays with visible mud cracks and irregular topographic surface; (d) area with dense and
deep channels generated by gully erosion where it was not possible to pull the GPR antenna.
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Figure 5. Shape and size of main Ambergrisichnus cololites along selected GPR lines, trenches, and
excavation points.

Thus, a simulation of the GPR wave propagation through subsurface materials was
obtained, with boundaries and geometry of objects (i.e., representing geological structures)
that are segmented into cubic cells [64] (“Yee cell”) to create the computational domain.
These cells are relatively small in comparison to the GPR wavelength, but a staircase
approximation was used to model curved boundaries. The electric fields and magnetic
fields are located on the edges and on the faces of the cells, respectively. During the
modelling process, different values of physical properties were assigned to each modeled
object: Typically, the relative dielectric permittivity εr is varied as well as the conductivity
σ, whilst the magnetic permeability µ is generally a unity. Thus, after the discretization of
the whole area into ∆x, ∆y, and ∆z segments, and once we defined the above-mentioned
electrical properties in a mesh grid, the FDTD computation proceeded with a substitution
of partial derivatives by differential quotients in Maxwell’s equations. Using the GPR
response obtained by the modelling as well as by experimental profiles, we aimed to
identify a characteristic GPR signature to (1) drive the operators to a pre-survey choice of
optimal antennae and acquisition parameters, (2) understand what kind of GPR signature
to expect within field data, thus supporting GPR interpretation across sectors without any
outcrops, and (3) provide a reference GPR record for future paleontological works in such
environments. Following the generation of synthetic data, we carried out a GPR attribute
analysis to better inspect our data and extract additional information constraining the
GPR interpretation. The attribute analysis is a relatively cheap and fast tool, commonly
used for the interpretation of reflection seismic data [65–67], which aids in emphasizing
the subsurface geophysical features in complex geological sites. Like in the reflection
seismic technique, a single GPR attribute or a multi-attribute integration can provide
details on the subsurface physical or geometrical properties of the media. GPR attribute
analysis is still not very widely used, but in recent years, it has been surely growing for
different applications, such as fault and fracture characterization [7,10,68,69], archaeological
studies [23,70], as well as in sedimentological and glaciological applications [71–73].

GPR modelling as well as attribute analysis might represent innovative tools to im-
prove the detection and characterization of fossiliferous layers. According to our knowl-
edge, such techniques were very rarely used in paleontological studies [74], and we specu-
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late that our attempt may represent the first combined application in this field. Among
the multitude of seismic attributes available, we selected and computed the instantaneous
amplitude and phase, which were pioneered for the detection of the “bright spots’” [66] in
reflection seismic. The instantaneous attributes, which are based on complex trace analysis,
are computed through the Hilbert transform for each sample of the seismic or GPR trace.
Thus, given:

u(t) = x(t) + iy(t) (3)

where u(t) is the trace, i is a complex number, and y(t) is the quadrature obtained from the
Hilbert transform [7]. The instantaneous amplitude and phase are obtained from:

A(t) =
√

x2(t) + y2(t) (4)

ϕ(t) = tan−1 y(t)
x(t)

(5)

With these attributes, we aim to enhance high reflective bodies and signal discon-
tinuities. The first are emphasized by the instantaneous amplitude (i.e., sensitive to the
amplitude), which is related to acoustic impedance or dielectric contrasts in seismic and
GPR techniques, respectively. It is independent of phase and it is often called “Reflection
strength”, whose gradual lateral changes can be produced by the interference of reflec-
tions arising by lateral variations of bed thicknesses [66]. In reflection seismic, sharp local
changes may help to discriminate bright spots and possible gas accumulation. Commonly
with GPR, stratigraphic boundaries, changes in the depositional environment, thin beds
(tuning effects), and faulting can be highlighted, thus providing spatial correlation to
lithologic variations and presence of structural discontinuities. These features are better
enhanced using the instantaneous phase (i.e., sensitive to the phase), being linked to the
propagation phase of the wavefronts [7]. The phase is independent of reflection strength
and the display is obtained by assigning the same color to each peak, trough, or zero-
crossing of the real trace, thus allowing to follow the phase angle trace-to-trace. Weak
but coherent events become clearer using the instantaneous phase, thus emphasizing the
continuity (and so also the discontinuity) of reflected events [66], which might be inter-
preted as faults, pinchouts, angularities, and variations of dip patterns. In this study, we
propose the combined use of the instantaneous amplitude and instantaneous phase, which
are physically independent and thus they may provide complementary information for
detection and characterization of fossils.

2.1. GPR Finite-Difference Time-Domain Numerical Simulations (FDTD)

We created different models using Reflex-Win [59] software (v. 9.1.3) to simulate
the presence of fossils within a clay medium, thus generating synthetic GPR profiles
to reproduce the complex field conditions of the study site. The FDTD was used prior
to the acquisition to achieve information about the vertical resolution and investigation
depth achievable in a conductive medium using 300 and 500 MHz operative frequencies
(modelling parameters in Table 2) and, thus, to arrange the survey on the field. Due to the
absence of any preliminary geophysical data or dielectric measurements at the study site
(Figure 5), under some assumptions (flat topography, constant physical parameters, etc.),
we have initially created a simple model (Figure 6), thus simulating three cololites and
relatively small fossil beds located at increasing depths (~0.20, 0.50, 1.0 m). We decided to
use average physical parameters (dielectric permittivity εr and, electrical conductivity σ)
for the surveyed clays and dolomite obtained from literature [3,4], thereby assuming a non-
magnetic medium (µr = 1) (detail of parameters in Table 3). To improve the reliability of
our synthetic data, with the same purpose, we have successively produced a more complex
and realistic model (Figure 7) by simulating environmental complexities characterizing the
study site (detail of parameters in Table 4), also using the observations achieved during
preliminary surveys. The preliminary fieldwork suggested a lower velocity of media in
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depth and a higher conductivity of shallower deposits, which produces severe GPR signal
attenuation in some areas. Thus, the cololites are centered at depths of ~0.20, 0.50, and
1.0 m from the topographic surface and the fossils beds lay at ~0.2, 0.3, and 0.6, both located
in key points in relation to the embedding media. In comparison to the first basic model,
we considerably increased the average conductivity values of materials and introduced
new layers with disturbances (i.e., statistical variations of the dielectric permittivity) to
ensure the model displays heterogeneities; in addition, we added a realistic topographic
surface, which was later refined by extracting elevation values from the GNSS recordings
of experimental profile L1. The new simulated layers include a shallow ~10 cm thin
polygon representing altered clays to reproduce the presence of a finer dry soil and mud
cracks visible at the surface, and another polygon simulating a thicker (up to ~20 cm)
altered unconsolidated clay-loamy deposit, typically observed laying at the base of the
slope. For these two layers, we chose a finer texture, refining the parameters introduced
for the statistical fluctuations, to simulate high conductive deposits faithful to a severe
real scenario (Table 3). White random noise (1%) with a nominal frequency of 300 and
500 MHz, respectively, was also added to raw synthetic profiles to make them closer to
experimental data. Using a Dell Workstation with Intel(R) Core(TM) i7-4712HQ CPU @
2.30 GHz and 16 Gb RAM and the reported parameters, the simulations took a time range
for each profile spanning from a few seconds to a couple of minutes for the more complex
models (e.g., model 2 with frequency source of 500 MHz).

Figure 6. Model 1 with simulated cololites and fossil remains of different size locating at increasing
depth down to ~1 m; details of the parameters used are reported in Table 3: (a) relative dielectric
permittivity properties assigned to media and (b) same model displaying the conductivity values
assigned to media.
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Figure 7. Second model, with a high level of complexity thus closer to field site conditions: It includes real topography,
perturbations of physical properties and increased conductivity of shallower layers (parameters in Table 4); (a) model
displaying the relative dielectric permittivity properties assigned to media, with statistical variations; (b) same model
displaying the conductivity values assigned to media.

To summarize, we decided to increase the permittivity of deposits in depth assuming
a higher content of humidity within the clays (εr = 15), whilst a lower permittivity value
(εr = 8–9) was assumed for the shallower clayey layers, due to lower compaction and higher
relative presence of air. The conductivity σwas assumed to be higher (up to 1 S/m) at a
shallower depth due to the alteration of clayey deposits producing the total attenuation of
the radar signal observed during the GPR fieldwork.

Table 2. Parameters used for GPR modelling.

Modelling Parameters

Source wavelet Kuepper
Sx-Rx offset Zero

Profile length (m) 22 (mod1), 26 (mod2)
Depth (m) 2.5 (mod1), 4 (mod2)

Time window (ns) 50
Boundary conditions lin. adsorbing-range

Source type exploding reflector

Operative frequency 300 MHz 500 MHz

dx (m) 0.02 (mod1); 0.015 (mod2) 0.012 (mod1); 0.0095 (mod2)
dt (ns) 0.085 (mod1); 0.025 (mod2) 0.05 (mod1); 0.015 (mod2)

Table 3. Electromagnetic properties set up for media of model 1.

Material Rel. Dielectric Permittivity Conductivity (S/m)

Fossiliferous layers and cololites
(Dolomite) 6 0.001

Clayey formation (lithoid) 9 0.1
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Table 4. Electromagnetic properties set up for media of model 2.

Material Rel. Dielectric Permittivity Conductivity (S/m)

Fossiliferous layers and cololites
(Dolomite) 6 0.001

Clay formation (lithoid) 15 0.1
Clayey surficial deposit (unconsolidated) 8 1
Clay altered surficial layer (mud cracks) 9 0.2

2.2. GPR Data Processing and Computation of GPR Attributes

The GPR data processing is typically based on techniques borrowed and adapted from
reflection seismic surveys [75], well summarized by [4]. We processed the experimental
and synthetic GPR profiles using the software Prism v. 2.60 (http://www.radsys.lv/en/
index/: [76], accessed on: 8 September 2021) and Reflex-Win v. 9.1.3 [59], respectively, in
order to improve the S/N ratio, obtain reliable target geometries, as well as to increase
the data interpretability (processing parameters are summarized in Table 5). The synthetic
data obtained from the second model required the application of a basic processing flow,
including amplitude recovery (correcting for energy losses), bandpass Butterworth fil-
tering (100–400 MHz and 300–700 MHz, respectively), f-k migration, and a topographic
correction. A time-to-depth conversion was finally applied using GNSS elevation of profile
L1 and a Vem = 0.075 m/ns. On the experimental data, editing and quality control were
performed first, by checking and fixing issues on GPR traces, GNSS coordinates, and
elevation values. After several tests, we refined a processing flow (details in Table 3) in-
cluding amplitude recovery, flattening of first arrivals, and time-zero correction; following
a spectral analysis, customized filters were applied to remove low- and high-frequency
components and to attenuate horizontal bands locally generated by high conductivity of
media and scarce antenna-ground coupling. A velocity analysis accomplished through
the fitting of hyperbolic diffractions allowed us to estimate an average velocity value of
0.075 m/ns, in agreement with literature ranges available for clays [4]. Such a velocity
value was used for the f-k time-migration as well as for the topography (static) correction
and the time-to-depth conversion. The processed profiles highlight several radar reflections
suggesting the presence of a subsurface structure within a max depth no greater than 1.5 m.
These reflections have been successively enhanced by the computation of GPR attributes,
specifically the Envelope and Cosine Phases [7,10], which improve the display of subsur-
face reflectivity and provide details on the geometries of buried geological structures. In
the following paragraph, we show the results of our synthetic modelling and the most
representative experimental GPR profiles, including the attributes, with examples for both
300 and 500 MHz data. In the final discussion, we also provide a punctual validation of
our interpretation using four trenches, excavated along the tracks of selected GPR profiles,
which displayed promising subsurface reflections.

http://www.radsys.lv/en/index/
http://www.radsys.lv/en/index/
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Table 5. Processing flow and detail of parameters used for the experimental GPR data.

Processing Flow\Parameters 300 MHz Antenna 500 MHz Antenna

Traces and coordinated editing and
quality control customized customized

Flattening of first arrivals and Time-Zero
Correction

/
first break first break

Amplitude Recovery customized manual function customized manual function

Horizontal High-Pass Filter customized customized

Ormsby Bandpass Filter 45-125-350-450 125-250-500-700

Spatial Filter (Smoothing, LP) customized customized

F-K Time Migration v = 0.075 m/ns v = 0.075 m/ns

Topographic Correction and
Time-to-Depth conversion GNSS elevation (v = 0.075 m/ns) GNSS elevation (v = 0.075 m/ns)

GPR attribute 1 Envelope Envelope

GPR attribute 2 Instantaneous frequency Instantaneous frequency

3. Results

Figure 8 displays the results of a simulation obtained from model 1 of Figure 6. Six
complex reflections are located within a TWT of ~25 ns, three of them related to simulated
cololites whilst the other three represent fossiliferous beds. One can easily notice the higher
resolutive capability of the 500 MHz synthetic data in comparison to the 300 MHz, aiding
in better distinguishing the details and geometry of the buried targets. We estimate that the
vertical resolution (λ/4) for 300 and 500 MHz frequencies is ~0.08 and 0.05 m, respectively.
The simulated cololites show both top and bottom reflections on raw synthetic data, whilst
for the fossiliferous beds (~0.1 m thick), only the 500 MHz synthetics clearly resolve the
top and bottom reflected arrivals. The interference between several hyperbolic diffractions
and reflected signals creates complex simulated reflection geometry particularly on the
lateral sides and bottom sides of the targets, where complex “bow-tie” arrivals are also
visible [3,75]. Assuming a Vem = 0.075 m/ns for the clay formation, the deeper reflections
are included in an estimated depth range no greater than ~1.50 m. Thus, the detectability
of the deeper target is more difficult due to the high attenuation of radar signal: At a
depth of ~1 m, the reflections are already very weak, particularly for the 500 MHz data,
suggesting not to push the interpretation to greater depths. To summarize, the FDTD
results provided by the first basic model highlight a possible maximum investigation
depth no greater than 1.5 m, and also suggest that combined use of both antennae may
provide complementary information to resolve and detect fossil layers of variable sizes at
variable depth. Following the reproduction of reliable fossil geometries, our simulations
also provided a possible characteristic signature of fossiliferous layers to be searched in
the experimental data. Thus, following the results achieved from the first model, we
show other synthetic profiles from a second model (Figure 7). These synthetic profiles
are illustrated in Figure 9: The raw synthetic profiles for the two frequencies used are
displayed in Figure 9a,c, whilst the processed version is reported in Figure 9b,d. The
reflections generated by fossil structures close to the topographic surface display high to
moderate amplitudes at progressively greater depths, due to signal attenuation operated
by high conductivity of shallow simulated deposits.

The strong attenuation causes very weak or no reflected signals at a greater depth
(already at ~1 m) in both 300 and 500 MHz synthetic profiles, with random noise also
partially masking the reflections. In particular, total attenuation is visible on the right side
of the synthetic profiles: It should be noted that the fossiliferous bed at a shallow depth
(~20 m distance) is visible only on its left half portion. This consideration suggests that
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every kind of target located beneath such a high-conductive layer at shallow surface will
be essentially not detectable.

Due to the amount of GPR data recorded in the field, only the GPR profiles showing
the most peculiar GPR signatures and interesting reflected events are reported in this paper.
The quality of a few of the 300 MHz profiles was operatively affected by the bigger size
of the antenna during the fieldwork: Particularly when crossing areas characterized by
rugged topography or across very irregular cololites, the antenna had a reduced coupling
with the ground, generating localized reverberations (ringing). However, the related traces
were annotated during the acquisition, in order to avoid further data misinterpretations.
In other cases, chaotic, poorly continuous and not well-defined reflections were observed
locally, due to the interference of reflections and hyperbolic diffractions with local pervasive
sub-horizontal reflections.

In other points surveyed, we detected reflection patterns of good continuity, partic-
ularly close to the cololites outcropping on the compact clay formation, which we have
analyzed computing the GPR attributes. More specifically, the first selection of GPR profiles
is reported in Figure 10, where raw and processed profiles L25 and L13 are illustrated.

The first crosses the cololite C3, whilst the second was recorded on the eastern area
with no fossils outcropping at the surface. Figure 10a,c displays a difference in reflectivity
with a clear lateral variation due to strong attenuation of surveyed media, also affecting
the ground wave arrival, which towards the end of both profiles is strongly attenuated.
The processed profile L25 (Figure 10b) shows high reflectivity within the first meter depth,
with a rapid decrease down to 1.5 m depth along the profile distance range 22–12 m, in
which reflections of poor lateral continuity are visible. However, within the distance range
of 0-8 m, the signal penetration is practically absent or limited to a few tens of decimeters
and characterized by weak reflections.

Only at about a 10 m distance, the GPR profile shows higher GPR penetration (down to
ca. 1.5 m) and high reflectivity: Here, undulated (~0.5 m depth) to sub-horizontal reflections
of limited lateral continuity (<~2 m long). Figure 10d displays similar reflections for profile
L13, characterized by reflections of moderate amplitude and poor lateral continuity within
the interval 0–10 m, for a maximum investigation depth of ~1 m. Similar to L25, almost
total attenuation is observable within the distance range 21–13 m.

Figure 8. GPR synthetic data derived from model 1, simulating fossils layers including cololites and fossiliferous beds
located at increasing depth, and assuming a flat topography; (a) synthetic data from 300 MHz simulation displaying how
the shallow reflections are clearly visible, whilst the deeper ones result in being progressively attenuated so that the deeper
one is almost invisible; (b) synthetic data from 500 MHz simulation displaying the reflections as in (a), but characterized by
higher solution (display does not include any gain recovery function applied to data).
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Figure 9. GPR synthetic data derived from model 2, simulating cololites and fossiliferous beds located at increasing depth,
and including high conductivity shallow layers, physical properties perturbations, real topography, and white noise; (a) raw
synthetic data from 300 MHz simulation displaying the deeper reflections from cololites and fossiliferous beds are not
visible; (b) processed 300 MHz synthetic profile (including amplitude recovery and static correction steps), illustrating
strong and moderate amplitude of reflections at shallow and intermediate depth. The simulated altered top deposit on
the right side causes total radar signal attenuation, highlighted by the fossiliferous bed visible only on its left side; (c) raw
synthetic data from 500 MHz simulation displaying the same reflections of (a) with high resolution but progressively weaker
amplitude with depth; (d) processed 500 MHz synthetic data (including amplitude recovery and static correction steps),
where it is almost possible to detect the deeper simulated cololite, whose reflection is very weak due to high attenuation
and being embedded within the random noise.
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Figure 10. Two examples of GPR profiles recorded using the 300 MHz antenna at the Bargiano study
site; (a) raw GPR profile L25 crossing the cololite C3 at ~10 m; (b) processed GPR profile L25 in
which higher reflectivity and deeper penetration are visible across C3, whilst strong attenuation
characterize the sector from the base of the slope to the end; (c) raw GPR profile L13 not crossing
any outcropping cololites (d) processed GPR profile L13 showing a shallow, highly reflective body
at a 11–12 m distance range; like for profile L25, strong attenuation is also visible in its final sector
(distance interval 13–21 m).
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A higher reflective body is visible only in the distance range 10–12 m, with a laterally
limited (<~2 m long) sub-horizontal reflection pattern within the first meter depth; this
package of reflections is slightly rotated and laterally bound uphill by sub-vertical disconti-
nuities. Such considerations on the reflectivity and reflections geometry of GPR profiles L25
and L13 can be extended and confirmed more accurately after the computation of the GPR
attributes. The instantaneous amplitude reported in Figure 11a,b enhances the subsurface
reflectivity, confirming it is limited to the first meter of depth for both profiles, and it is
characterized by lateral variations. This attribute also confirms the almost total attenuation
occurring from the base of the slopes to the end of both profiles, suggesting very high
values of conductivity for these sectors. Here, possible buried targets, even if located at a
shallow depth, are basically impossible to detect, confirming the results obtained in our
synthetic example from model 2. This attribute confirms the presence of two reflective
bodies within the center of both GPR profiles: One wider and deeper in profile L25 and
another shallower and marked by sub-vertical amplitude discontinuities in profile L13.
However, the continuity as well as the presence of lateral discontinuities of reflections
can be better appreciated in the instantaneous phase attribute images (Figure 11c,d). This
attribute permits the interpretation of the stratigraphic boundaries and reflections geome-
tries, as in profile L25 (Figure 11c) in which an undulated continuous reflection is visible
(range ~6–12 m), with the convex shape matching the high reflective body detected in the
corresponding amplitude profiles. Another advantage of this attribute, as it is independent
by amplitude, is the capability to extend the display of reflected events in depth, where
the amplitude profiles are not interpretable due to attenuation. However, although some
shallow undulated reflections are also visible in the profile of Figure 11d, the deeper sector
of this profile shows some migration artifacts (smiles). These features can be possibly
generated by the poor level of signal and random noise contamination, or by a velocity
variation in depth. However, given that our survey target is limited to a maximum of 1.5 m,
our interpretation was focused on the shallower depth interval; here, undulated reflections,
laterally variable in thickness with pinch-out closures, are visible. In particular, over the
sector marked by strong attenuation, these reflections are also dissected by sub-vertical
phase discontinuities with centimetric offsets.

Figure 11. Instantaneous attributes of GPR profiles L25 and L13 of Figure 10; (a) instantaneous
amplitude for L25, displaying the high reflective zones mainly in the first meter depth and in corre-
spondence of cololite C3 at ~10 m; (b) instantaneous phase of profile L25, efficiently extending the
interpretation depth and enhancing the reflections geometry and continuity highlighting undulated
horizons of laterally variable thickness; (c) instantaneous amplitude for L13, displaying the laterally
variable reflectivity located within the first meter depth, particularly between the distance interval
10–12 m; (d) instantaneous phase of L25, again displaying undulated geometries of shallow horizons
whilst migration smiles are enhanced deeper; sub-vertical phase discontinuities (distance range
13–21 m) dissecting the shallow horizons within the high reflective body.
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In Figure 12, we report an example of a 500 MHz profile (L1), which crosses the cololite
C14 outcropping just a couple of meters south-west of the cololite C15. Figure 12a shows
the raw GPR profile, which, without any amplitude recovery function applied, displays
only higher reflectivity at early times, particularly in the central sector. The first vertical
mark suggests the position of cololite C14, also visible due to the local topographic height
at about 8 m.

Figure 12. Profile L1 recorded using the 500 MHz antenna at the Bargiano study site; (a) raw GPR
profile crossing the cololite C14 at ~8 m; (b) amplitude spectrum computed for each trace of profile
L1 in (a), clearly showing the limited frequency content, particularly on the right side, due to strong
attenuation; (c) processed profile displaying moderate to high reflectivity, particularly the reflections
package in the central sector at ~13 m, down to ~1 m depth; note the strong attenuation of reflections
within the range 16–26 m.

With the second mark, we noted a sector in which the antenna-ground coupling was
good due to outcropping clay formation, which was flat and very compact without any
cover of altered deposit or grass. On the contrary, at ~16 m, a lateral decrease of reflections
amplitude marks the transition to an area characterized by strong attenuation (16–26 m
along the profile), similarly to previous GPR data. An amplitude trace spectrum of profile
L1 is visible in Figure 12b, displaying a bandwidth centered at about 250 MHz in the range
4–15 m along the profile, whilst the frequency content of surrounding areas is extremely
poor. The corresponding lateral change in reflectivity is much more visible in the processed
profile (Figure 12c), showing the geometry and attitude of main reflections within 1.5 m
depth. Interestingly, the more reflective zones surround outcropping C14, which shows,
differently from the synthetic and 300 MHz data, a moderate reflection on its top portion
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without any reflection in the deeper sector; this behavior can be possibly due to a minor
amount of energy reflected back to the antenna when crossing C14, but we noticed it is
more common in the 500 MHz profiles crossing outcropping cololites.

Possible explanations can be suggested for the single or combined effects of a minor
antenna-ground coupling and attenuation, caused by: (1) The irregular and steep cololite
shape on its top; (2) high conductivity of cololite cover at the surface; and (3) a smoother
transition to underlying clays causing a lower dielectric contrast (or/and in combination
with higher conductivity) on the bottom side of the cololite itself. Looking at the area at
a 12–14 m distance, a clear strong reflection is visible at a shallow depth and another one
deeper at ~1 m depth, resembling the one at an intermediate depth in the synthetic profile
of Figure 9d. In Figure 13, we analyzed the GPR profile L1 computing both instantaneous
attributes. Figure 13a illustrates the instantaneous amplitude, with a moderate-to-high
reflectivity surrounding the cololite C14, which on the contrary, displays a moderate
reflectivity in the first 40 cm and lower in depth, as highlighted in the conventional GPR
images. High energy is visible in the central area, up to ~1.20 m depth. The GPR profile
in the sector between 16–26 m displays low reflectivity and only within the first 0.30 m
depth, confirming low penetration of radar signals. Figure 13b displays the instantaneous
phase, computed on the same GPR profile. In addition, in this case, it is very effective to
map the geometry of reflections, independent of amplitudes, where the signal attenuation
is also strong. This way, a depth extension of profile interpretability is again possible at
16–26 m distance intervals along the profile. This attribute is also very useful to emphasize
the geometry of possible buried bodies, highlighting the continuity of reflections very well:
It displays sub-horizontal reflections of constant thickness in the southernmost sector as
well as undulated reflections with local thickening nearby the cololite.

Figure 13. Instantaneous attributes of profile L1 of Figure 12; (a) instantaneous amplitude, displaying
the only moderate reflectivity across the cololite C14, but a high reflective zone downhill at a closer
distance in the first meter depth (12–15 m range); (b) instantaneous phase, enhancing the presence
of a buried body of complex geometry corresponding to the reflective zone, as well as subparallel
horizons with good continuity within the attenuated zone until the end of the profile.

4. Interpretation, Validation and Discussion

Our interpretation was accomplished for the entire dataset in order to generate a
map of the GPR anomalies detected along each profile. Figure 14 shows a mosaic image
summarizing our interpretation, supported by photos of the excavation campaign. In
Figure 14a, we summarize all the GPR anomalies recognized within the processed GPR
data, except the westernmost profiles Lr, L30, and L31, due to no signal penetration. In other
sectors, we delimited some excavation zones combining the interpretation of conventional
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GPR profile reflections as well as peculiar GPR attributes signatures approximately within
the first meter depth. To preserve the site as much as possible, a couple of sites were
finally selected and dedicated to ground-truth the GPR reflections (e.g., site in Figure 14b).
Thus, to avoid damaging outcropping cololites, which are highly unstable as they are
permanently exposed to weathering and soil erosion, we opted to use manual excavation
tools and a small narrow shovel excavator (Figure 14c,d). This choice limited the overall
excavation depth averagely to within a 0.5 m depth, as deeper trenching would have
required bigger mechanical excavators.

We excavated two linear trenches (T1L and T2L, location in Figure 14a): T2L was
excavated in the easternmost area along profile L13 (~20 m long, ~50 cm deep), where no
fossils were visible at the surface (Figure 14b). The T1L was located close to a sector of
profile L4 (~10 m long and 30–40 cm deep) and ended up close to cololite C12 (Figure 14c).
Regarding where the other two excavations (position in Figure 14a) were located, one was
close to cololite C4 (T1P) in an area uphill of GPR profiles L25 and L23 (Table 2), where some
fragments of fossils were found at the surface, and the second (T2P) in between cololites
C14 and C15 (along the track of lines L1, Figure 14d). T1P and T2P cover an overall surface
of ~3.5 m2, reaching depths of ~50 cm and ~1.5 m, respectively. All excavations show a
shallow (a few centimeters up to ~10 cm thick) dry and altered clay layer, laying above
humid, dark, massive, and very stiff clay beds (Figure 14c,g,h). This bottom layer hindered
the mechanical operations of excavation, preventing the operator from reaching deeper
levels. This mechanical behavior can be attributed both to the progressive compaction of
the clays with increasing depth, and to the partial dissolution of shells and the circulation
of fluids enriched in CaCO3. Locally, the trenches show clays with spotted shell-enriched
layers, shell lags, as well as bioturbated layers, becoming particularly hard and compact
(Figure 14e–g). Their sparse distribution typically hinders both hand-made and mechanical
excavation operations, but the GPR profiles aided us to identify areas encompassing fossil
layers within surrounding clays maintaining a massive appearance and the dark-grey color
(Figure 14e,f). In more detail, the ground-truthing operated close to the three analyzed
profiles provides results and details revealing the nature of reflections correlated with
buried stratigraphic and structural geological features (Figure 14d,h). The excavation of
trench T1L, decided once some hyperbolic diffractions were detected in the central sector of
profile L4 (depth < 1 m), does not provide any evidence of fossil layers to correlate with the
GPR signature. However, a combination of discontinuous layers of compact clays, enriched
in shell fragments, and a set of vertical joints (Figure 14c) are found lying above a hardened,
dark clay layer at ~50 cm over a surface of >1m2. The excavation was stopped before
finding the lateral boundaries of this layer, as the operations proceeded too slowly (30 cm
depth reached in over half an hour), and also to avoid damaging the outcropping cololites
(C12–C13, Figure 14c). The trench T2L does not show any buried continuous fossil layer or
cololite within the 50 cm depth range, but we could find only spotted occurrences of layers
locally enriched in mollusk specimens or bioturbation (Figure 14e,f). This result confirms
the observation that, although macrofossils are widespread across the study area, they tend
to gather in well-defined layers particularly near bones [30] (Figure 14g) or cololites [28,29].
Both linear trenches T1L and T2L head off several sub-vertical fractures, striking between
N305 and N330, which are easily recognizable by the presence of a thin brown hardened
crust also at the surface (Figure 14b, black arrows). Nonetheless, the processed GPR profile
shows a reflective package and high reflectivity as well as clear phase discontinuities
enhanced by GPR attributes (inset of Figure 14h), explainable by a combination of stiff
clay blocks bounded by steep fractures (Figure 14h, black arrows). The most interesting
link between GPR reflections as well as the instantaneous attributes signature with field
structures is visible from the excavation done close to structures C14–C15. The trench
(~1.5 m deep) was carried out according to an approximately square perimeter around the
cololite C15. The operations were then completed with the insertion of a semi-rigid metal
plate under C15, necessary to detach this fossil structure from the underlying clay deposits.
However, such operations revealed an irregular shape of C15 at its base, suggesting that the
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size of this structure was bigger and deeper than expected from surface observations. In
addition, we found a buried connection between emerging mounds C14 and C15~1 m long
and ~20 cm in diameter with a quasi-tubular shape, which explains the high reflectivity and
geometries also highlighted by GPR attributes (cololites scheme and attributes excerpt on
the right side of Figure 14d). Thus, cololite C15 was extracted (Figure 14d) and recovered
for musealization, and it is currently exhibited at the Allerona Museum.

Using field observations, trenching results, and geotechnical data available for the
study area, we can thus infer a qualitative explanation for the overall moderate-to-low
investigation depth and quality of the experimental dataset. As known, the presence of
clay deposits is frequently not an ideal condition for a GPR investigation [4], and even
worse for highly compact beds or free water [77,78]. The various amounts of clay minerals,
clay mineralogy, and the presence of cations from other sources (i.e., feldspar fragments,
organic matter) reflect a high variable size, surface, cation exchange capacity (CEC), and
capability to retain water of clay minerals, affecting the electrical properties ([4,77] and
references therein). Differences in CEC, associated with the variation of the electrical
conductivity, usually reflect different clay mineralogy, with e.g., kaolinite or illites showing
values significantly lower than smectites or vermiculites [4]. Thus, soils with a higher
content of smectites or vermiculites (higher CEC) cause higher attenuation than soils with
equivalent percentages of kaolinite or illites (lower CEC values) [4,78].

Geotechnical laboratory analysis of undisturbed samples of clays [40] suggest a com-
position dominated by kaolinite and illite (Figure S1). Such data allowed us to classify
deposits in the range of “low plasticity clay”, so the presence of high plasticity clay such as
montmorillonite or smectite, as well as high presence of organic matter, can be excluded.
Preliminary results from mineralogical analysis of clay samples between Allerona quarries
and the study site confirmed these results [40], which are also in agreement with literature
data in the region [39]. In the latter case, the presence of kaolinite and illite in mixed clay
phases was clearly highlighted, as well as the total lack of high plasticity clay, confirming
that such a composition can be assumed for the clay fraction at Bargiano. Following such
considerations, the clay composition, with prevailing kaolinite and illite (plus an average
content of 15% CaCO3, [39,40], Table S1), ensured sufficient dielectric conditions for a suc-
cessful GPR survey in a maximum, but variable, depth range of 0.5–1.5 m. This threshold
represents the bottom transition to more compact clays with higher water content, and it
is marked by instantaneous phase attribute, showing an undulated reflection with good
continuity in the above GPR profiles. However, even if the experimental conditions for a
GPR survey found in this study remain critical in humid clays, it is worth noting that the
loss of GPR signal was almost complete in areas covered by a shallow layer of dry, fine, and
unconsolidated clayey deposits (Figure 14a,b, e.g., at the end of profile L13). These deposits
are clearly produced by weathering, followed by re-deposition of the resulting material in
the most topographically depressed zones, such as at the base of the outcropping cololites
as well as downhill of areas with high slope gradients. In such areas, the field scenario is
well matched with GPR simulations, which already highlighted very scarce or null targets
detectable beneath high-conductive surface media. Although resistivity measurements
would certainly help to better constrain the used literature values, thus improving the reli-
ability of software-based models, in absence of dedicated laboratory analysis, we speculate
the high conductivity of finer deposits caused by a selective accumulation and enrichment
of conductive minerals. Such fine deposits reduce the GPR penetration so strongly, already
at a shallow depth (e.g., ground wave), that the detection and interpretation of buried
structures’ reflectivity are hampered in both conventional and amplitude-based attributes
profiles. On the other hand, it is worth noticing the greater amount of information recov-
ered by the instantaneous phase attribute, which independently of amplitudes, extend the
interpretability of structures’ geometry in depth, providing more details of stratigraphic
geometries and boundaries (e.g., Figures 11d, 13b and 14d with right-side inset,h).

From the operative point of view, the complex topographic surface characterized by
steep areas and high density of grooves forced us to pull the GPR antenna along crooked
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tracks instead of using a regularly spaced grid of straight lines. Thus, during the survey,
we took particular care to maintain a slow antenna-pulling velocity, dodging the grooves
to ensure high coupling. In the cases in which it was impossible to drive the GPR antenna
without crossing grooves, we used GPR marks and we took accurate notes of GPR sectors
characterized by amplitude-saturated spikes and reverberations. With this solution, post-
processing trace killing/despiking strategies can be used during the data processing, and
a simple interpretation of disturbed traces can also be considered. However, it is worth
noting that the use of a single antenna for a bidimensional survey was a pro due to its
limited size and maneuverability, whilst a 3D survey e.g., with multi-array antennae, would
not be possible in such field conditions.

To summarize, our GPR study shows we can identify the presence of cololites or
parts of them overall looking at moderate to high amplitude reflections in conventional
GPR profiles (Figures 10b and 12c), with geometries resembling the ones highlighted by
simulations (Figure 9b,d). The study show it is possible to identify with sufficient certainty
structures with minimum dimensions of about 0.5–1 m, although anomalies produced by
centimetric objects are detectable as diffractive patterns, particularly using high operative
frequencies. Furthermore, the GPR amplitude-based attributes provide high reflectivity
bodies whose geometry, in relation to the surrounding media, can be better displayed by
using complementary phase-based attributes (Figures 11a,c and 13a,b). Clearly, the possi-
bility of false positives can occur, as in the case of the profile of Figures 10d and 11b,d. Here,
a package of reflections similar to a buried cololite is provided by the close interaction of
stiff clay blocks and sets of fractures, which, moreover, are well enhanced and recognizable
again using the instantaneous phase attribute.

The GPR survey was effective in restricting the possible excavation area to a more
limited number of sites rather than using a random strategy. Following the results of
GPR survey and excavations, as well as several mapping campaigns and studies already
accomplished on the study site, we define a more complete framework of the study site.
The reconstructed stratigraphic/sedimentological section on the field (Figure 2a) clearly
reveals the occurrence of several superimposed events (WFE), inside exposed or easily
accessible beds, and their presence is further documented in the area [30]. More generally,
this is aligned with the paleogeographic and paleoenvironmental reconstructions, proposed
through years for the study area, of a relatively deep (100–150 m) offshore marine, not far
from the coastline [28–32]. In this environment, marine fossils are diffuse, but the main
accumulations are also associated with shallow whale-fall events [29,30]. As testified by
the unusually high concentration of cetacean remains or cetacean-related ichnofossils in a
restricted area (Figures 1a and 2a), these events should be reasonably more frequent than
revealed at the moment by outcrop evidence.
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Figure 14. Excavation tests at Bargiano site; (a) map of the site, with the position of GPR lines
(blue, purple), anomalies (green dots), excavations (orange lines), and larger cololites (red stars);
(b) position of trench T2L in the area of GPR lines L11 to L14. Black arrows indicate emergence
of vertical joints; (c) trench parallel to line L4; (d) complex morphology across structures C14-C15.
Tubular buried connection between structures C14 and C15 (highlighted by a black dashed box),
correlation with GPR anomalies and reconstructed buried geometry (right-side insets, excerpt of GPR
attributes for L1); (e,f) massive clay bearing shell fragments and bioturbation, from trenches T1L (e)
and T2L (f); (g) shell lag from the baleen site (Figure 2f), comparable to accumulations found in the
T1L and T2L excavations; (h) example of slightly vertical fracture, along trench T2L and comparison
with phase attribute for GPR profile L13 (inset, black arrows indicating the sub-vertical fractures).

5. Conclusions

We propose a GPR workflow to apply to paleontological studies, which integrates
FTDT simulations, experimental surveys onsite, and seismic attribute analysis. In this
paper, we show the GPR potential to provide precious subsurface information for fossils
detection in complex and unfavorable environments such as on clayey deposits. Despite
such complex site conditions, the GPR survey allowed the excavation areas to be restricted
to a few sites, and the ground-truthing confirmed some GPR anomalies related to buried
fossil remains. We carried out a non-invasive investigation down to a maximum depth of
1.5 m and reduced the operational time, costs, and human efforts during the fieldwork;
besides, the mechanical excavation onsite was slower and mostly limited to an average
~0.5 m, except for the extracted cololites C15 found to be deeply connected at depth
with cololite C14. Such logistical limits for the excavation should also be considered in
paleontological surveys, which similarly to archeological sites, are priceless and need to
be preserved. In similar complex conditions, we also remark on the importance of GPR
simulations, which to our knowledge we use for the first time in a paleontological GPR
study. FTDT is fundamental to model the physical properties of media and field conditions
that might be found in the experimental site. As the electrical properties control the
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investigation depth and affect the detectability of targets, it is worth running simulations
to achieve a precise idea of the type of the GPR signature, reflections geometry, and level of
detectability and resolution to expect during the fieldwork. For further applications, this
workflow can be clearly developed and refined with ancillary data from the field, such
as integrating geotechnical, chemical, and mineralogical analysis as well as laboratory
measures of materials’ electric properties. The use of GPR attributes may considerably
improve the extraction of more information from GPR “paleontological” data. We show
how, in this case, the instantaneous phase provides details on the beds’ geometries and
extends the depth range in the profiles sector characterized by strong attenuation. With
this study, we advise the use of the GPR method and its advanced techniques to efficiently
drive targeted excavations in paleontological studies and extend the direct observation.
We aim to have provided an innovative workflow example to paleontologists, promoting
its widespread use as a proficient tool for paleontological studies in complex environments.
Our workflow can considerably reduce the efforts during fieldwork in comparison to a
conventional, random excavation, thus maximizing the results and reducing the impact of
invasive surveys on similar valuable sites.
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