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Abstract: Little is known about the nature of ore fluid at the Sopokomil shale-hosted massive
sulfide Zn-Pb deposit (North Sumatra, Indonesia). We therefore investigated its ore-fluid salinities,
temperatures, densities, redox state, and pH using fluid inclusion microthermometry, sphalerite
composition, and thermodynamic modelling. The fluid salinities and temperatures were ≈6 wt.%
NaCl equiv and ≈165 ◦C, respectively, corresponding to an ore fluid less dense than seawater
(≈0.96 g/mL). Sphalerite contains ≈9.9 mole% FeS in the stratiform ore and ≈3.4 mole% FeS in
the feeder ore, suggesting a reduced fluid, which must have been acidic to be fertile. Such redox
state and acidity invoke fluid dilution as the sulfide depositional mechanism. The bulk of the
sulfides were precipitated in the early stage of mixing, within T = 165–155 ◦C. Key ingredients
of sphalerite and galena at Sopokomil include (1) Zn that was primarily transported as ZnCl+,
(2) Pb that predominantly occurred as PbCl2(aq), and (3) S that was largely supplied by marine
sediment porewater. This study highlights the significance of a dramatic shift in thermal and chemical
equilibrium induced by fluid dilution in the making of the first significant shale-hosted massive
sulfide Zn-Pb deposit in Indonesia.

Keywords: SEDEX; sedimentary exhalative; Dairi; Southeast Asia resources; sediment-hosted Zn-Pb;
massive sulfides; base metals; stratiform Zn-Pb; SHMS

1. Introduction

The Sopokomil Zn-Pb deposit is thus far the only major shale-hosted massive sulfide
(SHMS) deposit discovered on Sumatra, Indonesia (Figure 1A), hosting 25.1 Mt of ore
resources at 10.1 wt.% Zn and 6.0 wt.% Pb [1]. Its hosted metal resources (4 Mt Zn + Pb)
make Sopokomil one of the most significant SHMS deposits on Earth [2]. Apart from
Sopokomil, all known Zn-Pb resources on Sumatra occur as skarn-, vein-, and MVT-type
deposits [3–5]. On account of its economically attractive metal content and the regional
scarcity of SHMS deposits, Sopokomil offers an ideal opportunity to improve our current
understanding on Zn-Pb metallogenesis on the island. Despite this, only a few studies have
been hitherto carried out [6–8]. Thus, some of the deposit aspects, including the nature of
its ore fluid [9–11], are still poorly constrained.

Based on ore-fluid chemistry, there are two key depositional mechanisms that domi-
nate in the formation of SHMS deposits: fluid dilution and steep redox gradient [12]. The
first mechanism invokes the cooling and neutralization of a reduced, acidic ore fluid [13,14].
The second mechanism forces an oxidized, near-neutral ore fluid to drop its metal content
due to interaction with reduced strata in the SHMS-hosting basin [12,15]. Thus, under-
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standing the nature of ore fluid can give us insights into the depositional mechanism at
Sopokomil.
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Figure 1. (A) Distribution of North Sumatra basement rocks (modified after [16–18]). Location
of the Sopokomil deposit is indicated by closed, red circle. (B) Geologic map of the Sopokomil
deposit. Borehole collars from which the samples in this study were collected are marked by closed,
yellow circles.
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The objective of this study is to comprehend the nature of the Sopokomil ore fluid and
its implications to metal transport and sulfide deposition. The required parameters include
fluid temperatures, salinities, densities, redox state, and pH. The depositional temperatures
and salinities are estimated using fluid inclusion microthermometry. They are then used
to infer the ore-fluid densities. The microthermometry data, coupled with sphalerite
compositional data, are utilized to deduce the redox state and pH. Complemented by the
concept of dual S-sources [7], all these fluid parameters are subsequently discussed in
connection with transport chemistry and depositional mechanisms leading to the formation
of the Sopokomil SHMS Zn-Pb deposit.

2. Geologic Background
2.1. Regional and Local Geology

North Sumatra basement is made up of the Bohorok, Alas, and Kluet-Kuantan for-
mations [19]. The Late Carboniferous-Early Permian Bohorok Formation is marked by
the presence of diamictite, indicating a glacio-marine depositional environment [20]. The
Early Carboniferous Alas Formation consists mainly of limestone hosting fossils of tem-
perate environment origin [21]. The Bohorok and Alas formations are the basement of
the Sibumasu Block. The Kluet-Kuantan Formation, in which the Sopokomil deposit is
hosted (Figure 1A), is the basement of the West Sumatra Block. It comprises quartzwacke,
sandstone, and shale intercalated by limestone lenses and was deposited in the tropi-
cal environment during the Early Carboniferous [21], a period during which the block
was a part of the Indochina Terrane. The North Sumatra basement was subjected to re-
gional, sub-greenschist to greenschist metamorphism as indicated by widespread slate and
phyllite [22].

Rocks in the vicinity of the Sopokomil deposit are grouped into three units. From top
downward, they are the Dagang, Julu, and Jehe units (Figure 1B). The Dagang unit consists
of interbedded dolomitic sandstone and siltstone with minor black shale deposited in a
carbonate platform. Transition to the underlying Julu unit is gradational. The Julu unit is
composed of interbedded black shale and dolomitic siltstone. It has a sharp contact with
the underlying arenaceous massive and brecciated dolostone in the Jehe unit, inferring a
rapid transgressive event.

2.2. Mineralization

Ores at Sopokomil extend along the NE limb of the NW-SE anticline and are hosted in
the Julu and Jehe units (Figure 1B). The Julu unit hosts multi-horizon, stratiform ore (lower,
main, and upper ore horizons) with thickness up to 20 m in the SE portion and up to 5 m
in the NW portion. The Jehe unit hosts discordant feeder mineralization. However, having
a tenor smaller and less continued than its stratiform counterpart, the feeder ore is of lesser
economic significance.

The stratiform ore is divided into pyrite-rich massive, sphalerite-rich massive, banded
sulfide, galena-rich breccia, and vein ore-types, whereas the feeder mineralization com-
prises vein and replacement ore-types [7]. Both ores contain sphalerite and galena as
principal ore minerals, with quartz, dolomite, minor Ba-bearing K-feldspar, and locally
present trace barite and calcite as gangue minerals. Iron sulfide phases consist of pyrite and
pyrrhotite, although the latter is confined to the lower ore horizon. Accessory ore minerals
in the stratiform ore comprise tetrahedrite, bournonite, and chalcopyrite, while those in the
feeder mineralization consist of tetrahedrite, chalcopyrite, tennantite, arsenopyrite, pyrar-
gyrite, acanthite, freieslebenite, boulangerite, and diaphorite. Tetrahedrite and chalcopyrite
in the feeder ore are more abundant than those in the stratiform ore (Figure 2).
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+9.7‰) suggest that bacterial sulfate reduction (BSR) operated in the Sopokomil Basin. As 
mineralization took place, the BSR produced much heavier sulfides: (1) δ34S = +6.4 to 
+18.1‰ in the lower ore horizon, (2) δ34S = +13.5 to +28.8‰ in the main ore horizon, and 
(3) δ34S = +18.7 to +26.7‰ in the upper ore horizon. Conversely, sulfides in the Jehe unit 

Figure 2. Ore types at the Sopokomil deposit confirming their textural classification by [7]: (A)
pyrite-rich massive, (B) sphalerite-rich massive, (C) banded sulfide, (D) galena-rich breccia, (E) vein,
and (F) replacement ore-types.

The concept of dual S-sources was introduced to explain the S-isotope ratio in the
Sopokomil sulfides [7]. In the barren sedimentary rocks, the S-isotope ratio (δ34S = −4.1
to +9.7‰) suggest that bacterial sulfate reduction (BSR) operated in the Sopokomil Basin.
As mineralization took place, the BSR produced much heavier sulfides: (1) δ34S = +6.4 to
+18.1‰ in the lower ore horizon, (2) δ34S = +13.5 to +28.8‰ in the main ore horizon, and
(3) δ34S = +18.7 to +26.7‰ in the upper ore horizon. Conversely, sulfides in the Jehe unit
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are distinctively light (δ34S = +3.5 to +8.0‰), pointing out a contribution of hydrothermal
S to the feeder mineralization. Considering that the economic mineralization is limited to
the stratiform ore, reduced S of bacteriogenic origin is thought to be responsible for the
growth of the Sopokomil deposit [7].

3. Methods
3.1. Ore Mineralogy

To investigate ore mineralogy of the samples, standard polished sections were pre-
pared. They were analyzed under reflected light using a polarizing microscope Nikon
ECLIPSE LV100POL at Kyushu University and a polarizing microscope Nikon ECLIPSE
E600POL at Geological Survey of Japan.

3.2. Fluid Inclusion Microthermometry

Fluid inclusion (FI) wafers were prepared from sphalerite-bearing samples. They were
examined under a polarizing microscope Nikon ECLIPSE LV100POL prior to freezing and
heating experiments. The FI microthermometry was carried out using a LINKAM stage
THMS600, routinely calibrated by nonane, decane, dodecane, tridecane, dodecanediol,
benzanilide, and sodium nitrate. During the stage operation, the lowest temperature set in
the freezing experiment was −60 ◦C. The stage was then heated with an increment rate of
20 ◦C/min that was sequentially reduced to 0.1 ◦C/min as the stage temperature became
closer to final ice melting (Tm) and homogenization temperatures (Th). The FI analysis was
conducted at Kyushu University, Japan.

3.3. Density Modeling

Ore-fluid densities were modelled using the equation of [23]. The model calculated
evolving densities as the ore fluid was continuously diluted by marine sediment porewater.
Temperatures and salinities of the ore fluid were taken from the results of FI microther-
mometry and those of sediment porewater were assumed to be 3.5 wt.% NaCl equiv and
3 ◦C, respectively.

3.4. EPMA

Sphalerite composition in the stratiform and feeder ores was quantified using a Field
Emission Electron Probe Micro Analyzer (EPMA) JEOL JXA-8530F at Geological Survey of
Japan. The quantitative analysis was performed at an accelerating voltage of 20 kV and a
probe current of 20 kV, with JEOL standards of ZnS for Zn, FeS2 for Fe and S, copper for Cu,
CdS for Cd, InAs for In, and GaSb for Ga as reference materials. X-ray intensity of ZnKα,
FeKα, SKα, CuKα, CdLα, InLα, and GaLα was measured in 20 s at the peak and in 10 s at
the background. The sphalerite composition was then calculated based on the atomic per
formula unit (apfu) method and was used to estimate redox state of the ore fluid.

3.5. Thermodynamic Modelling

Ore-fluid pH, Zn-Pb transport chemistry, and sulfides depositional mechanism were
evaluated through thermodynamic modelling. The modelling was carried out in GEM-
selektor version 3, utilizing SUPCRT thermodynamic database [24–27]. Ion-association
with extended Debye–Hueckel equation and ideal mixture of gaseous components were
selected as the aqueous electrolyte and gas-fluid mixture models, respectively. Solid phases
were controlled by sphalerite, galena, pyrite, pyrrhotite, calcite, and dolomite.

The ore-fluid pH was calculated at different ΣZn and ΣPb ranging from 1 to 100 ppm,
values considered as their fertility windows in SHMS ore fluids and as their general
concentrations in basinal fluids [12,28,29]. The ΣZn/ΣPb ratio was fixed at 2, given the
ratio of Zn and Pb grades in the Sopokomil ores [1]. Other fluid constraints were ΣFe = 10−3

molal (m), ΣS = 10−3 m, ΣC = 0.256 m, and ΣNa:ΣK:ΣCa following [12]. Temperatures and
salinities were constrained by the results of FI microthermometry. In each run, 0.0001 m
HCl was sequentially added until no galena or sphalerite precipitated.
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The Zn-Pb transportation and sulfide deposition were modelled by adding marine
sediment porewater to 1 kg of ore fluid. The ore-fluid composition was constrained by
ΣFe = 10−3 m, ΣS = 10−3 m, ΣC = 0.256 m, ΣZn = 100 ppm, ΣPb = 50 ppm, pH resulting from
the ore-fluid pH simulation, and ΣNa:ΣK:ΣCa following [12] (Table A1 in Appendix A).
Temperatures and salinities were constrained by the results of FI microthermometry. The
composition of marine sediment porewater was assumed to be close to that of seawater,
with values referred to [30] (Table A1). Temperatures and salinities of marine sediment
porewater were 3 ◦C and 3.5 wt.% NaCl equiv, respectively. The mass of aqueous phase
generated in each run was used as the mass of ore fluid in the subsequent calculation.
Sediment porewater/ore fluid ratio sequentially increased from 0 to 0.1, with an incre-
ment rate of 0.01/run. The calculations were conducted at equilibrium temperatures and
P = 250 bars [14].

4. Results
4.1. Sample Mineralogy

Samples from the stratiform ore represent pyrite-rich massive and sphalerite-rich
massive ore-types. In the first ore-type, ore mineralogy was dominated by cubic pyrite
and sphalerite. Sphalerite occurred in the interstitial spaces of pyrite, intergrown by minor
galena and gangue minerals (Figure 3A). In the second ore-type, sphalerite was intergrown
by minor galena (Figure 3B), locally by pyrrhotite as well (Figure 3C). Chalcopyrite and
pyrite were present in trace amounts. Black shale lenses and fragments were frequently
observed in this ore-type. They aligned in a parallel manner to the sedimentary bedding
(Figure 3D).
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(B) Sphalerite intergrown by minor galena in sphalerite-rich massive ore-type. (C) Sphalerite intergrown by pyrrhotite in
sphalerite-rich massive ore-type. (D) Black shale fragments and lenses within ore, parallel to sedimentary bedding. (E)
Sphalerite, galena, and pyrite in vein ore-type. (F) Vein ore-type rich in Ag-sulfosalts and chalcopyrite. (G) Occurrence of Pb-
Ag-Cu sulfosalts in replacement ore-type. (H) Boundary between replaced and unreplaced carbonate rocks. Abbreviations:
cp (chalcopyrite), fr (freieslebenite), gn (galena), po (pyrrhotite), py (pyrite), sp (sphalerite), tn-td (tennantite-tetrahedrite).

Samples from the feeder ore represent vein and replacement ore-types. The main ore
minerals were galena and sphalerite (Figure 3E). Tetrahedrite, tennantite, and chalcopyrite
were locally abundant (Figure 3F), whereas Pb-Ag-Cu sulfosalts were rare (Figure 3G).
Carbonate reactive fronts were observed in the replacement ore (Figure 3H).

4.2. Fluid Inclusion Microthermometry

Sphalerite hosted two-phase primary FIs (H2O-liquid and H2O-vapor) at room tem-
peratures. Their vapor proportion was approximately 10 vol.%. They clustered within a
crystal or around cleavages. Their size in the feeder ore was <1–50 µm, whereas that in
the stratiform ore was up to 3 µm. Many FIs appeared to have necked down (Figure 4). In
addition, FI paragenesis at the crystal scale was difficult to unravel, and thus the resolution
of the FI assemblage was limited to the sample scale.

The Tm and Th were obtained from the FIs hosted by sphalerite in samples 39-15 and
39-25 (Table 1). In the former, the Tm were −3.7 ± 0.4 ◦C (1σ, n = 26) and the Th were
165.3 ± 5.4 ◦C (1σ, n = 31). In the latter, the Tm were −3.7 ± 0.6 ◦C (1σ, n = 10) and the
Th were 164.0 ± 4.4 ◦C (1σ, n = 13). The Tm in samples 39-15 and 39-25 corresponded to
salinities of 6.0 ± 0.6 wt.% NaCl equiv (1σ) and 5.9 ± 0.8 wt.% NaCl equiv (1σ), respectively.
The FIs from the stratiform ore were not analyzed due to their small size.
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Figure 4. (A) Hand-specimen from which the fluid inclusion wafer in (B) was prepared. Sphalerite coexists with pyrite
and is associated with galena and dolomite. (C) Sphalerite crystal where fluid inclusions in (D) are present. They occur in
isolated clusters. Illumination is blocked by dark sphalerite and chalcopyrite blebs. Abbreviations: cp (chalcopyrite), dol
(dolomite), gn (galena), sp (sphalerite), py (pyrite), L + V FI (liquid-vapor fluid inclusion).

Table 1. Results of fluid inclusion microthermometry.

Sample
Depth

Host FIA No
Tm Salinity Th

(m) (◦C) (wt.% NaCl equiv) (◦C)

39-25 146 Sphalerite 1 1 −3.3 5.4 168.2
2 −4.4 7.1 158.1
3 −4.6 7.3 165.5
4 155.8
5 −3.8 6.1 159.7
6 −3.4 5.5 166.2
7 166.5
8 −3.3 5.4 158.1
9 −3.3 5.4 167.3
10 −3.2 5.3 168.3
11 164.8
12 166.7
13 166.7
m −3.7 5.9 164.0
σ 0.6 0.8 4.4

39-15 102 Sphalerite 1 1 −3.6 5.8 153.4
2 −4.0 6.4 169.0
3 166.8
4 −3.9 6.2 163.7
5 −3.6 5.8 161.3
6 −4.2 6.8 166.5
7 −3.8 6.1 172.2
8 −3.6 5.8 167.4
9 −4.1 6.7 167.3
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Table 1. Cont.

Sample
Depth

Host FIA No
Tm Salinity Th

(m) (◦C) (wt.% NaCl equiv) (◦C)

10 167.4
11 −3.5 5.7 173.0
12 −4.1 6.7 168.7
13 −4.4 7.1
14 −3.8 6.1 172.0
15 −3.5 5.7
16 −3.6 5.8 172.2
17 −4.1 6.7 172.5
18 164.5
19 166.1
20 162.0
21 165.6
22 161.6
23 162.4
24 163.4
25 163.7
26 164.5
27 −3.8 6.1 156.9
28 −3.5 5.7 151.7
29 −3.5 5.7
30 −4.0 6.4
31 −3.3 5.4 168.0
32 −4.1 6.5
33 −3.5 5.7
34 −4.4 7.1
35 −2.9 4.8
36 −3.1 5.1
37 −3.2 5.3
m −3.7 6.0 165.3
σ 0.4 0.6 5.4

4.3. Sphalerite Composition

Sphalerite from the feeder and stratiform ores had distinct Fe and Cu contents (Table 2).
The former contained 0.7–3.2 wt.% Fe (1.2–5.6 mole% FeS; average = 3.4 mole% FeS)
whereas the latter hosted 4.5–7.7 wt.% Fe (7.9–13.4 mole% FeS; average = 9.9 mole% FeS).
Sphalerite in samples 6-09 and 58-24 (hosted by the feeder ore) contained 1.3 and 0.6 wt.%
Cu, respectively. Aside from the Fe and Cu contents, sphalerite in all samples had low Cd
(0.2–0.4 wt.%), Ga (<0.1 wt.%), and In (below detection limit) contents (Table 2).

Table 2. EPMA results on sphalerite chemical composition.

Sample Ore n
Zn Fe Cu Cd Ga In S Total

Empirical Formulae
wt.%

104-11 Stratiform 8 61.19 5.87 b.d.l. 0.24 0.05 0.01 33.51 100.84 (Zn0.90Fe0.10)1.00S1.00
104-14 Stratiform 7 62.20 4.65 b.d.l. 0.26 0.05 b.d.l. 33.07 100.21 (Zn0.92Fe0.08)1.00S1.00
58-11 Stratiform 9 62.08 4.52 b.d.l. 0.29 0.04 b.d.l. 33.00 99.92 (Zn0.92Fe0.08)1.00S1.00
168-06 Stratiform 9 61.76 5.10 b.d.l. 0.22 0.05 b.d.l. 32.57 99.68 (Zn0.92Fe0.09)1.01S0.99
292-37 Stratiform 13 59.41 7.74 b.d.l. 0.23 0.04 0.01 32.71 100.11 (Zn0.88Fe0.13)1.01S0.99
44-11 Stratiform 7 60.56 6.42 b.d.l. 0.23 0.04 b.d.l. 33.30 100.53 (Zn0.89Fe0.11)1.00S1.00
58-24 Feeder 10 64.95 1.07 1.34 0.21 0.08 0.01 33.00 100.62 (Zn0.96Fe0.02Cu0.02)1.00S1.00
39-06 Feeder 7 64.11 3.21 b.d.l. 0.31 0.05 b.d.l. 32.92 100.58 (Zn0.95Fe0.06)1.01S0.99
39-08 Feeder 7 66.44 0.90 b.d.l. 0.29 0.05 b.d.l. 32.92 100.59 (Zn0.99Fe0.02)1.01S0.99
39-15 Feeder 9 63.93 2.51 b.d.l. 0.29 0.06 b.d.l. 32.95 99.70 (Zn0.96Fe0.04)1.00S1.00
39-21 Feeder 4 64.88 2.31 b.d.l. 0.25 b.d.l. 0.01 32.94 100.38 (Zn0.96Fe0.04)1.00S1.00
39-24 Feeder 8 64.01 3.19 b.d.l. 0.35 0.05 b.d.l. 32.36 99.94 (Zn0.95Fe0.06)1.01S0.99
39-25 Feeder 5 65.95 1.61 b.d.l. 0.36 0.06 0.01 32.46 100.40 (Zn0.98Fe0.03)1.01S0.99
6-09 Feeder 9 66.13 0.69 0.62 0.16 0.04 0.01 32.90 100.52 (Zn0.98Fe0.01Cu0.01)1.00S1.00
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5. Discussion
5.1. Ore-Fluid Temperatures, Salinities, and Densities

Temperatures and salinities obtained from samples 39-15 and 39-25 were uniform, irre-
spective of their depth location (Table 1). The FIs in samples 39-15 and 39-25 homogenized
at 165.3 ± 5.4 ◦C (1σ) and 164.0 ± 4.4 ◦C (1σ), respectively. Salinities were approximately
6.0 ± 0.6 wt.% NaCl equiv (1σ) in sample 39-15 and 5.9 ± 0.8 wt.% NaCl equiv (1σ) in
sample 39-25. One explanation for these similarities is that the ore fluid ascended rapidly
from its source, thus, minimizing heat loss to the wall rocks. However, given the unclear
paragenesis between samples 39-15 and 39-25, sphalerite-bearing quartz veins in both
samples could have formed from different batches of ore fluid that equilibrated with the
source rocks at nearly equal temperatures.

Mixing between the ore fluid and marine sediment porewater gradually modified the
ore-fluid densities from 0.96 g/mL to 1.02 g/mL as the proportion of the latter increased
toward unity (Figure 5A). The initial and evolving densities of the Sopokomil ore fluid
are lower than seawater density (Figure 5B), consistent with the idea that the ascent of an
SHMS ore fluid is promoted by buoyancy when a channel connecting the source zone to
the depositional site exists [31].
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5.2. Ore-Fluid Redox State and pH

It is generally accepted that redox state and pH of an SHMS ore fluid are determined
by the rift-fill basin sequence [12,33], and probably the basement as well [34,35], in which
its parent fluid circulates. At Sopokomil, even on Sumatra, direct observation of the rift-fill
rocks cannot be made as they do not crop out [22]. Accordingly, the rift-fill sequence is
inferred from the Pre-Carboniferous strata across the Indochina Terrane, to which the
West Sumatra Block was attached during the Carboniferous. The strata are dominated by
interbedded shale, sandstone, and siltstone; oxidized rocks including limestone and chert
are minor [36]. This package, which resembles the mica-rich, carbonaceous matter-rich,
sedimentary pyrite-bearing rocks hosting the Sopokomil Zn-Pb mineralization, may have
rendered the crustal fluid reduced (mSO4

2− < mH2S) [12,37,38].
The reduced nature of the ore fluid at Sopokomil is further reflected in the chemistry

of its sulfide products. First, the FeS contents in sphalerite from the feeder (3.4 mole%
FeS) and stratiform (9.9 mole% FeS) ores suggest relatively low sulfur fugacity in the ore
fluid (log f S2 ≈ −16.0 to −18.1), corresponding to low oxygen fugacity (log f O2 ≈ −47.9
to −50.0). Second, iron sulfides are present as pyrite and pyrrhotite. Third, there is no
evidence that hematite or magnetite exists [7].
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Due to its reduced condition, the Sopokomil ore fluid must have been acidic to be
capable of transporting considerable Zn and Pb [12,14]. Table 3, which summarizes the
ore-fluid pH calculation, suggests that the maximum pH should be 2.78 if the ore fluid
contained 100 ppm Zn and 50 ppm Pb. In the ore fluid with 50 ppm Zn and 25 ppm Pb, the
highest possible pH was 2.92. The likely maximum pH increased with decreasing Zn-Pb
concentrations: (1) 3.12 at ΣZn = 20 ppm and ΣPb = 10 ppm, (2) 3.27 at ΣZn = 10 ppm and
ΣPb = 5 ppm, and (3) 3.84 at ΣZn = 2 ppm and ΣPb = 1 ppm.

Table 3. Results of ore-fluid pH calculation.

Pb Zn
pH

Galena Sphalerite Pb Zn
pH

Galena Sphalerite

(ppm) (ppm) (×10−3 mg) (×10−3 mg) (ppm) (ppm) (×10−3 mg) (×10−3 mg)

50 100 2.86 16,384 0 5 10 3.48 2686 2517
2.85 14,253 0 3.46 2511 201
2.85 58 0 3.43 2234 17
2.83 54 0 3.40 1908 0
2.82 50 0 3.38 1557 0
2.80 47 0 3.35 124 0
2.79 44 0 3.33 49 0
2.78 0 0 3.30 780 0
2.76 0 0 3.27 0 0
2.75 0 0 3.23 0 0
2.74 0 0 3.19 0 0

25 50 3.03 66 18 1 2 4.04 427 44
3.01 60 0 3.99 329 0
2.98 54 0 3.94 203 0
2.96 49 0 3.89 42 0
2.94 45 0 3.84 0 0
2.92 0 0 3.79 0 0
2.91 0 0 3.74 0 0
2.89 0 0 3.70 0 0
2.87 0 0 3.65 0 0
2.85 0 0 3.61 0 0
2.84 0 0 3.58 0 0

10 20 3.27 5315 4959
3.25 4834 2985
3.23 4563 47
3.20 3477 0
3.17 2212 0
3.15 46 0
3.12 0 0
3.09 0 0
3.06 0 0
3.04 0 0
3.01 0 0

Compositional constraints: ΣFe = 10−3 m, ΣS = 10−3 m, ΣC = 0.256 m, T = 165 ◦C, P = 250 bars, salinity = 6 wt.% NaCl equiv.

5.3. Metal Transport and Sulfide Deposition

It is argued that in acidic, S-deficient, moderately to highly saline hydrothermal fluids,
Zn and Pb are mainly transported as chloride complexes [29,37,39–41]. In the Sopokomil
ore fluid, ZnCl+ and PbCl2(aq) were the principal Zn- and Pb-chlorides, respectively
(Figure 6A,B). Zn proportion occurring as ZnCl+ was approximately 80%. Nearly 17% of Zn
existed in ZnCl2(aq), whereas the rest was present as Zn2+ and ZnCl3−. This order is in good
agreement with other accounts [29,42]. Unlike the dominance of ZnCl+ over the other Zn-
chlorides, that of PbCl2(aq) over the other Pb-chlorides was unclear. PbCl2(aq) proportion
was around 35%, only 7% and 9% above that of PbCl3− and PbCl42−, respectively. The
percentage of Pb transported as PbCl+ was ≈ 11%, and as Pb2+ was ≈ 1%.
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Given the reduced and acidic conditions, sulfide precipitation at Sopokomil was
most likely driven by mixing between the ore fluid and marine sediment porewater, a
mechanism proposed for SHMS deposits, with reduced acidic ore fluids elsewhere [12–14].
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Immediate consequences of mixing were that the Sopokomil ore fluid became less saline,
less acidic, and cooler (Figure 6C,D, Table A2). The effects of ΣCl and pH changes on the
sulfide precipitation can be explained by the reaction:

MeS + nCl− + 2H+ = H2S(aq) + MeCln(n−2)−, (1)

where Me represents Zn and Pb, n is an integer in 0 ≤ n ≤ 4. The reaction shows that the
decreased ΣCl and the increased pH at an isothermal condition favor the reactant side,
destabilizing metal-chlorides in the evolving ore fluid. With decreasing temperatures, the
equilibrium shifts to the left as its reaction constant becomes smaller (Table 4).

Table 4. Equilibrium constant of reactions involving sulfides and metal-chlorides.

Reaction
log K

150 ◦C 155 ◦C 160 ◦C 165 ◦C

sp(s) + Cl− + 2H+ = H2S(aq) + ZnCl+ −0.8077 −0.6736 −0.5399 −0.4063
gn(s) + 2Cl− + 2H+ = H2S(aq) + PbCl2(aq) −7.6769 −7.5247 −7.3757 −7.2298

Abbreviations: gn (galena), sp (sphalerite).

In terms of metal transport, progressive mixing made the primary Zn- and Pb-
chlorides more pronounced despite the lower ΣCl in the aqueous phase (Figure 6A,B).
Within a 15 ◦C change in the temperatures, the ZnCl+ and PbCl2(aq) proportions increased
to 83% and 40%, respectively. The increases were balanced by decreases in their secondary
counterparts: (1) ZnCl2(aq) with respect to ZnCl+ and (2) PbCl3− and PbCl42− with respect
to PbCl2(aq).

The bulk of sulfides precipitated in the early stage of mixing (Figure 7A). T = 165–160 ◦C
was the most critical temperatures for galena and sphalerite precipitation. Galena domi-
nated at the onset of dilution, followed by major sphalerite precipitation toward the end of
the temperature range. Within T = 160–155 ◦C, most sulfides precipitated as pyrite while
sphalerite and galena continued to precipitate. At T = 155–150 ◦C, only trace amounts of
sulfides were deposited despite the continuously increased ΣS (Figure 7B), probably due
to the low ΣZn, ΣPb, and ΣFe in the residual ore fluid. The metal concentrations in the
aqueous phase at T = 155 ◦C were five to six orders of magnitude lower than their original
conditions, making the residual ore fluid undersaturated with respect to sphalerite, galena,
and pyrite. The sulfide depositional sequence above is reflected in the two most prominent
ore textures (Figure 7A). In the sphalerite-rich massive ore-type, sphalerite is dominant
and intergrown by galena, whereas pyrite occurs in trace amounts. This accords with the
modelled sulfide assemblage forming within T = 165–160 ◦C. In the pyrite-rich massive
ore-type, pyrite and sphalerite are abundant, whereas galena is minor. This assemblage is
in line with the modelling results at T = 160–155 ◦C.

The regimes of sulfide deposition are also mirrored by their Zn/Pb ratio (Figure 7A).
The ratio was 0.1 at the onset of mixing, concurrent with the dominance of galena over
sphalerite. It rose to 3.0 due to subsequent dilution, and steadily increased to 4.9 at
T = 154 ◦C. Afterwards, the ratio jumped to 12.9, although only trace amounts of sulfides
precipitated. The increased Zn/Pb ratio with progressive mixing is consistent with the
report that galena is more abundant in the proximity of feeder zones [7].

It has been proposed that hydrothermal S carried by the ore fluid and bacteriogenic S
dissolved in marine sediment porewater contribute to the precipitation of the Sopokomil
sulfides [7]. The concept of dual S-sources is also implicated by our calculations. The initial
ore fluid dissolved 0.001 m ΣS, which is hydrothermal in origin. In the beginning of the
dilution, the proportion of hydrothermal S in the evolving ore fluid rapidly dropped to
53% when temperatures reached 162◦C. Progressive cooling to T = 160 ◦C and T = 157 ◦C
further decreased the value to 32% and <10%, respectively (Figure 7C). If the ratio of
hydrothermal and bacteriogenic S in the aqueous phase was the same to that in the solid
phase, bacteriogenic S will account for 75% of S used in precipitating sulfides. This estimate
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reinforces the results of previous S-isotope investigation, pointing out that S of bacteriogenic
origin was responsible for the economic mineralization at Sopokomil [7].
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5.4. Genetic Model

The genesis of the Sopokomil SHMS Zn-Pb deposit is divided into two stages: ore-fluid
preparation and mineralization (Figure 8). In the first stage, a precursor fluid circulated
within a reduced rock package in the rift-fill basin sequence, equilibrating to reduced,
acidic conditions with moderate temperatures and salinities (Figure 8A,B). The fluid with
a sufficient Zn- and Pb-bearing capacity interacted with the reservoir rocks and leached
their metals, resulting in a fertile ore fluid (Figure 8B,C). Having ascended to subseafloor
environment, the ore fluid encountered cold marine sediment porewater with contrasting
chemistry, marking the onset of the mineralization stage (Figure 8D,E). Their interaction
disturbed thermal and chemical equilibrium in the ore fluid, prompting sulfide precipita-
tion. At the start, galena and sphalerite were the dominant sulfide phases. With progressive
dilution, pyrite became dominant and co-precipitated with sphalerite and minor galena.
Sulfide deposition consumed S, mainly bacteriogenic in origin. The bulk of sulfides at
Sopokomil formed within a narrow temperature range, when only a fraction of diluting
agent involved (Figure 8E). The mineralization stage terminated as the residual fluid be-
came undersaturated with respect to the sulfides (Figure 8F). The genetic concept above
underscores the significance of steep thermal and chemical gradients generated by the
ore-fluid dilution to the growth of the Sopokomil SHMS Zn-Pb deposit.
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within the rift-fill sequence. (B) It circulated in the reservoir, extracting metals, and producing (C) a reduced, acidic ore fluid.
(D) On arriving at the depositional site, (E) the ore fluid was diluted by marine sediment porewater resulting in sulfide
precipitates. (F) The continuous dilution rendered the residual fluid undersaturated with respect to the sulfides, cooler, less
saline, near neutral, and more sulfidic.
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6. Conclusions

The ore-forming fluid in the Sopokomil Zn-Pb SHMS deposit was moderate in salin-
ities (≈6 wt.% NaCl equiv) and temperatures (≈165 ◦C). These parameters correspond
to a fluid less dense than seawater (≈0.96 g/mL). Zn and Pb were transported mainly as
ZnCl+ and PbCl2(aq), respectively. Having been diluted by marine sediment porewater, the
reduced acidic ore fluid at Sopokomil precipitated sulfides, mostly within T = 165–155 ◦C.
The order of dominant sulfides precipitating from the evolving ore fluid produced a Zn/Pb
ratio that increased with progressive mixing. Furthermore, the mixing model confirms that
S supplied by marine sediment porewater was a crucial component in the sulfide deposi-
tion at Sopokomil. This study highlights the importance of a dramatic shift in thermal and
chemical equilibrium in the early stage of mixing to the formation of the first significant
SHMS deposit on Sumatra, and in Indonesia.
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Appendix A

Table A1. Bulk composition of initial ore fluid and marine sediment porewater.

Initial Ore Fluid Marine Sediment
Porewater

ΣC (m) 0.256 0.002331235
ΣCa (m) 0.031205 0.010255003
ΣCl (m) 1.10103 0.54720335
ΣFe (m) 0.001 6.09 × 10−8

ΣH (m) 111.02555 109.1324
ΣK (m) 0.093614 0.010026011

ΣMg (m) 3.12 × 10−5 0.053075498
ΣNa (m) 0.936142 0.46977356
ΣO (m) 55.508373 55.189569
ΣPb (m) 0.000241313 1.45 × 1010

ΣS (m) 0.001 0.028190974
ΣZn (m) 0.00153 7.65 × 10−8
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Table A2. Results of thermodynamic calculation.

Run 1 2 3 4 5 6 7 8 9 10 11

Input
Porewater
/ore fluid (kg/kg) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Ore fluid (kg) 1.00 1.00 1.01 1.03 1.06 1.10 1.16 1.23 1.31 1.42 1.55
Porewater (kg) 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.09 0.11 0.13 0.15

T (◦C) 165 163 162 160 159 157 155 154 152 150 149
P (bar) 250 250 250 250 250 250 250 250 250 250 250

Output
Aqueous

phase (kg) 1.00 1.01 1.03 1.06 1.10 1.16 1.23 1.31 1.42 1.55 1.70

Ca2+ (m) 2.2 × 10−2 2.2 × 10−2 2.1 × 10−2 2.1 × 10−2 2.1 × 10−2 2.0 × 10−2 2.0 × 10−2 1.9 × 10−2 1.8 × 10−2 1.6 × 10−2 1.5 × 10−2

CaCl+ (m) 9.2 × 10−3 8.9 × 10−3 8.6 × 10−3 8.3 × 10−3 7.9 × 10−3 7.4 × 10−3 6.9 × 10−3 6.4 × 10−3 5.7 × 10−3 5.0 × 10−3 4.4 × 10−3

CaCl2 (m) 6.6 × 10−4 6.4 × 10−4 6.1 × 10−4 5.8 × 10−4 5.4 × 10−4 5.0 × 10−4 4.6 × 10−4 4.1 × 10−4 3.6 × 10−4 3.1 × 10−4 2.6 × 10−4

Fe2+ (m) 7.5 × 10−4 7.5 × 10−4 7.4 × 10−4 7.2 × 10−4 3.5 × 10−4 1.8 × 10−6 2.4 × 10−8 3.2 × 10−9 1.5 × 10−9 7.4 × 10−10 3.5 × 10−10

FeCl+ (m) 2.5 × 10−4 2.5 × 10−4 2.4 × 10−4 2.3 × 10−4 1.1 × 10−4 5.4 × 10−7 6.8 × 10−9 8.9 × 10−10 3.9 × 10−10 1.9 × 10−10 8.5 × 10−11

FeCl2 (m) 4.0 × 10−7 3.5 × 10−7 3.0 × 10−7 2.5 × 10−7 1.0 × 10−7 4.6 × 10−10 5.0 × 10−12 5.7 × 10−13 2.2 × 10−13 9.1 × 10−14 3.6 × 10−14

K+ (m) 9.2 × 10−2 9.2 × 10−2 9.0 × 10−2 8.8 × 10−2 8.5 × 10−2 8.1 × 10−2 7.7 × 10−2 7.2 × 10−2 6.8 × 10−2 6.3 × 10−2 5.8 × 10−2

KCl (m) 1.7 × 10−3 1.6 × 10−3 1.6 × 10−3 1.5 × 10−3 1.3 × 10−3 1.2 × 10−3 1.1 × 10−3 1.0 × 10−3 8.9 × 10−4 7.8 × 10−4 6.8 × 10−4

Mg2+ (m) 2.4 × 10−5 4.5 × 10−4 1.3 × 10−3 2.5 × 10−3 4.1 × 10−3 6.1 × 10−3 8.3 × 10−3 1.1 × 10−2 1.2 × 10−2 1.4 × 10−2 1.6 × 10−2

MgCl+ (m) 7.0 × 10−6 1.3 × 10−4 3.6 × 10−4 6.8 × 10−4 1.1 × 10−3 1.5 × 10−3 2.0 × 10−3 2.5 × 10−3 2.8 × 10−3 3.1 × 10−3 3.4 × 10−3

Na+ (m) 7.9 × 10−1 7.9 × 10−1 7.9 × 10−1 7.8 × 10−1 7.7 × 10−1 7.5 × 10−1 7.4 × 10−1 7.2 × 10−1 7.0 × 10−1 6.8 × 10−1 6.6 × 10−1

NaCl (m) 1.5 × 10−1 1.4 × 10−1 1.4 × 10−1 1.3 × 10−1 1.3 × 10−1 1.2 × 10−1 1.2 × 10−1 1.1 × 10−1 1.0 × 10−1 9.5 × 10−2 8.9 × 10−2

Pb2+ (m) 2.1 × 10−6 1.3 × 10−6 9.5 × 10−7 4.2 × 10−7 1.3 × 10−7 8.8 × 10−10 2.3 × 10−11 4.9 × 10−12 5.2 × 10−12 2.5 × 10−12 2.7 × 10−12

PbCl+ (m) 2.6 × 10−5 1.6 × 10−5 1.1 × 10−5 4.9 × 10−6 1.5 × 10−6 9.6 × 10−9 2.4 × 10−10 5.0 × 10−11 5.1 × 10−11 2.4 × 10−11 2.5 × 10−11

PbCl2 (m) 8.5 × 10−5 5.2 × 10−5 3.6 × 10−5 1.5 × 10−5 4.4 × 10−6 2.8 × 10−8 6.8 × 10−10 1.4 × 10−10 1.3 × 10−10 5.9 × 10−11 6.0 × 10−11

PbCl3
− (m) 6.3 × 10−5 3.8 × 10−5 2.6 × 10−5 1.1 × 10−5 3.1 × 10−6 1.9 × 10−8 4.4 × 10−10 8.6 × 10−11 8.0 × 10−11 3.4 × 10−11 3.3 × 10−11

PbCl4
2− (m) 6.7 × 10−5 4.1 × 10−5 2.7 × 10−5 1.1 × 10−5 3.1 × 10−6 1.9 × 10−8 4.2 × 10−10 7.9 × 10−11 7.1 × 10−11 2.9 × 10−11 2.7 × 10−11

Zn2+ (m) 9.6 × 10−6 9.9 × 10−6 7.3 × 10−6 3.4 × 10−6 1.1 × 10−6 7.7 × 10−9 2.1 × 10−10 4.8 × 10−11 3.5 × 10−11 2.6 × 10−11 2.1 × 10−11

ZnCl+ (m) 1.2 × 10−3 1.2 × 10−3 8.2 × 10−4 3.6 × 10−4 1.1 × 10−4 7.1 × 10−7 1.8 × 10−8 3.7 × 10−9 2.5 × 10−9 1.7 × 10−9 1.3 × 10−9

ZnCl2 (m) 2.6 × 10−4 2.5 × 10−4 1.7 × 10−4 7.2 × 10−5 2.1 × 10−5 1.4 × 10−7 3.4 × 10−9 6.9 × 10−10 4.5 × 10−10 3.1 × 10−10 2.2 × 10−10

ZnCl3
− (m) 3.6 × 10−5 3.5 × 10−5 2.4 × 10−5 1.0 × 10−5 3.0 × 10−6 1.9 × 10−8 4.5 × 10−10 8.9 × 10−11 5.6 × 10−11 3.7 × 10−11 2.5 × 10−11

CO2 (m) 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1

CO3
2− (m) 8.5 × 10−12 1.1 × 10−11 1.4 × 10−11 2.6 × 10−11 9.0 × 10−11 1.0 × 10−8 1.9 × 10−7 5.6 × 10−7 5.5 × 10−7 5.5 × 10−7 5.6 × 10−7

HCO3
− (m) 2.5 × 10−5 3.0 × 10−5 3.4 × 10−5 4.7 × 10−5 8.7 × 10−5 9.4 × 10−4 4.1 × 10−3 7.1 × 10−3 7.2 × 10−3 7.3 × 10−3 7.4 × 10−3

CH4 (m) 1.3 × 10−1 1.3 × 10−1 1.2 × 10−1 1.1 × 10−1 1.0 × 10−1 8.9 × 10−2 7.5 × 10−2 5.9 × 10−2 4.3 × 10−2 2.6 × 10−2 9.3 × 10−3

Cl− (m) 9.4 × 10−1 9.4 × 10−1 9.4 × 10−1 9.3 × 10−1 9.1 × 10−1 8.9 × 10−1 8.7 × 10−1 8.5 × 10−1 8.3 × 10−1 8.0 × 10−1 7.8 × 10−1

HCl (m) 3.3 × 10−4 2.8 × 10−4 2.5 × 10−4 1.8 × 10−4 9.7 × 10−5 8.9 × 10−6 2.0 × 10−6 1.1 × 10−6 1.1 × 10−6 1.1 × 10−6 1.0 × 10−6

H2 (m) 9.0 × 10−6 8.3 × 10−6 7.6 × 10−6 6.9 × 10−6 6.3 × 10−6 5.6 × 10−6 5.0 × 10−6 4.4 × 10−6 3.8 × 10−6 3.1 × 10−6 2.3 × 10−6

O2 (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HSO4

− (m) 5.3 × 10−16 7.1 × 10−16 8.6 × 10−16 1.4 × 10−15 2.6 × 10−15 3.7 × 10−14 3.5 × 10−13 1.1 × 10−12 2.0 × 10−12 4.0 × 10−12 1.3 × 10−11

SO4
2− (m) 3.4 × 10−16 5.3 × 10−16 7.5 × 10−16 1.7 × 10−15 5.8 × 10−15 9.2 × 10−13 3.9 × 10−11 2.1 × 10−10 3.9 × 10−10 8.1 × 10−10 2.8 × 10−9

H2S (m) 1.0 × 10−3 1.2 × 10−3 1.2 × 10−3 1.4 × 10−3 1.3 × 10−3 1.6 × 10−3 3.0 × 10−3 4.5 × 10−3 6.1 × 10−3 7.8 × 10−3 9.5 × 10−3

HS− (m) 3.9 × 10−7 5.2 × 10−7 6.2 × 10−7 9.7 × 10−7 1.6 × 10−6 2.1 × 10−5 1.7 × 10−4 4.2 × 10−4 5.7 × 10−4 7.2 × 10−4 8.7 × 10−4

OH− (m) 3.7 × 10−9 4.1 × 10−9 4.4 × 10−9 5.6 × 10−9 9.8 × 10−9 9.9 × 10−8 4.1 × 10−7 6.7 × 10−7 6.4 × 10−7 6.1 × 10−7 5.8 × 10−7

H+ (m) 3.0 × 10−3 2.6 × 10−3 2.4 × 10−3 1.8 × 10−3 9.7 × 10−4 9.2 × 10−5 2.1 × 10−5 1.3 × 10−5 1.3 × 10−5 1.3 × 10−5 1.3 × 10−5

H2O (m) 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101 5.6 × 101

Gas phase (kg) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log f CO2 1.32 1.32 1.33 1.33 1.33 1.33 1.33 1.32 1.32 1.32 1.32
log f CH4 2.21 2.21 2.20 2.17 2.13 2.08 2.01 1.91 1.78 1.57 1.12
log f H2 −1.97 −2.00 −2.03 −2.06 −2.10 −2.14 −2.19 −2.24 −2.30 −2.38 −2.52
log f O2 −47.29 −47.49 −47.67 −47.85 −48.03 −48.21 −48.37 −48.53 −48.67 −48.77 −48.75
log f S2 −14.61 −14.50 −14.47 −14.34 −14.43 −14.25 −13.69 −13.34 −13.03 −12.74 −12.37

Solid phase (mg) 0.000 23.052 51.598 66.298 91.646 72.767 0.412 28.079 232.480 279.723 335.312
Calcite (mg) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dolomite (mg) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 28.072 232.478 279.720 335.310
Pyrite (mg) 0.000 0.000 0.000 0.000 55.489 56.462 0.303 0.004 0.001 0.001 0.001

Pyrrhotite (mg) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Galena (mg) 0.000 20.379 10.526 13.178 6.936 2.983 0.019 0.000 0.000 0.000 0.000

Sphalerite (mg) 0.000 2.674 41.071 53.120 29.221 13.321 0.090 0.003 0.001 0.001 0.001
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