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Abstract: This study is focused on the mineralogical, chemical, and isotopic characterization of
pyrites from the rocks of the Bazhenov Formation (Upper Jurassic–Lower Cretaceous organic-rich
shales, Western Siberia, Russia). Scanning electron microscopy (SEM) revealed pyrites of different
morphologies: small and large framboids, small crystals, and large euhedral crystals; all morphotypes
were usually combined into aggregates. Isotope ratio mass spectrometry (IRMS) and secondary ion
mass spectrometry (SIMS) showed that small framboids and microcrystalline pyrite are isotopically
light, with δ34SCDT varying from −55 to −20‰. Large framboids and euhedral crystals of pyrite
are isotopically heavy with δ34SCDT up to +26‰. Both morphology and δ34S were suggested to be
controlled by the redox conditions and sedimentation regime. The abundance of small framboids
suggests that pyrite sedimentation occurred under anoxic conditions; the presence of the large
framboids and euhedral crystals of pyrite suggest the accumulation of sediments occurred at suboxic
conditions, possibly in the presence of oxygen.

Keywords: pyrite; sulfur isotope composition; unconventional hydrocarbons; shales; redox condi-
tions; framboids; SIMS; Bazhenov Formation

1. Introduction

The Bazhenov Formation of West Siberia is one of the largest source rock formations
in the world. It has been actively studied for more than two decades, and interest in
understanding this formation remains high. The potential of unconventional hydrocarbon
reservoirs is defined by the amount and quality of organic matter, which controls the
genesis of hydrocarbons [1]. Organic matter is actively accumulated and well preserved in
stagnant basins lacking oxygen, i.e., processes that occur at low oxygen (suboxic), oxygen-
free (anoxic), and hydrogen sulfide (euxinic) conditions [2–4].

Pyrite (FeS2) is an authigenic mineral which is abundant in multicomponent organic-
rich rocks [5]. It was shown that the shape and size of pyrite crystals/aggregates are
sensitive to redox conditions, and therefore, the distribution of pyrite morphotypes helps
reconstruct the evolution of paleoredox conditions during sedimentation [6–9]. Pyrite is
present in the rocks as framboids (densely packed spherical aggregates of microcrystals), as
well as crystals of different shapes and sizes, which often form layers and replace organic
remnants.

One of the main directions of our research on unconventional hydrocarbons is study-
ing the size distribution of framboids and individual pyrite crystals, as well as their sulfur
isotope compositions [10–15]. Wang et al. [16] showed that the bulk sulfur isotopic com-
position could be misleading for determining the sedimentation environment, as pyrite
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undergoes significant changes during dia- and cata-genesis. Therefore, it is very important
to look at the isotopic composition of individual crystals and distinguish pyrite morphol-
ogy in the rocks. The main source of sulfur in such a sedimentary system is seawater,
where the predominant marine aqueous species of sulfur is sulfate-ion (SO4

2−). Under
oxygen-depleted conditions and with the presence of sulfate-reducing bacteria, sulfur is
being reduced by changing its oxidation state from +6 to −2. As a result, hydrogen sulfide
(H2S) is formed. There are four stable isotopes of sulfur (32S, 33S, 34S, and 36S), and 32S and
34S are the most abundant and represent more than 99% of the total sulfur isotopes [17,18].
Delta-notation δ34S is used to express the deviation of 34S/32S measured in a system from
a standard material:

δ34Ssample(‰) =

(Rsample − RCDT

RCDT

)
∗ 1000, (1)

where Rsample is a ratio of 34S/32S in a sample and RCDT is 34S/32S (=0.04416) in the Canyon
Diablo Troilite standard [19,20].

The goal of our work is to estimate the potential of morphology and δ34S of pyrite in
reconstructing redox conditions in the well section of the late Jurassic–early Cretaceous
sedimentary rocks of the Bazhenov Formation. We conducted a lithological and geochemi-
cal study on selected rocks and minerals by first distinguishing pyrite morphotypes and
their distribution in the well section, and then comparing δ34S in the bulk rock determined
by Isotope Ratio Mass Spectrometry (IRMS) with δ34S in the individual pyrite crystals
and framboids evaluated by Secondary Ion Mass Spectrometry (SIMS). This combined
instrumental study of the sediments in the Bazhenov Formation is novel.

2. Geological Setting

The study area is situated in the North of the West Siberian Basin in the area of the
Gydan Peninsula and encompasses the interval of the Late Jurassic to Early Cretaceous
(Figure 1). Deposition of the sediments under investigation lasted for more than 8 Ma at the
Jurassic-to-Cretaceous transition and corresponded to environments of the transgression
of a marine basin area of more than 2 million km2. Deposits of the Bazhenov Formation
are underlain by marine terrigenous deposits of the Abalak or Georgiev Formation, Upper
Jurassic, and are overlain by Lower Cretaceous argillites and sand-clay clinoforms. In the
opinion of Afanasiev I.S. et al. the Bazhenov basin was rather shallow-water, that being
witnessed by a 200–300 m difference between occurrence depths of the shelf (undafrom)
and deep-water (fondoform) parts of the Lower Cretaceous clinoforms [21]. Deposits of
the central parts of the basin show biogenic sedimentation and are represented by pre-
dominantly siliceous, argillaceous–siliceous, and carbonate–argillaceous–siliceous deposits
enriched in an organic matter [22–25].

Various amounts of terrigenous material as an admixture to the above-said lithology
are associated with different stages of the sea-level stand. It was believed for a long time
that near-bottom layers of the Bazhenov basin were hydrogen sulfide contaminated, but
findings of deposit eaters and geochemical studies confirm the presence of hydrogen
sulfide-free areas [26].

The Bazhenov Formation deposits are spread all over the territory of West Siberia, with
the thickness of 10 to 60 m, being 30 m thick on average; occurrence depths of the formation
top increase northward and are 600 m minimum and 3800 m maximum [25,27,28].

In terms of mineral composition, the Bazhenov Formation is represented by multi-
component rocks consisting of silica, clay minerals, calcite, pyrite, and feldspars in various
percentage proportions. Rock composition is different in the central and peripheral parts
of the formation’s distribution area. The mean content of organic carbon in Bazhenov
Formation rocks is 5–10% wt.; in exceptional cases, it can reach 25%. Pyrite is a ubiq-
uitous component of the rock. Several stages of rock pyritization are observed: finely
dispersed early-generation pyrite forms organo–mineral complexes with organic matter,



Geosciences 2021, 11, 355 3 of 15

while later-generation pyrite is developed non-uniformly and may form thin laminae and
lenses [21].

Close to the study area, large and giant gas, gas-condensate, and oil fields are situated,
though quite a small number of wells with coring from the Bazhenov deposits have been
drilled in the North of West Siberia, that make the material for the performed studies quite
unique.
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Figure 1. Research area (left) and stratigraphic column of the region (right). Figures modified after Ulmishek [29].

3. Materials and Methods

Samples for our study were obtained from the well core, which is in the north part
of Western Siberia. These bulk samples are high-carbon thin clay–siliceous rocks that
belong to the Bazhenov Formation, which corresponds to late Jurassic–early Cretaceous
geologic time. Preliminarily, gamma-ray logging was recorded on a full-size core to
calibrate the core recovery depths to measured depths during logging and to characterize
the natural radioactivity of the rocks. Then, we applied lithological, mineralogical, and
geochemical methods to evaluate: (i) rock texture; (ii) distribution of organic matter and
pyrite in geological section; (iii) morphology of pyrite at micro and nanoscales; and (iv) δ34S
of pyrite.

3.1. Characteristics of Texture and Organic Matter

Texture and organic matter of the selected samples were evaluated at the Skolkovo In-
stitute of Science and Technology (Russia). A total of thirty-nine thin sections (2 cm × 3 cm
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in size) were prepared by slicing the core rock in the direction perpendicular to sedimentary
layers for textural characterization. A total of 150 samples were collected to determine
the abundance of organic matter or total organic carbon (TOC). Rock texture and dis-
tribution of organic matter were examined with a Carl Zeiss Axio Imager transmitted
light polarization microscope. Micro-textures of the rocks, pyrite morphology, and major
element content were examined on the freshly chipped rock fragments with two scanning
electron microscopes (SEM): JSM 6610 LV (JEOL) equipped with an energy dispersive
X-ray spectrometer (EDS) (IE350, OXFORD INSTRUMENTS) and Quattro S (Thermo Fisher
Scientific) equipped with EDS (XFlash 6|60, Bruker). Mineral compositions of the rocks
were determined with X-ray diffraction (XRD) on a Rigaku SmartLab instrument. The
organic matter content and type of kerogen was evaluated with the pyrolysis Rock-Eval
method on a Hawk Resource Workstation (Wildcattechnology).

3.2. Mass Spectrometry Analyses

Sulfur isotope composition and sulfur content in the bulk rocks were determined
by isotope ratio mass spectrometry using an EA-IRMS system, consisting of an isotope
ratio mass spectrometer IRMS Delta V plus (Thermo Fisher Scientific, Bremen, Germany)
coupled to an Elemental Analyzer Thermo Scientific Flash 2000 (Thermo Fisher Scientific,
Milan, Italy). The system provides combustion of total sulfur from the sample in SO2-gas
at 1020 ◦C, with subsequent measurement of its sulfur isotope composition. The reference
materials used for calibration were: Sulfate NBS 127 δ34S: +21.3‰, Methionine δ34S: +9.3‰,
and 4,4-Diaminodiphenyl sulfone δ34S: +6.0‰. δ34S values are reported relative to Vienna
Canyon Diablo troilite (V-CDT). Two or more technical replicates of each sample were
measured with an uncertainty lower than 0.5‰.

The sulfur isotope compositions of individual crystals and pyrite aggregates were an-
alyzed using the CAMECA ims-1290 ion microprobe in the Department of Earth, Planetary,
& Space Sciences, University of California Los Angeles (USA). The samples, together with
the standards (Ruttan pyrite and Chisel sphalerite) were mounted in epoxy (Buehler) and
polished using 600, 800, and 1200 grit silicon carbide paper (Buehler) followed by 1 µm
Al2O3 powder (Mark V Laboratories). Prior to ion microprobe, the mounts were examined
with optical microscopy, coated with a 20 nm layer of gold, and examined by SEM at MSU.
Sulphides were clearly visible with both microscopy techniques. EDS spectra allowed
distinction between Fe and Zn sulphides embedded in the aluminosilicate matrix.

Single-spot sulphur isotope analyses (δ34S) were conducted using a ~0.25 nA Cs+
primary beam. Data were acquired in multicollection mode, with two Faraday Cups (FC
for 32S and FC2 for 34S). Mass resolution was set at 3000 to isolate the peaks of interest from
interferences (e.g., 32S from O2). Prior to signal collection, each spot was pre-sputtered for
30 seconds to achieve sputtering equilibrium. Each spot analysis consisted of 10 cycles
for both standards and samples, with a five-second counting time in each cycle. For the
standards, the average 32S count rates on the FC detector were ~4 × 108 and 5 × 108 cps
(counts per second) for Ruttan pyrite and Chisel sphalerite respectively. The stability of
the instrument was constantly monitored, and the instrumental mass fractionation was
determined by analyzing the standard several times throughout each analytical session.
The reproducibility of the standard (mounted together with samples) was better than 0.3‰
(standard deviation [SD]).

Instrumental mass fractionation (IMF) was calculated as:

IMF =
RMeasured

Standard

RTrue
Standard

(2)

where R = 34S/32S of the standard was measured by SIMS (RMeasured) and determined
independently (RTrue). IMF varied from 0.9998 to 0.9996 (i.e., from −0.4 to −1.2‰) for
Ruttan pyrite, and was more constant (IMF = 0.995) for Chisel sphalerite (i.e., −5‰).
According to Kozdon et al. [30], instrumental mass fractionation for chalcopyrite (−1.7‰)
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is lower than for sphalerite (−3.2‰). Therefore, data reported for chalcopyrite are subject
to a few ‰ systematic uncertainty and should be used with extra caution. The same is
applicable to isotope data in FeS.

4. Results
4.1. Lithology and Organic Matter

Late Jurassic–Early Cretaceous sedimentary rocks were collected from the Georgiev
and the Bazhenov formations. The section consists of argillaceous–siliceous–rocks with
rare lamination of carbonate rocks (Figure 2).
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The rock classification scheme is based on structural characteristics and the amount of
organic matter:

1. Argillaceous–siliceous mudstone with thin interlayering of organic-rich and organic-
poor laminae and rare bioturbation

2. Argillaceous–siliceous organic-rich mudstone with planar microscale lamination
3. Argillaceous–siliceous massive mudstone with bioturbation
4. Argillaceous–siliceous indistinctly laminated mudstone

The rocks have similar mineral compositions and contain on average 42% clay minerals
(predominantly illite), 38% quartz, up to 15% feldspars, up to 17% pyrite, and in some cases,
up to 3% dolomite according to XRD analysis. Furthermore, ZnS (sphalerite or wurzite) and
CuFeS2 (chalcopyrite) were found using EDS SEM in the rocks. Based on the geochemical
and lithological characteristics, eight members can be distinguished (Figure 2).

The amount of total organic carbon (TOC) is one of the main criteria in classification of
lithotypes and characteristics. The TOC content varied from 0.5 to 12% within the section,
having an average of 4.8%. Kerogen type II was the predominant species, but kerogen
of the mixed type (II+III) was present in some members. The base of the studied well
corresponded to the Georgiev horizon and contained a low abundance of organic matter,
on average 2.3%. The higher TOC content was present in the Bazhenov Formation, with an
average value of 4.8%. In the Bazhenov Formation, members 1, 2, 3, 5, and 7 were enriched
in TOC, whereas members 4, 6, and 8 were relatively depleted in TOC. In the first member,
TOC varied from 2.8 to 9.9% (with an average of 5.8%) and the kerogen type was II. In the
second member, the TOC variation was smaller (3.4–6.7%) and the average TOC values
was 4.7%, which was slightly lower than TOC in the first member. The higher TOC values
(6.4–11.6%, 8.8% on average) were found in the third member with kerogen type-II. In the
higher member (№4), the kerogen changed to mixed type (II+III) with TOC of 1.4–7.3%
(4.3% in average). In members 5 and 7, the predominant kerogen type was II and TOC
contents were higher: 4.0–8.7% with an average of 7.1% in member 5 and 6.3–9.5% with an
average of 7.6% in member 7. The mixed type of kerogen (II+III) occurred in members 6
and 8 with lower TOC of 0.5–4.3% (2% in average).

4.2. Pyrite Morphology

According to XRD analysis, the abundance of pyrite in the rocks varied from 3 to 17%
(7% on average). Four morphological types of pyrite were identified using SEM (Figure 3):

1. Small framboids (diameter 5–10 µm) concentrations of sub-micron pyrite crystals
0.5–1 µm in size (Figure 3a). These framboids were porous, abundant in the sediment
layers with high carbon content, and were often associated with organic matter.

2. Large framboids were denser and less porous (without space between micro-crystals)
than small framboids. Diameter of large framboids could reach 30 µm and consisted
of microcrystals with the size range of 2–5 µm (Figure 3b).

3. Small crystals (1–2 µm in size) were non-uniformly distributed in lenses and layers
(Figure 3c,d). Small crystals were often abundant within bioturbation traces and
organic remnants.

4. Large euhedral crystals (15–30 µm in size) were non-uniformly distributed in layers
and aggregates within the rocks (Figure 3e,f).



Geosciences 2021, 11, 355 7 of 15Geosciences 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Morphologies of pyrite in the studied sediments (SEM images in secondary electrons 
mode): (a) Small framboids; (b) Large framboids; (c,d) Small crystals; and (e,f) Large euhedral 
crystals. Scale bars shown on each image. 

Figure 2 graphically shows the different pyrite morphologies There are intervals where: 
• Framboids predominant (members 1–5); 
• Framboids alternated with small crystals, which replaced organic remnants 

(Georgiev Formation and members 6–8); 
• Large crystals localized in the layers of the upper portion of the section (member 8). 

Additional SEM images showed the textural difference between the aggregate inte-
rior and the rim (Figure 4a–h). The inner part of the aggregate has numerous pits filled 
with nano-sized crystals (Figure 4e,g), whereas the outer parts have coarse crystals (Figure 
4f,i,h). These coarse crystals (>10 μm) have pronounced grain boundaries (Figure 4a–c). 
The boundary between inner and outer portions of the aggregate is shown on Figure 4f,h,i. 
Moreover, SEM EDS mapping showed the presence of Mn predominantly in the outer 
part of the aggregate (Figure 5d), where δ34S values are positive. 
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Figure 2 graphically shows the different pyrite morphologies There are intervals
where:

• Framboids predominant (members 1–5);
• Framboids alternated with small crystals, which replaced organic remnants (Georgiev

Formation and members 6–8);
• Large crystals localized in the layers of the upper portion of the section (member 8).

Additional SEM images showed the textural difference between the aggregate interior
and the rim (Figure 4a–h). The inner part of the aggregate has numerous pits filled with
nano-sized crystals (Figure 4e,g), whereas the outer parts have coarse crystals (Figure 4f,i,h).
These coarse crystals (>10 µm) have pronounced grain boundaries (Figure 4a–c). The
boundary between inner and outer portions of the aggregate is shown on Figure 4f,h,i.
Moreover, SEM EDS mapping showed the presence of Mn predominantly in the outer part
of the aggregate (Figure 5d), where δ34S values are positive.
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Imaging with SEM EDS yielded homogeneous distribution of S and Fe within large
pyrite aggregate confirming that it consist entirely of FeS2. In contrast to S and Fe, analysis
shows that Mn was depleted in the center and enriched near the rim of the aggregate
(Figure 5).

4.3. Sulfur Isotope Composition (Bulk IRMS)

Seventeen samples were analyzed with IRMS for evaluating bulk δ34S in the core
(Figure 2). The accuracy of bulk isotope analysis is supported by the predominance of
pyrite, the main host of sulfur, as only the trace amounts of ZnS sphalerite and chalcopyrite
were identified with SEM EDS present in the upper portion of the section only. The obtained
values of δ34SCDT varied from −37.3 to +4.2‰. Although most of the samples were isotopi-
cally light (i.e., −37.3 ≤ δ34SCDT ≤ −18.6‰), there were three samples where δ34SCDT
exceeded −18‰: −7.8‰ (member 5); −4.4‰ (member 6); and +4.2‰ (member 8).

4.4. Sulfur Isotope Composition of Individual Pyrites (SIMS)

To determine δ34S of the identified morphotypes of pyrite, four samples were selected
from the different members of the section (Figure 2). Thirty-six spot analyses were con-
ducted using SIMS (Table A1) and the ranges of isotope data for each morphology in each
sample are presented in Table 1. Overall, δ34SCDT varied from −55 to +26‰. The lightest
sulfur (δ34SCDT = −55.38‰) was observed in small pyrite framboids (Figure 6a). The heav-
iest sulfur (δ34SCDT = +26.49‰) was trapped in the outer portion (rim) of the aggregate of
large euhedral pyrite crystals (Figure 5c). The inner portion (center) of the same aggregate
is isotopically lighter (−32.79 ≤ δ34SCDT ≤ −21.72‰) and the border between “heavy” rim
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Table 1. SIMS data.

Sample Number of Points Morphology Size, µm δ34SCDT, ‰

1 7 Aggregate of euhedral crystals 250*150 (−32)–(+26)
2 2 Large framboids 10–15 (−14)–(−16)
3 3 Aggregate of small framboids 30 (−55)–(−35)

3 4 Consolidated aggregate of
small crystals or framboids 30–70 (−22)–(−12)

4 5 Aggregate of small crystals or
framboids 15–20 (−40)–(−22)

4 3 Aggregate of small framboids 7–10 (−17)–(−29)

5. Discussion

Sulfur isotopes are useful for studying the origin of pyrite (i.e., involvement of mi-
croorganisms in crystallization process). The range of sulfur isotope composition, observed
in our study, suggests pyrite crystallization was caused by microbial sulfate reduction [31],
which produced isotopically light hydrogen sulfide, i.e., δ34Ssulfide-δ34Ssulfate was as large
as −77‰ [32,33]. The observed variation in sulfur isotope compositions and morphologies
of pyrite was likely controlled by changes in redox conditions during sedimentation and
burial processes as well as by Ryleigh fractionation. At reduced or oxygen-depleted condi-
tions, isotopically light pyrite could crystallize above the sediment-water boundary or in
the upper layer of sediments having an excess of marine sulfate (i.e., open system). During
diagenesis, crystallization of pyrite could occur in porewaters, where access to sulfate is
restricted (i.e., system is closed) and progressively reduced sulfate became enriched in 34S.
As a result, sulfide and pyrite became isotopically heavy compared to those in the open
system.

In an open system, crystallization of small framboids of isotopically light syngenetic
pyrite (δ34S = −62 to −50‰) is expected [32,33], which was likely the case for pyrites from
our study where δ34S values of small pyrite framboids were as low as −55.38‰ (Figure 6a),
suggesting pyrite formed in anoxic conditions or/and in the presence of hydrogen sulfide.
The change in depositional environment from open to closed system can explain the
observed wide isotopic range (Table A1). In the large pyrite aggregate, δ34S was negative
in the center and positive at the rim (δ34S > + 15‰) (Figure 6c). The porous nature of the
aggregate center suggests that it consists of small framboids and probably was deposited at
a high rate, as was previously observed [8,34]. An increase of δ34S (from −33 to +26‰) with
this aggregate can be explained by Rayleigh fractionation (discussed further in the text). In
the late Jurassic, δ34Ssulfate varied from +15 to +20‰ [35] or from +17 to +18‰ [36], with
the average value of 17.5‰, and therefore, the expected δ34S of accumulated pyrite should
not exceed this δ34Ssulfate value. This restriction is not necessary for instantaneously
precipitated pyrite. A gap between negative and positive values of δ34S in pyrite aggregate
can be explained by suppression of the pyrite crystallization due to temporary oxygenation
of the depositional environment. The later diagenesis allowed the development of sulfate-
reducing and oxygen-depleting anaerobic microorganisms, which caused an increase
in hydrogen sulfide in porewaters and crystallization of isotopically heavy, large pyrite
crystals (in the rim of the large aggregate) at a probably slow growth rate. Magnall et al. [37]
made a similar conclusion on their work in Canada. The lack of sulfate exchange between
porewater and seawater caused progressive 34S enrichment in sulfate, hydrogen sulfide,
and pyrite.

The effort was taken to explain this isotope fractionation with a Rayleigh model. A
Rayleigh equation was applied to explain the isotopic fractionation by calculating the
evolution of δ34S of the dissolved sulfate, instantaneous sulfide, and accumulated pyrite as
a function of the fraction of sulfate (f) controlled by microbial sulfate reduction:

δ34Ssul f ate =
(
δ34Ssul f ate0 − 1000

)
· f α−1 − 1000, (3)
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δ34Ssul f ide = δ34Ssul f ate − 72.88 (4)

δ34Spyrite =

(Rsul f ate0

RCDT
·1 − f α

1 − f
− 1

)
·1000, (5)

here Rsul f ate0 is an initial ratio of 34S/32S in sulfate (when f = 1); isotope difference between
sulfide and sulfate (i.e., δ34Ssul f ide − δ34Ssul f ate) is −72.88‰ [33]; α is an apparent fraction-

ation factor between dissolved sulfide and sulfate: α =
Rsul f ide
Rsul f ate

= 1 +
δ34Ssul f ide−δ34Ssul f ate

1000 =

1 − 0.07288 = 0.927; α is not a thermodynamic fractionation factor as it depends on the
reduction rate of sulfate (e.g., Fry et al. [38]). The chosen fractionation factor (0.927) is
within the range of previously reported values [33,39,40]. We selected fractionation magni-
tude (−72.88) as a difference between δ34S of the minimum measured value in pyrite and
sulfate of Jurassic seawater. The selected fractionation is bigger than those (up to −66‰)
obtained in the cultured experiment of Sim et al. [41]. However, it is at the highest end of
fractionation observed in natural systems (up to −72‰) by Canfield et al. [42], within the
theoretic limit (−75.7‰) Otake et al. [43], and within the ranges (up to −77‰) reported in
Rudnicki [32] and Brunner [33].

The selected magnitude fractionation (−72.88‰) allowed fitting bulk and SIMS data
with the Rayleigh model, via adjusting the f value for accumulated and instantaneous sul-
fide, respectively (Figure 7). If fractionation of −66‰ from Sim et al. [41] is assumed, then
the Rayleigh model cannot fit the most negative SIMS datum (i.e., −55.38‰). Evolution
curves of δ34S of the remaining sulfate and instantaneous sulfide with f are always different
by −72.88‰ (Figure 7a, Equations (3) and (4)). No isotope fractionation between aqueous
sulfide and pyrite was assumed while plotting measured δ34Spyrite versus f determined
by Equation (5). The reason why offsets between pyrite and aqueous sulfur species vary
with f is that as soon as pyrite crystallized, it did not interact with sulfate or sulfide. When
sulfate reduction was completed, the accumulated pyrite has δ34S values equal to the initial
sulfate δ34S: δ34Spyrite, f=0 = δ34Ssul f ate, f=1 = δ34Ssul f ate0 = 17.5‰ (Figure 7a, dashed line).
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The Rayleigh fractionation curves for accumulated pyrite and instantaneous sulfide
(pyrite) fit δ34Spyrite data measured with bulk IRMS and in situ SIMS techniques, respec-
tively (Figure 7b). The large gap between negative and positive SIMS δ34Spyrite data
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(Figure 7b) suggests that there was an interruption in pyrite growth (or at least a decrease
of the crystallization rate), which is also shown by the distribution of δ34S within the pyrite
aggregate (Figure 6c). This fact confirms the change in pyrite growth regime and suggests
that the progressive development of anoxic conditions along with the exhausting of sulfate
led to a reduction in Mn-oxides from sediment porewater under low Eh conditions. The
higher concentration of Mn in pore water at the late stage of diagenesis contributed to
the coprecipitation of Mn during formation of outer parts of pyrite aggregates [44,45].
The observed isotopic, elemental, and textural features suggest that the growth of the
outer layer occurred at conditions different from those that enhanced growth of the pyrite
aggregate interior. The large variability in sulfur isotopes and trace elements within a single
grain of pyrite was reported by Nabhan et al. [46]. They suggested that the growth of the
pyrite rim, enriched in Ni and Co and depleted in δ34S, occurred from pore fluids enriched
in isotopically light sulfide and in Ni and Co derived from weathering of ultramafic rocks.

6. Conclusions

Four types of pyrite were identified in the sediments of the Bazhenov Formation of
Siberia: small framboids, aggregation of small crystals, large framboids, and large euhedral
crystals. Sulfur isotopes analyses show small framboids and microcrystalline pyrite are
isotopically light, with δ34SCDT varying from −55 to −20‰. Large framboids and euhedral
crystals of pyrite are isotopically heavy with δ34SCDT up to +26‰.

The dominating abundance of small framboids suggests that pyrite sedimentation in
the section of the Bazhenov Formation occurred under anoxic conditions with the presence
of hydrogen sulfide above sediment-water boundary or in the upper layer of sediments
with an excess of marine sulfate. These conditions are favorable for the accumulation of
organic matter. The presence of the large framboids and euhedral crystals of pyrite in
several sediment layers suggests another pattern of sulfide formation. The accumulation of
sediments occurred at suboxic conditions; the depositional environment was unfavorable
for pyrite formation. Anoxic conditions, necessary for microbial sulfate reduction and
sulfide formation, have been developed in porewater of these layers during the burial
of sediments, which decreased the connectivity between the porewater and overlying
seawater and formed in diagenesis a restriction in respect to the oxygen and sulphate
system. Therefore, the presence of the large framboids and euhedral pyrite crystals suggest
conditions unfavorable for the accumulation and preservation of organic matter.
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Appendix A

Table A1. Detailed SIMS results.

№ Sample Morphology Size, µm δ34S Mineral and Element Composition (EDS)

1 1 Aggregate of euhedral crystals 250 15.05 FeS2
2 1 Aggregate of euhedral crystals 250 26.49 FeS2
3 1 Aggregate of euhedral crystals 250 25.58 FeS2
4 1 Aggregate of euhedral crystals 250 21.80 FeS2
5 1 Aggregate of euhedral crystals 250 −23.55 FeS2
6 1 Aggregate of euhedral crystals 250 −21.72 FeS2
7 1 Aggregate of euhedral crystals 250 −32.79 FeS2
8 1 Single crystal 12 −14.39 CuFeS2
9 2 Small framboid 10 −14.40 FeS2 (contaminated Si = 5.08 at%)
10 2 Euhedral crystal 40 −18.08 ZnS
11 2 Euhedral crystal 40 −18.56 ZnS
12 2 Large framboid? - −13.51 FeS2
13 2 Large framboid? - −15.84 FeS2
14 2 - 20 −15.9 ZnS (contaminated with Cu, Fe, Si, Al)
15 2 - 10 −10.72 FeS2
16 2 Framboid aggregate 10 −8.95 FeS (contaminated with Zn, Si, Al)
17 3 Aggregate of small framboids 10 −22.49 FeS
18 3 Small framboid 10 −36.28 FeS2
19 3 Aggregate of small framboids 30 −55.38 FeS2
20 3 Aggregate of small framboids 30 −35.47 FeS2
21 3 Consolidated aggregate 72 −19.52 FeS2
22 3 Consolidated aggregate 72 −21.05 FeS2
23 3 Consolidated aggregate 27 −12.51 FeS2
24 3 Consolidated aggregate 27 −22.02 FeS2
25 4 Aggregate of small framboids 20 −22.87 -
26 4 Aggregate of small framboids 20 −30.39 -
27 4 Aggregate of small framboids - −40.51 -
28 4 Aggregate of small framboids - −26.02 -
29 4 Aggregate of small framboids - −30.79 -
30 4 Aggregate of small framboids 7–10? −16.96 -
31 4 Aggregate of small framboids 7 −28.87 FeS2
32 4 Aggregate of small framboids 10 −26.51 FeS
33 4 Small framboid 7–10? −18.11 FeS
34 4 Small framboid 5 −20.59 FeS (contaminated with Mn)
35 4 Small framboid 7 −14.35 FeS (contaminated with Mn)
36 4 Small framboid 7 −31.12 FeS (contaminated with Mn)

Isotope data for CuFeS2 and FeS are subject to a few permille errors because of the absence of matrix-matched SIMS standards. Therefore,
these data should be used with caution.
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