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Abstract: Entropy models have been recently adopted in many studies to evaluate the shear stress
distribution in open-channel flows. Although the uncertainty of Shannon and Tsallis entropy models
were analyzed separately in previous studies, the uncertainty of other entropy models and compar-
isons of their reliability remain an open question. In this study, a new method is presented to evaluate
the uncertainty of four entropy models, Shannon, Shannon-Power Law (PL), Tsallis, and Renyi, in
shear stress prediction of the circular channels. In the previous method, the model with the largest
value of the percentage of observed data within the confidence bound (Nin) and the smallest value of
Forecasting Range of Error Estimation (FREE) is the most reliable. Based on the new method, using
the effect of Optimized Forecasting Range of Error Estimation (FREEopt) and Optimized Confidence
Bound (OCB), a new statistic index called FREEopt-based OCB (FOCB) is introduced. The lower the
value of FOCB, the more certain the model. Shannon and Shannon PL entropies had close values of
the FOCB equal to 8.781 and 9.808, respectively, and had the highest certainty, followed by ρgRs and
Tsallis models with close values of 14.491 and 14.895, respectively. However, Renyi entropy, with the
value of FOCB equal to 57.726, had less certainty.

Keywords: water resources; uncertainty; shear stress distribution; circular channel; entropy; Shannon;
Shannon-Power Law (PL); Tsallis; Renyi

1. Introduction

In circular open channels, shear stress distribution has been experimentally studied
by many researchers [1–3]. Numerical and analytical models have also been developed to
predict shear stress distribution along channels [4–7]. Recently, soft computing enabled
researchers to estimate shear stress distribution in open channels [8–16].

The novel application of the entropy theory has been successful in modelling velocity
distribution [17–19], the transverse slope of stable channels banks [20,21], and shear stress
distribution [22]. For the first time, Chiu introduced models for estimating the shear stress
and velocity distribution in open channels using the Shannon entropy concept [23]. Sterling
and Knight developed equations based on Shannon entropy for predicting boundary
shear stress [24]. However, their study showed limitations in reflecting some hydraulic
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characteristics of flow in open channels, but their results indicated that this method could
reasonably well predict the shear stress distribution. Sheikh and Bonakdari employed the
Shannon entropy concept and Power Law (PL) techniques to develop new equations for
predicting shear stress distribution [25]. Their results compared with measured data and
showed that their proposed Shannon PL model had good potential for practical applications
besides Shannon entropy.

Renyi entropy is defined as a generalized form of entropy that was introduced by
Renyi [26]. Renyi entropy can be considered a generalization of the Shannon entropy, as
Shannon entropy is a particular case of Renyi entropy [27,28]. Tsallis proposed an entropy
as a generalization of the Shannon entropy comprising a supplementary parameter called
“Tsallis entropy” [29]. Tsallis entropy with non-additive parameters are less susceptible to
the form of the probability distribution [30]. Tsallis and Renyi entropies were applied to
characterize threshold channel bank profiles and sediment concentration distribution [31,32].

Bonakdari et al. showed that the Tsallis method is suitable for the calculation of shear
stress distribution along the wetted perimeter with reasonable accuracy [33]. Khozani
and Bonakdari employed the Renyi entropy and presented a novel prediction model [22].
Although many studies were carried out on entropy models, wide implementation of
entropy models has not taken place due to the absence of enough confidence in these
models compared to previous conventional models in estimating flow variables. Thus, it is
beneficial to analyze the uncertainty of entropy models and compare their performance
with previous traditional models.

The uncertainty analysis of many hydraulic and hydrological models has been tackled
by many researchers [34–47]. Thiemann et al. developed a Bayesian formulation, which per-
mits the hydrologist to quantify uncertainty [48]. The method is called Bayesian Recursive
Estimation (BaRE).

Misirli et al., using BaRE and Monte-Carlo simulation (BMC), presented an uncertainty
method to analyze streamflow uncertainty [36]. The uncertainty method of Misirli et al. was
applied to the uncertainty analysis of the Shannon entropy model in estimating the velocity
distribution [49]. Kazemian-Kale-Kale et al., with the improved uncertainty method used
in previous studies [32,36,44,45,48,49], analyzed uncertainty of the Tsallis entropy model
in predicting shear stress distribution [50]. They emphasized the necessity to normalize
the shear stress data for the uncertainty analyses. Then, they calibrated the model to select
the best sample size (shear stress data considered under different hydraulic conditions)
and finally analyzed the uncertainty of the Tsallis entropy model using this sample size
(SS). Although their results were well capable of analyzing the uncertainty of the Tsallis
model, their calibration method was difficult, and they did not discuss the performance of
the different transfer functions to normalization in the uncertainty results.

Therefore, in another study, Kazemian-Kale-Kale et al. simplified the calibration
method of their previous study. In addition to the Box–Cox function, Johnson’s function
was used to analyze the Shannon entropy uncertainty [51].

In the present study, the uncertainty of the four different entropy models of Shannon,
Shannon PL, Tsallis, and Renyi are compared to predict shear stress in the circular channels.
The uncertainty prediction is implemented by modifying the uncertainty method presented
in previous research [51], and a novel uncertainty method is introduced. In addition, as
a criterion for comparison, the uncertainty of the ρgRs model (the common model in
prediction of shear stress values) is evaluated, as well. At first, the uncertainty method
introduced by Kazemian-Kale-Kale et al. [51] introduced the uncertainty method based on
the BMC method briefly introduced as the Hybrid Bayesian and Monte-Carlo Estimation
System (HBMES-1).

In this study, the HBMES-1 method to determine whether or not with a 95% confidence
bound (95%CB), entropy models are sufficiently certain to predict shear stress in circular
channels. The answer to this question is determined by the percentage of measured data
within the confidence bound (Nin), but the values of FREE statistics should also be checked
for the accuracy of each model relative to the Nin. FREE is a statistical index equal to the
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absolute sum of the measured data within the confidence bound (|FP|) and the absolute
sum of the measured data outside the confidence bound (|FN|).

It is difficult to compare the certainty of five shear stress prediction models. I Therefore,
the HBMES-1 method is further improved in this study, and the uncertainty method is
presented as HBMES-2. The Minimum CB that covers all measured data, OCB (Optimized
Confidence Bound), is defined by employing the HBMES-2 method. Then, based on the
OCB, the FREE statistic is optimized and is called FREEopt.

Given the value of OCB and FREEopt, the FOCB statistic is introduced that can show
the effect of all uncertainty statistics. The drawn OCB represents the width of the confidence
bound, which is a quantitative statistic for estimating uncertainty. In addition, FREEopt,
which represents the absolute sum of the measured data within the OCB, is a qualitative
statistic for estimating uncertainty. FOCB shows the degree of qualitative and quantitative
uncertainty of shear stress models. Therefore, it is easy to make a comparison using only
one statistic (FOCB) in HBMES-2 method.

2. Materials and Methods
2.1. Entropy Models
2.1.1. Shannon Model

Sterling and Knight employed Shannon entropy to present a model to predict shear
stress distribution in circular channels as follows [24]:

τ =
1

λ0
ln
[

1 + (eλ0τmax − 1)
y

P/2

]
(1)

where τ is the local shear stress distribution, τmax is the maximum shear stress, P is the
wetted perimeter of the circular channel, and y is the specific point in wetted perimeter,
on which we want to obtain the shear stress on; value changes between 0 to P/2. Figure 1
shows the circular cross-section with related notations used in models.
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Figure 1. Cross-section of a circular channel section with a flat bed and its notation. Figure 1. Cross-section of a circular channel section with a flat bed and its notation.

In Figure 1, D is the diameter of the channel, t is the height of the flat bed, and h is the
water depth. Pw is the wetted perimeter of the channel wall and Pb is the wetted perimeter
of the channel bed, and their summation is equal to P. Therefore, the wetted perimeter of
bed and wall of the channel is calculated at different heights of (h + t/D) ratios. The shear
stress values are only computed for half the wetted perimeter due to section symmetry
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and hydraulic characteristics. In Equation (1), λ0 is the Lagrange multiplier that can be
determined as [24]:

1
λ0

=

[
τmaxeλ0τmax

eλ0τmax − 1
− ρgRs

]−1

(2)

where ρ is the fluid density, g is the gravity coefficient, R is the hydraulic radius, and s is the
channel slope. In a circular channel with a flat bed, Equation (1) can be written as [24,33]:

τw =
1

λ0w

[
1 +

(
eλ0wτmax(w) − 1

)2(y− yw)

Pw

]
yw ≤ y ≤ Pw

2
(3)

τb =
1

λ0b

[
1 +

(
eλ0bτmax(b) − 1

)2(y− yw)

Pb

]
Pw

2
≤ y ≤ Pb

2
+ yw (4)

where τmax(w) and τmax(b) are the maximum shear stress at the wall and the bed of channel,
respectively; Pw and Pb are the wetted perimeter corresponding to the wall and bed of the
channel, respectively; and yw is an offset and taken as 5 mm in the analysis.

The equations presented by Knight et al. were used to predict the mean and maximum
shear stress for the wall and bed of a circular flat bed channel as [52]:

τw

ρgRS
= 0.01%SFw(1 + Pb/Pw) (5)

τb
ρgRS

= (1− 0.01%SFw) (1 + Pb/Pw) (6)

τmax(w)

ρgRS
= 0.01%SFw

[
2.0372(Pb/Pw)

0.7108
]

(7)

τmax(b)

ρgRS
= (1− 0.01%SFw)

[
2.1697(Pb/Pw)

−0.3287
]

(8)

where τw and τb are the mean wall and bed shear stress, respectively, and %SF is the wall
shear force percentage determined by the following equation [24]:

%SFw = Cs f exp(−3.23 log(Pb/C2Pw + 1) + 4.6052) (9)

where C2 = 1.38 and Cs f = 1.0 for Pb
Pw

< 4.374, otherwise Cs f = 0.6603(Pb/Pw)
0.28125.

2.1.2. Shannon PL Model

Sheikh and Bonakdari proposed the following equation to predict shear stress in
circular channels [25]:

τ = τmax(
y

P/2
)

1/n′

(10)

where n′ is a non-dimensional parameter computed as [25]:

n′ =
τ

τmax − τ
(11)

where τ is the mean shear stress value. It should be noted that these equations are
used to separately predict the wall and bed shear stresses in circular channels with a
flat bed. The mean and maximum shear stress values in Equation (11) are obtained from
Equations (5)–(8) and used in the entropy models presented below.
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2.1.3. Tsallis Entropy Model

Bonakdari et al. employed the concept of Tsallis entropy to present the following
relationship for estimating shear stress in a circular channel [33]:

τ =
k

λ1

[
(

λ2

k
)

k
+

λ1y
P

]1/k

− λ2

λ1
(12)

where k = q−1
q , q is a real value, and λ1 and λ2 are Lagrange multipliers that can be

determined from the two following equations [33]:

[λ2 + λ1τmax]
k − [λ2]

k = λ1kk (13)

τmax(k + 1)λ1[λ2 + λ1τmax]
k − [λ2 + λ1τmax] = (k + 1)λ2

1kkτ (14)

2.1.4. Renyi Model

Khozani and Bonakdari employed the Renyi entropy model to estimate the distribu-
tion of shear stress and introduced the following equation [22]:

τ = τmax

 1
λ′

−λ′′ −
(
(−λ′′ )k′ − λ′α′k

′

(α′ − 1)
y

P/2

)1/k′
 (15)

where k′ = α′
α′−1 and α′ is a real number between zero and one. λ′ and λ” are Lagrange

multipliers that can be calculated with two following equations [22]:

(−λ′′ − λ′)k′ − (−λ′′ )k′

λ′
=

α′k
′

1− α′
(16)

−1
λ′
(
−λ′′ − λ′

)k′ − 1
λ′ 2(k′ + 1)

[(
−λ′′ − λ′

)k′+1 − (−λ′′ )k′+1
]
=

α′k
′

(α′ − 1)
τ̂ (17)

where τ̂ = τ/τmax is the dimensionless mean shear stress.

2.2. Global Shear Stress (ρgRs)

The shear stress in open channels in case of uniform flow is considered as a basic
model for comparison with entropy models as follows [53]:

τ = ρgRs (18)

2.3. Data Collection

The measured shear stress data were collected from experimental results with clear
and straightforward experimental conditions and included the whole range of parame-
ters required to calculate shear stress variable [54]. Accordingly, these data series have
been used by many researchers [3,24,33,55]. Sterling measured shear stress values along
the wetted perimeter of a circular channel with a diameter of 244 mm in different flow
conditions, as shown in Table 1 [54]. Sterling laid a thickness of sediment in a circular
channel [54]. As shown in Table 1, the shear stress values are measured in four flow depths
in the circular channel (t/D = 0) and the rest of the values related to a circular flat bed
channel (t/D 6= 0) with different bed/sediment thickness. These measured values are
considered in the uncertainty analyses of the four entropy models. In Table 1, Q represents
flow discharge with a unit of (l/s), Fr is Froude number, and S0 is the longitudinal slope of
water surface related to experimental characteristics.
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Table 1. Summary of the hydraulic parameters in the circular channel with and without sediment [54].

Sample Section t/D h + t/D S0 × 103 Fr Q (l/s)

1

Circular 0

0.333 1 0.516 5.36
2 0.506 1 0.505 11.7
3 0.666 1 0.441 17.3
4 0.826 1 0.375 22.9

5

Circular with
flat bed

0.25

0.332 1.96 0.671 1.32
6 0.499 1.96 0.748 8
7 0.398 1.96 0.656 3.3
8 0.666 1.96 0.68 16.5
9 0.755 1.96 0.663 22.1

10 0.795 1.96 0.626 23.8
11 0.333 8.62 1.71 3.39
12 0.499 8.62 1.7 18.2
13 0.666 8.62 1.59 38.9

14

Circular with
flat bed

0.332

0.499 2 0.718 4.4
15 0.666 2 0.685 12.2
16 0.75 2 0.669 17
17 0.8 2 0.721 22.1
18 0.499 2 1.96 12

19
Circular with

flat bed
0.5

0.666 9 1.4 8.4
20 0.75 9 1.42 16
21 0.8 9 1.33 20

22 Circular with
flat bed

0.664
0.75 8.8 1.44 3.09

23 0.8 8.8 1.55 4.93

2.4. Uncertainty Analysis

The uncertainty method presented in Kazemian-Kale-Kale et al. is used to analyze
the uncertainty of four entropy models of shear stress predictor [51]. This method is based
on Bayesian Recursive Estimation (BaRE) algorithm and Monte-Carlo simulation [36,48];
therefore, this study is called HBMES-1 (Hybrid Bayesian and Monte-Carlo Estimation
System in the first stage). The HBMES-1 uncertainty is improved and used to analyze four
entropy models in shear stress prediction. This method of uncertainty is called HBMES-2.

2.4.1. HBMES-1 Uncertainty Method

In the BaRE algorithm, the error values between the predicted and observed values
are calculated and then the appropriate transfer function is used to obtained measurements
error in transformed space [8]. In the present paper, based on the BaRE algorithm proposed
by Thiemann et al., in measuring the error values, the uncertainty of entropy model in
predicting the shear stress distribution is evaluated based on the Monte Carlo simulation
approach. All used stages in this paper are based on the different stages of Monte Carlo
method: preparation, sampling (calibration and choosing the best sample size, shear stress
data considered under different hydraulic conditions), initialization (choosing the function
factor (λ) as to best sample size), and prediction of the output (calculating final statistical
indexes of uncertainty). Therefore, based on this issue, the HBMES name is chosen for the
uncertainty method proposed in this paper.

The basis of the uncertainty method presented by Kazemian-Kale-Kale et al. [50,51]
was that the error distributions of the understudy models were assumed to follow a
Gaussian (normal) distribution. Therefore, they discussed the normality of the error
distribution. Their research showed that the shear stress data should be normalized
so that the error distribution follows the Gaussian distribution. Due to the importance
of normalizing the data for the uncertainty analysis, two common transfer functions of
Box–Cox and Johnson were compared to evaluate the shear stress estimations models’
uncertainty [51].
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This comparison showed that the error distribution of normalized shear stress data
using the Box–Cox function is closer to the Gaussian distribution and the uncertainty results
were better and more reliable. As a result, in the present study, using the HBMES-1 method,
for uncertainty analysis, the shear stress data are normalized using the Box–Cox function
to follow the entropy model error distribution from the Gaussian distribution. Kazemian-
Kale-Kale et al. considered the 95% confidence bound (CB) to analyze the uncertainty and
performed 15 tests for uncertainty calibration based on the same CB, considering shear
stress data under different hydraulic conditions. These tests were performed to select the
best sample size (shear stress data considered under different hydraulic conditions).

To choose the best sample size (SS), they examined the variation of the Nin mean and
the Box–Cox function transfer factor. Due to these two statistics, selecting the best SS will
be difficult, especially when the uncertainty of several models is considered. In this study,
to solve this problem, the best SS is selected based on the mean value of Nin. According
to [45], when Nin is closer to 95% CB, the assumption of the Gaussian error distribution is
more satisfying. As a result, only considering Nin changes satisfies the initial condition of
the Gaussian error distribution. After selecting the best SS, the best transfer factor value is
used to evaluate the uncertainty [51]. The results of this evaluation are in multiple statistics
of Nin, FP, FN, and FREE [51]. FREE is a statistical index as equal to the absolute sum of the
measured data within the confidence bound (|FP|) and the absolute sum of the measured
data outside the confidence bound (|FN|). Using these statistics determines whether each
of the entropy models is sufficiently certain to predict the shear stress.

2.4.2. HBMES-2 Uncertainty Method

As the HBMES-1 method requires multiple statistics for concurrent evaluation, com-
paring the certainty of several models using this method is very difficult, and in some cases,
impossible. In this study, the HBMES-1 uncertainty method is improved, and the result
of uncertainty for each model is presented as a single statistic. The HBMES-2 uncertainty
process has two stages: (1) the calibration step and (2) the final analysis section and the
introduction of the new statistics. The calibration step of the HBMES-2 method is similar to
the HBMES-1 method and is performed with the 95% CB to select the best SS [51]. One of
the main advantages of the proposed HBMES-2 compared with the HBMES-1 method is
that in HBMES-2, only one statistic shows the degree of uncertainty of shear stress models,
whereas the HBMES-1 method requires multiple statistics. Since the main purpose of this
study is to compare the uncertainty of four models in the prediction of shear stress, it is
easier to compare the uncertainties using one statistic. The following three steps show the
uncertainty analysis process of the HBMES-2 method.

1. Determining the OCBi and its borders;

Kazemian-Kale-Kale et al. reported that the error distribution generated by the
Box–Cox transfer function follows a normal distribution and is closer to the Gaussian
distribution than the Johnson transfer function [51]. The Box–Cox transfer function is a
common function that has been used in many studies [56–58]. Therefore, in this paper, the
Box–Cox transfer function is chosen for normalizing data error distribution.

Initially, the shear stress data are normalized using the Box–Cox transfer function and
transfer factor obtained in the best SS. The Box–Cox transfer functions for shear stress data
is obtained as [50]:

Z(τ(y/P), λ) =

{
τλ−1

λ i f λ 6= 0
Lnτ i f λ = 0

(19)

Then, based on the Bayesian Recursive Estimation (BaRE) algorithm, the Gaussian
error distribution is calculated as [48]:

ε = Zm − Zp (20)
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where ε is the error of data normalization, and Zm and Zp are the normalized values of
measured and predicted shear stress (τm and τp), respectively. Considering a given value
for OCBi, the following relation is applied:

(Z(y/P)
∣∣±) i = Zp(y/P) + µε ± (u/2)iσε (21)

where µε and σε are the mean and standard deviation of the Gaussian error distribution
of the normalized shear stress data, respectively. In Equation (21), i = 0, 1, 2, ..., n, n is a
real number related to the final value of OCB, and i is the number of (u/2) value. In this
paper, (u/2)i is the standard normal curve coefficient. The value of i = 0, means that an
initial assumption is considered for OCB and (u/2) named as OCB0 and (u/2)0, and i = n is
related to final values of OCB and u/2 named as OCBn and (u/2)n. The value of (Z|±)i
represents the effects of the statistical indexes of Gaussian error distribution (µε and σε) on
the shear stress data predicted by the entropy model. Equation (21) yields two values for
(Z|±)i based on (u/2)i value, which is obtained according to Equation (22).

Accordingly, the value of (u/2)i is related to the considered OCBi by ψi value which is
obtained as:

ψi =
OCBi/100

2
(22)

where ψi is the area below one side of the normal distribution diagram. Using ψi, from the
standard normal curve table, the value of the corresponding standard coefficient ((u/2)i) is
obtained. The main goal of Equation (22) is to obtain ψi and therefore (u/2)i based on the
OCBi. Indeed, OCB0 is the value of OCB for the first assumption. For example, the first
assumption for OCB is OCB0 = 95%. Now, the value of ψi according to the Equation (22)
is obtained equal to ψ0 = 0.4750. The ψ0 value is the area below the normal distribution
(Gaussian) diagram related to the first assumption of OCB. Standard normal curve table
represents the area below the normal distribution diagram for different (u/2) value [55].
Accordingly, the value of (u/2)0 can be obtained according to the standard normal curve
table. In this case, the value of ψ0 = 0.4750 is found in the standard normal curve table,
accordingly, the (u/2)0 value is obtained equal to (u/2)0 = 1.9. Then, the related precision
coefficient to (u/2)0 value is obtained from the column head, equal to 0.06. Finally, (u/2)0
is equal to 1.96. The values of the column head represent the precision of the related (u/2)0
value. Indeed, the precision of the standard normal table to obtain the (u/2)i values is
equal to the two digits after the decimal (10−2) which is represented by ξ in this paper.
For example, if the value of (u/2)0 is equal to 1.96, then the value of (u/2)1 is obtained
as: (u/2)1 = 1.96 + 10−2 = 1.97. Now, the Nin (the percentage of measured data within
the OCBi) value is obtained. If the Nin value is equal to 100, then the calculated (u/2)i is
considered as (u/2)n, else the next (u/2) is calculated according to the previous mentioned
explanations. In this paper, considering in the OCBn, all points are within the CB, and
therefore, the value of Nin should always be equal to 100%.

Now, using the obtained (u/2)i, the (Z|±)iis calculated using Equation (21). In the
following, the OCBi borders are obtained by the Box–Cox transfer function through the
following relation:

(τ(y/P)|±) i =

{
[ (Z(y/P)|±) iλ + 1]1/λ i f λ 6= 0

exp[ (Z(y/P)|±) i] i f λ = 0
: (23)

where (τ(y/P)|±) i are the upper and lower borders of OCBi, respectively, and λ is the
Box–Cox transfer factor. After determining OCBi borders, the distance of the measured
data from the borders (distx) and the sum of the distances (FREE) can be calculated. If the
distx value is positive, then the data are inside OCBi and if the distx is negative, then the
data are outside OCBi. The value of Nin (the percentage of measured data within the OCBi)
is obtained using distx values.
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2. Assessment of the final OCB (OCBn);

As mentioned in the previous section, the first step in determining the OCBn is
assuming the OCB0 value. In the following, the (u/2)0 value is obtained using Equation (22)
and standard normal curve table. Then, the (u/2)i is calculated using the (u/2)0. As
considering in this paper, in the OCBn, all points are within the CB, and then Nin should
always be equal to 100%. Based on obtained (u/2)i value, if the related Nin is equal to 100,
the OCBn value is calculated according to Equation (22), and the ψ value. However, if Nin
is less than 100, the OCBi values considered higher, and the three Equations of (21)–(23)
are performed. This should continue until Nin is equal to 100% and the FREE values are at
their lowest value (minimum FREE value). This FREE value is called FREEopt. The flow
chart in determination of OCBn is shown in Figure 2. In this figure, as stated before, ξ is
the precision of the standard normal table and equal to 10−2.
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3. Introducing the uncertainty index of FOCB.

After determining OCBn using Equation (22), the final borders are obtained from
Equation (23). The performance of the model in two ways of accuracy and precision was
assessed by [36]. The authors of [36] stated that to represent the uncertainty in an efficient
way, we would ideally like to have the width of prediction bounds as small as possible
while containing the streamflow data. They also referred to precision as a characteristic
related to the efficiency of the prediction uncertainty bounds in representing the actual
distribution of the output data. Accordingly, they defined an efficiency criterion called
Forecast Range Error Estimate (FREE) and introduced the FREE statistic index. FREE is
a statistical index equal to the absolute sum of the measured data within the confidence
bound (|FP|) and the absolute sum of the measured data outside the confidence bound
(|FN|) (FREE = |FP| + |FN|). Moreover, Misirli et al. presented a relationship for
calculating the distance of each data point from boundaries of CB called distx based on
the BaRE algorithm in estimation of maximum likelihood value of streamflow [36,49–51].



Geosciences 2021, 11, 308 10 of 22

Accordingly, in this paper, for OCBn, the optimized distx value (distx(opt)) is optimized and
derived from the following equation:

distx(opt) =

{
(τ|+) n − τ|m i f τ

∣∣m − τ
∣∣p ≥ 0

τ|m − (τ|−) n i f τ
∣∣m − τ

∣∣p < 0
(24)

where τm and τp are the values of measured and predicted shear stress, respectively, and
(τ|±)n assesses the borders of OCBn, which is obtained by inserting the variable of standard
normal curve that relates to OCBn as (u/2)n (Equation (22)).

Moreover, based on HBMES-1, FREE evaluated the models’ efficiency in the assess-
ment of uncertainty bounds considering both the inclusion of the observed data (desirable
as large as possible) and the width of the CB (to be as small as possible while maximiz-
ing the inclusion) [48]. However, in this paper, the lowest FREE value corresponding to
Nin = 100% is obtained. In HBMES-2, by considering OCBn, the values of FREE are always
positive, and in this paper FREEopt is written as follows:

FREEopt = FP = ∑
distx(opt)>0

distx(opt) (25)

The FREEopt index equals the sum of the intervals of measured values inside the OCBn.
The OCBn and FREEopt statistics are quantitative and qualitative criterion, respectively,
that shall be used to examine the uncertainty of the four shear stress predictor models. To
consider the combined effect of these two statistics, the FREEopt-based OCB, or the FOCB
statistic, is introduced:

FOCB =
OCBn × FREEopt

100
(26)

Given that OCBn is used as a result, the present research uses the term OCB for
convenience.

3. Results and Discussion

The results of the uncertainty calibration of the four entropy models are shown first.
Then, the results of the HBMES-1 uncertainty performed at the CB = 95% and the HBMES-2
results obtained with OCB are presented.

3.1. Calibration

As mentioned, the calibration was executed based on Nin changes to select the best SS.
Fifteen tests were performed for calibration, and the difference in each test varied in the
considered sample size (SS) (SS = 9 to SS = 23 (total 15 calibration tests). To select the best
SS in each model, Nin values of each calibration test (SS = 9 to SS = 23) were obtained at the
calibration step with a default CB value which CB = 95% is considered in this paper.

Figure 3 illustrates the changes in Nin values as a box plot for all four entropy models.
The number of Nin values in each of the calibration tests is equal to the number of SS. For
example, in SS = 9, there are nine numbers for the Nin value. Each Nin value is related to
the one shear stress data series between nine numbers of data series according to Table 1.
Therefore, in each calibration test with different SS values (SS = 9 to SS = 23), there is a
group of values for Nin according to SS value. In Figure 3, each box concerning each SS
value is drawn using the first and third quartiles. Moreover, the average value of Nin
between the related SS number in each box is represented by a circle form. In this figure,
the red dotted line represents Nin = 95%.
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Each SS with an average Nin value is closer to 95% and is selected as the best SS [49–51].
As seen in Figure 3, for the Shannon, Shannon PL, Tsallis, and Renyi entropies, the closest
Nin average values (see the circle symbol in Figure 3) to the dotted line (Nin = 95%) are
94.85%, 95%, 94.79%, and 94.23%, respectively.

These values occur in SS amounts of 17, 15, 18, and 13, respectively. Therefore, the
obtained SS values for each entropy model based on Nin average values can be introduced
as the best SS values in the calibration phase. These values of SS equal to 17, 15, 18, and
13 for Shannon, Shannon PL, Tsallis, and Renyi entropies represent at least numbers of
data series that should be used for uncertainty analysis. These numbers of data series for
uncertainty analysis of entropy models in predicting shear stress data are enough, and
more numbers of data series are not required. Moreover, lower numbers of data series
cause a risky and invalid uncertainty results. However, for further evaluation of whether
or not these numbers of SS are enough, the variation of three parameters of transfer factor
(λ), mean, and standard deviation of the data error distribution (i.e., µε and σε) are also
evaluated.

After selecting the best SS, the value of the Box–Cox transfer factor (λ) in this SS is
considered for the final evaluation of the uncertainty of each model. The values of transfer
factor (λ) are calculated for all models in different values of SS. These values of the λ
include the average, upper, and lower limits for each SS (according to Figure 4). As can be
seen in Figure 4, CB changes in all models did not significantly vary from the mean values
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of λ. Thus, the mean value of λ in the best SS (which is chosen based on Nin values) is
selected as the best λ. According to Figure 4, all model trends are similar and ascending.
The changes in the CB and λ values in the initial values of SS are high, and with increasing
SS value, the λ values decrease. The value of λ in the optimized SS in the previous section
(Figure 3) is determined as the best transfer factor (λ).
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According to Figure 4, for all entropy models, after reaching the best SS value, the
variation in the λ is very low and tends to be constant. The constant factor λ (zero change)
after the best SS indicates that in order to achieve a Gaussian error distribution in the
shear stress data series, the minimum test for each model is in the best SS value. Moreover,
the notable point is the similar trend in λ graphs and its change in the three entropies of
Tsallis, Shannon, and Shannon PL, unlike the Renyi entropy model. Unlike others, in Renyi
entropy, the CB variations are so significant in all SS values. Therefore, the lesser reliability
of Renyi entropy is evident and clear here.

The validity of the uncertainty analysis results depends on the normality of the error
distribution of each entropy model. The mean and standard deviation of the Gaussian
error distribution (i.e., µε and σε) are also examined in the calibration stage along with
the selection of the best SS. Hence, the changes in δε and µε were obtained for different SS
values. Using the δε statistic, the degree of compliance of the shear stress error distribution
obtained from each entropy is determined from the Gaussian distribution. With closer
error distribution to the Gaussian distribution, a greater validity of the uncertainty results
is expected.

In Figure 5, the variations of σε for different SS values are illustrated for the four
entropy models. As can be seen in Figure 5, for all models, the mean value of σε shows
the constant trend in different SS values, and these values are 0.09, 0.06, 0.08, and 0.21
for the Shannon, Shannon PL, Tsallis, and Renyi entropies, respectively. The lower the
value of σε, the more the error distribution of the transferred data will follow the Gaussian
distribution. Therefore, due to the small values of σε for the error distribution of the shear
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stress obtained from the Shannon, Shannon PL, and Tsallis compared to Renyi entropy, it
can be said that the error distribution of these three models compared to the Renyi model
are closer to the Gaussian distribution. The Renyi entropy with the σε value three times
larger than that of the others did not have a favorable outcome.
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The variation in the µε value is derived from all four entropy models, as illustrated
in Figure 5b. As shown in this figure, the changes in µε for the Renyi entropy model are
higher than those of the Shannon, Shannon PL, and Tsallis models. The µε values for all
four models in the different SS have an almost constant value, but because the range of
µε variations for Renyi entropy is much higher than other models, the value of µε is less
reliable in this model. Therefore, since the value of σε related to error distribution of the
Renyi entropy model is more than the value of σε related to other entropy models, then the
error distribution of the Renyi entropy model is higher than the Gaussian error distribution.
However, the mean value of the Gaussian error distribution (µε) is not related to how much
the intended error distribution is close to the Gaussian error distribution. Sometimes, one
error distribution of data series with more µε value compared to other data series is close
to the Gaussian error distribution. Most of the statistical theories have been presented with
Gaussian error distribution [59–61].

Because the error distribution of Renyi entropy model is higher than the Gaussian
error distribution, the results of the µε value for Renyi entropy have lower confidence than
the other entropy models. The absolute values of average µε for the Shannon PL, Tsallis,
Shannon, and Renyi models are 0.001, 0.003, 0.055, and 0.114, respectively. Therefore, the
two entropies of Shannon PL and Tsallis contain less error than the Shannon entropy, and
these three entropies perform better than Renyi entropy.

3.2. Assessment of Uncertainty of Four Entropy Models Using the HBMES-1 Method

By plotting the 95% CB using the HBMES-1 method, the uncertainty statistics for the
four entropy models and the global shear stress model were obtained and are presented
in Table 2. According to the researchers’ studies, the predictor model is highly reliable
if 80–100% of the values are in the desired CB, and the model was not able to predict if
less than 50% of the values are within the CB [62–64]. Because of these studies, given
the percentages of measured shear stress data within the CB equal to 95% (Nin), one can
determine whether the entropy models are sufficiently accurate in estimating shear stress.
The values of Nin in the second column of Table 2 represent the required certainty for all
models in estimating shear stress since the Nin value for all models is greater than 85%.
The Nin values in all entropy models are very close together and higher than Nin values for
the conventional ρgRs model.
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Table 2. Statistical indexes based on HBMES-1 uncertainty method in shear stress prediction by
different entropy models and the conventional ρgRs model.

Models Nin |FP| |FN| FREE

Entropy

Shannon 94.81 6.521 0.096 6.617
Shannon PL 93.41 6.018 0.107 6.125

Tsallis 92.43 8.525 0.239 8.764
Renyi 91.58 26.041 0.658 26.699

Conventional ρgRs 85.41 8.124 1.715 9.839

Although Nin values can be used to compare each model the values of |FP| and
|FN|, FREE should be considered in addition to Nin values. The |FP| values given in the
third column of Table 2 represent the absolute sum of the internal data from the borders
of CB. The |FN| values given in the fourth column of Table 2 represent the absolute sum
of the outer data from the borders of CB. The FREE values, which are equal to the sum
of |FP| and |FN|, represent the WCB in the last column of Table 2. The lower values of
FREE, |FP|, and |FN| indicate the higher model’s certainty. These three values are close
for the two Shannon and Shannon PL entropies and the two Tsallis and ρgRs models, but
these values are much higher for the Renyi entropy than the other four models. As can be
seen, the Nin values with the three |FP|, |FN|, and FREE statistics give different results in
providing the uncertainty, and it is not easy to give a clear view to compare the accuracy of
the models.

Although the Nin value for the Renyi entropy is more than ρgRs, |FP|, |FN|, and
FREE values are much better (lower) for the ρgRs model. Therefore, the general conclusion
from the values in this table is that given the high values of Nin, all models can predict shear
stress with high precision, but an accurate comparison of this uncertainty concerning other
statistics to be considered concurrently is complicated. In this study, HBMES-2 method is
presented to solve this problem. In the next section, the results are provided and discussed
in detail.

To clarify the results presented in Table 2, the shear stress distribution and 95% CB us-
ing the HBMES-1 method for a height ratio of the circular channel (t/D = 0, h + t/D = 0.333)
and the height ratio of the circular channel with flat bed (t/D = 0.25, h + t/D = 0.333) is
shown in Figure 6. As can be seen in Figure 6, the trend of shear stress distribution in all
four entropy models is in line with the trend of measured values for the bed area and the
channel walls, whereas the conventional ρgRs model has both a constant amount in the
bed and the walls of the channel.

In the circular channel (Figure 6a), the entropy models of Shannon, Shannon PL,
and Tsallis have predicted the shear stress distribution quite following the measured
data. The Renyi entropy is also in good agreement with measured data except for the
channel sides (0 < y/P < 0.1 and 0.9 < y/P < 1). However, the performance of the Renyi
entropy is much better than the ρgRs. The ρgRs model at the walls of the circular channel
predicts the shear stress value much lower than the measured values, and at the bed
area (0.1 < y/P < 0.9), it predicts the shear stress value slightly below the corresponding
measured values. Consequently, designing the channel based on the ρgRs model, both the
resistance of the walls is considered unnecessarily high, and the scouring of the bed also
occurs. In the circular flat bed channel (see Figure 6b), the results of all models are similar
to the circular channel. However, the Shannon PL entropy, according to the measured
trend, predicts the shear stress values more than the two Shannon and Tsallis entropies.
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To check the uncertainty of the models, the WCB and the percentage of measured data
within the CB (Nin) in Figure 6 should be considered. The Nin value and the WCB at these
height ratios were calculated according to the overall ability of the entropy models and
considering all the 23 different hydraulic conditions in Table 1. Given that the Nin in both
height ratios for all models is more than 93%, all models can estimate shear stress with
high certainty. Figure 6a shows that the CB for the Shannon and Shannon PL models with
all data covered is very small and almost uniform.

In the Tsallis and Renyi models, two shear stress data in free surface (y/P = 0) fall
outside the CB (hollow symbols in Figure 6), indicating that the certainty of these models
in predicting shear stress at the free surface of the circular channel is less than the other
wet areas. Such inaccuracy in prediction of shear stress can be seen in the Renyi entropy
model. On the other hand, the WCB of the Tsallis model is much less than the WCB of the
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Renyi model, which demonstrates more reliability in addition to the accuracy of the Tsallis
model especially in areas near the water surface. The WCB of the ρgRs, Shannon, and
Shannon PL covered all data, but the WCB in the ρgRs is larger than the other two models.
Furthermore, the ρgRs model cannot estimate shear stress values, so there is no consistency
with the observed values. When comparing the certainty of the ρgRs and Tsallis model, it
should be noted that although the Tsallis entropy has two data points at the free surface
outside the CB, the WCB is much lower in the Tsallis model than the ρgRs model.

Therefore, Tsallis model is much more certain and accurate than the ρgRs model. In
addition, the presence of more coefficients in the Tsallis entropy model (two multipliers λ′,
λ′′, and q) can be attributed to the high accuracy of this model in the correct estimation of
the shear stress value, and thus these coefficients have a significant role in predicting the
shear stress distribution. In the process of solving entropy equations, the values devoted
to these multipliers are adapted with the hydraulic conditions of the observational data,
and the entropy models are well-adapted to provide good estimations, which is not the
case with the traditional model, the ρgRs method. The Renyi model also has the lowest
certainty in predicting shear stress at this height ratio with the highest WCB and the least
amount of Nin.

It is also observed in Figure 6b that the WCB for the Shannon, Shannon PL, and Tsallis
models are approximately the same, with free surface data (y/P = 0) and a data point
between the wall and the bed of the channel (y/P = 0.1) which are outside the CB. This
indicates that the accuracy of these three models is lower in estimating shear stress at
the free surface and the boundary of the wall and bed than other wet points. Although
the Renyi entropy model has more data within the CB, its WCB is much larger than the
Shannon, Shannon PL, and Tsallis models.

This issue may be related to the fact that the different performances of each model are
communicated to the assumptions behind those entropy models. Accordingly, the reason
for the Renyi entropy error in some areas may be the absence of dimensionality of the
Lagrange multipliers within, which results in their independence of the shear stress values.
It can be argued that the physical meaning effect of the Lagrange multipliers in the Renyi
entropy is less than the effect of these multipliers in the Shannon and Tsallis entropies.

Comparing the uncertainty of Renyi and ρgRs models, it appears that the two models
have approximately the same WCB and Nin, but the certainty of the Renyi model at the
intersection of the wall and bed and the certainty of the ρgRs at the free surface are lower
than other wet points.

3.3. Comparison of the Uncertainty of Four Entropy Models Using HBMES-2 Method

By drawing the 95% Confidence Bound (CB), it was found that all models had sufficient
certainty in predicting shear stress in circular channels and circular flat bed channels, and
the strengths and weaknesses of each model were determined. However, it is challenging
and almost impossible to provide a classification and opinion on each model’s final degree
of uncertainty. Therefore, the HBMES-2 uncertainty method results are presented below
to compare the uncertainty of the models. In this method, by drawing the narrowest
confidence bound as optimized CB (OCB), all measured values are reduced within the
bound. The Nin statistic is equal to 100% and eliminated to check the uncertainty. Moreover,
the FREE value introduced in previous studies, e.g., [36,49–51], is optimized (FREEopt) and
obtained according to Equations (22) and (23). The transfer factor of the Box–Cox function
derived from the best SS was used to evaluate the uncertainty of the shear stress predictor
models.

The introduced statistics with HBMES-2 were obtained for 23 of the samples for all
entropy models, some of which are presented in Table 3. In the first column of this table, the
OCB statistic shows the narrowest CB that represents all measured data. The lower the OCB
value, the higher the model’s certainty in the shear stress prediction. The FREEopt statistic,
which is the total distance of the measured data of the OCB, represents the width of OCB. If
this value is lower for a model, the certainty of this model is higher. As mentioned before,
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the OCB criterion can be considered as a quantitative criterion for determining the certainty
of a model. Moreover, FREEopt is a qualitative criterion to evaluate the uncertainty of
models. The third column of Table 3 is the value that shows the combined effect of OCB
and FREEopt, which is considered as the main criterion in this study as (FOCB) (FREEopt
and OCB).

Table 3. Statistical indexes based on HBMES-2 uncertainty method for four entropy models for shear
stress prediction.

Samples Models OCB FREEopt FOCB

1

Shannon PL 89.26 0.525 0.469
Tsallis 98.96 1.995 1.974

Shannon 92.32 0.718 0.663
Renyi 100 24.312 24.312
ρgRs 87.4 1.628 1.423

2

Shannon PL 98.44 0.768 0.756
Tsallis 100 4.057 4.057

Shannon 95.86 0.975 0.935
Renyi 100 60.569 60.569
ρgRs 93.14 1.48 1.379

8

Shannon PL 94.76 1.927 1.826
Tsallis 97.6 1.953 1.906

Shannon 96.06 2.931 2.815
Renyi 99.02 29.049 28.764
ρgRs 99.14 4.92 4.878

11

Shannon PL 99.5 5.166 5.14
Tsallis 100 6.723 6.723

Shannon 99.62 5.727 5.705
Renyi 100 22.773 22.773
ρgRs 98.98 11.157 11.043

18

Shannon PL 100 17.426 17.426
Tsallis 100 22.231 22.231

Shannon 100 16.049 16.049
Renyi 100 41.814 41.814
ρgRs 99.56 21.233 21.139

Therefore, it is sufficient to find only the FOCB statistic for evaluating the uncertainty
of shear stress predictor models. As can be seen in the last column of Table 3, the overall
uncertainties of all models decrease with an increasing amount of water and sediment
in the channel bed (h + t). In all samples, the FOCB statistic has the lowest value for the
Shannon PL entropy and the highest value for the Renyi entropy, and as a result, among
the proposed models, Shannon PL models showed the highest certainty, and the Renyi
has the lowest certainty. The FOCB value for the Renyi entropy is more than several times
that of the other models, and this indicates a much lower certainty of this model than the
other models in shear stress prediction. In the three samples 1, 2, and 11, the entropies of
Shannon, ρgRs, and Tsallis have the lowest amount of the FOCB and the highest certainty,
respectively. In samples 8 and 11, the values of the FOCB for the three entropies Shannon,
ρgRs, and Tsallis are also close together, indicating an almost identical degree of certainty
for these models.

To illustrate the uncertainty statistics presented in Table 3, the OCB for two samples 1
and 11 is shown in Figure 7. Figure 7 shows the narrowest confidence bound that covers
all measured shear stress, OCB, for the four entropy models and the ρgRs model. Figure 7a
corresponds to sample 1 for a circular channel (t/D = 0, h + t/D = 0.333) and Figure 7b
also relates to sample 11 for a circular flat bed channel (t/D = 0.25, h + t/D = 0.333). Each
model, which has a higher OCB width, shows higher uncertainty in the prediction of shear
stress. The width of OCB of the three entropy models of Tsallis, Shannon PL, and Shannon
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is very close and contains a very small region, while the Renyi entropy model has larger
OCB region compared with other three models.
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In Figure 7a, the OCB widths for the two Shannon PL and Shannon models are
perfectly within the range of the OCB plotted for the ρgRs model, but the OCB plotted
for the Tsallis entropy is slightly wider than the OCB for the ρgRs model. Therefore, the
certainty of the Shannon PL, Shannon, ρgRs, Tsallis, and Renyi, in order, is higher in
predicting shear stress in this sample. The results of the FOCB values also confirm this
classification.

In Table 3, sample 1 (t/D = 0), the OCB values for three Shannon PL, Shannon, and
ρgRs models are close to each other and are less than the OCB values of the Tsallis and
Renyi models. Despite the proximity of the OCB values to the two Tsallis and Renyi
models, the width of OCB for the Renyi model is much higher than the Tsallis model, and
the FREEopt value of the Renyi model is much larger than the other four models, which is
shown in Table 3. In Figure 7b, although the OCB values are very close to each other for
all models, the width of OCB in the bed and the wall of the channel for the Renyi entropy
model is much larger than that of the four models. This issue is very clear in the (FOCB)
statistics in Table 3 for all samples.

In Table 4, the values of this statistic are given for all models for the studied cases.
These values show that the certainty of all models in calculating shear stress in a circular
channel is much higher than in a circular flat bed channel. Except for the Renyi entropy,
with almost identical values for FOCB, it indicates the same uncertainty in the prediction
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of shear stress values. In Table 4, the values of FOCB for the Renyi entropy in both circular
and circular flat bed channels are much higher than in the other models. Given that the
ρgRs model has been considered as a basic model in this study for comparison with entropy
models, it should be said that the Renyi entropy model is not a good model for predicting
shear stress values. In a circular channel, the entropies of Shannon PL, ρgRs, Shannon, and
Tsallis have more certainty in predicting shear stress.

Table 4. The values of FOCB in circular and circular flat bed channels for all entropy models to
predicting shear stress distribution.

Section
FOCB

Shannon PL Shannon Tsallis Renyi ρgRs

Circular 1.339 2.432 2.961 58.457 2.026
Circular with flat bed 11.591 10.118 17.407 57.569 17.115

Average 9.808 8.781 14.895 57.726 14.491

The models are more certain for the Shannon, Shannon PL, ρgRs, and Tsallis models
in predicting shear stress in circular flat bed channels. Finally, considering the number of
samples presented in Table 1, the average values in Table 4 are given for the entire circular
channel. The average values indicate that the Shannon, Shannon PL, ρgRs, and Tsallis
models have the most certainty in estimating shear stress in the circular channels. The
FOCB values in all the entropy models indicate that the certainty of all models in shear
stress estimation in circular channels is more than for a circular channel with a flat bed.
However, the high and almost equal values of FOCB in the Renyi entropy model for circular
channels and circular channels with a flat bed illustrate that the Renyi entropy model has
more uncertainty than other models in both circular channels and circular channels with a
flat bed.

4. Conclusions

In this study, the uncertainty of four popular entropy models, Shannon, Shannon
PL, Tsallis, and Renyi, were analyzed for calculating shear stress in circular channels.
The uncertainty analysis method based on the Bayesian Monte-Carlo technique [51] was
employed and named in this study as HBMES-1. However, using the HBMES-1 method
required four statistics (Nin, |FP|, |FN|, and FREE), it was not feasible to compare the
uncertainty of several different entropy models.

For this reason, in the new HBMES-2 method proposed in this paper, the narrowest
CB that covers all measured data, the Optimized Confidence Bound (OCB), was obtained,
and a new statistic called FOCB was introduced to evaluate the uncertainty. In this study, a
new statistical index called FREEopt-based OCB (FOCB) was introduced. One of the main
advantages of the proposed HBMES-2 compared with the HBMES-1 method is that in
HBMES-2, only one statistic shows the degree of uncertainty of shear stress models, whereas
the HBMES-1 method requires multiple statistics. The FOCB indicated the degree of
uncertainty. In the calibration stage for both uncertainty methods, based on the percentage
of measured data within the confidence bound (Nin), the best SS (sample size) for each
entropy model was selected.

At the calibration stage, based on the obtained λ (the Box–Cox function transfer factor)
value in the best SS, the final evaluation was performed using two uncertainty methods
of HBMES-1 and HBMES-2. In the HBMES-1 method, it was found that all four entropy
models, along with the ρgRs conventional model, with the Nin values higher than 93%
have high certainty in predicting shear stress in circular channels.

According to the results of the HBMES-2 method, in a circular channel, the entropy
models of Shannon PL, ρgRs, Shannon, Tsallis, and Renyi with the lowest FOCB values
equal to 1.339, 2.026, 2.432, 2.961, and 58.457, respectively, had the highest certainty with the
FOCB values. Furthermore, in the circular flat bed channel, the entropy models of Shannon
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PL, Shannon, ρgRs, Tsallis, and Renyi, had the lowest uncertainty with the FOCB values
equal to 10.118, 11.591, 17.115, 17.407, and 57.565, respectively. Based on the mean results
of FOCB in circular and circular flat bed channels, it was generally found that the Shannon
PL, Shannon, ρgRs, Tsallis, and Renyi models had the highest certainty in shear stress
prediction with FOCB values equal to 8.781, 9.808, 14.491, 14.895, and 57.726, respectively.
These results showed that the Shannon, Shannon PL, and Tsallis entropy models, along
with the ρgRs conventional model, had the lowest uncertainty in shear stress prediction,
whereas the Renyi entropy model had the highest uncertainty in predicting shear stress
values in the circular channels. However, more research is needed to investigate the
uncertainty of these four entropy models with the proposed HBMES-2 method in different
cross-section channels.
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