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Abstract: Groundwater contamination is one of the most concerning issues from uranium mining
activities. Radionuclides cannot be destroyed or degraded, unlike some organic contaminants (and
similar to metals). Besides, sites, where radionuclides may be found, are mainly radioactive and
mixed waste disposal areas, and therefore many other contaminants may also be present in ground-
water. The state-of-the-art of environmental technology is continually changing, and thus a review
on technologies application is of utmost relevance. This work gives an overview of the available
remediation technologies for groundwater contaminated with radionuclides resulting mainly from
uranium mining. For each technology, a theoretical background is provided; the state of development,
limitations, efficiency, and potential adverse effects are also approached. Examples of application
and performance monitoring of remediation progress are described, and criteria for the selection
of the appropriate remediation technology are given. The most effective remediation technology
will always be site-specific as a result of the multitude of geographic and operational factors that
influence the effluent quality and impact the technical feasibility of treatment methods. Ion exchange,
chemical precipitation, and membrane filtration have been considered by the U.S. Environmental
Protection Agency (US EPA) as best demonstrated available technologies for radium and uranium
removal. Several factors have been demonstrated to influence the selection of a remediation technol-
ogy (technological aspects and non-technical factors), but even for the technologies demonstrated
or industrial proven, two important challenges remain; the (still) mobile radionuclides and the
generation of secondary wastes. Besides, remediation technologies are constantly evolving, but
future advancement depends on rigorously monitored, documented efficiency, and results achieved.
Therefore, the technologies approached in this paper are by no means exhaustive.

Keywords: groundwater; radionuclides; remediation; technologies uranium; uranium mining impact;
water contamination

1. Introduction

Historically, mine sites have been a significant source of contamination to the envi-
ronment, particularly in sites where the mining activity has ceased without an existing
closure plan or a rehabilitation project. Such practices are no longer acceptable. Upon
closure, decommissioning and environmental remediation of the site must take place, and
in most cases, long-term monitoring to ensure the long-time stability of the site. Closure
and decommissioning plans are mandatory at the initial design stage of the project.

Uranium mining can impact groundwater in several ways, mainly from the explo-
ration, mining, processing, and waste management phases of the project. The contami-
nation can occur from the ground surface (by infiltration of contaminated surface water,
waste piles, tailings facilities, airborne particles, etc.), from above the water table (leaks
in pipelines, leachates, etc.), or from below the water table (drainage wells, groundwater
withdrawal, etc.) [1–3]. When considering impacts associated with uranium in water, it is
essential to note that the risk of chemical toxicity can be much more significant than the
radiological risk for a given uranium concentration.
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Different in-situ and ex-situ remediation options exist for contaminated groundwater:
containment of the contaminants to prevent migration (e.g., using geotechnical measures),
removal of the contamination source (e.g., by excavation and subsequent soil washing),
groundwater treatment at the point of use, removal of the groundwater for treatment and
replacement, or remediation of the groundwater in situ (e.g., the in-situ transformation
of the contaminants to reduce their mobility and the toxicity). Many of these options are
put in operation through the pump-and-treat systems, in situ permeable treatment wall
system, monitored natural attenuation, enhanced attenuation technologies, and biologi-
cal processes.

All these mechanisms have their advantages and limitations. Moreover, they are
contaminant specific and strongly dependent on the subsurface environmental conditions
of the site, which may constrain the entire remediation of the site or the application of some
technologies which may be too costly to implement on a large scale or inadequate to address
the magnitude and combinations of contamination problems. Besides, multiple technolo-
gies may be involved simultaneously at a particular site and change over time. Therefore,
it is recognized that there is no single technology or a single combination of technologies
that would apply to all contaminants under all subsurface environmental conditions.

On the other hand, sites, where radionuclides may be found, are mainly radioactive
and mixed waste disposal areas, and therefore many other contaminants may also be
present in groundwater. In all situations, designing and implementing effective prevention
measures to avoid contamination are preferred over-relying on groundwater remediation
after contamination has occurred. The groundwater clean-up systems which are widely
used are expensive and need to be applied in practice for a long time, although, in recent
years, remediation research has been focused on the development of new clean-up systems
and improvement of the efficiency of the existing ones.

Remediation of groundwater impacted with dissolved metals, metalloids, and ra-
dionuclides is perhaps one of the biggest challenges for in situ environmental remediation
today. Remedial strategies for the treatment of metals in groundwater generally involve
direct precipitation or sorption/coprecipitation, with the goal of permanently sequestering
and immobilizing the metals in the aquifer soil matrix. The success of this process is depen-
dent upon many factors, such as the kinetics of the reaction, the equilibrium solubility (the
solubility of the precipitated solid phases as they form), and durability/permanence (long-
term stability of the precipitated solids) [4]. The result is a reduction in the groundwater
radionuclide and metals concentrations, but these remain in situ.

This work gives an overview of the available remediation technologies for ground-
water contaminated with radionuclides resulting mainly from uranium mining activities.
For each technology, a theoretical background is provided. The state of development,
applicability limitations, remediation efficiency, and potential adverse effects of these
technologies are also approached. Examples of application and performance monitoring
of remediation progress are described, and general criteria for selecting the appropriate
remediation technology are given. For some of the presented case studies, the uranium
concentration reported in groundwater samples ranged between 138 µg/L and 300 mg/L.
Additionally, when there are no such examples for the radionuclides related to uranium
mining and milling activities, others are presented.

2. Remediation Technologies

Remediation technologies can be grouped into three broad categories: physical, chem-
ical, and biological methods (plant and microorganism methods). Each method has limita-
tions and strengths, but the applicable remediation approach should be determined by the
site-specific conditions.
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Several chemical, physical, biological, and combined methods have been developed
to remediate groundwater contaminated with radionuclides originating from uranium
mining activities. The available technologies include vertical barriers (U, Ra, Th, Rn), phy-
toremediation (U), ion exchange (U, Ra), chemical precipitation (U, Ra), permeable reactive
barrier (U, Ra), membrane process (U, Ra, Th, Rn), adsorption (U, Ra) and, monitored
natural attenuation (U, Ra) [5–32].

The most straightforward approach seems to be the well-established methods of
wastewater treatment. With the ‘pump-and-treat’ systems, the contaminated groundwater
is removed from the ground by pumping and treated in a treatment plant on the surface.
The approach relies on proven treatment techniques, is simple to manage, and the treated
groundwater can be re-injected into the subsurface or discharged into surface water sources.
However, this process has two main disadvantages: it disturbs the groundwater flow
regime and requires steady energy and other inputs.

In the literature, there are references to other technologies that have been bench- or
pilot-tested, with successful performance, such as those based on photo-induced tech-
nology (e.g., photocatalysis) [33], electro-remediation (e.g., electro-coagulation) [34,35],
electrodialysis, and electrodialysis reversal (these systems are generally considered eco-
nomically viable only for very small installations) [36]. Still, in what concerns full-scale
demonstration, the information is scarce.

2.1. Chemical Separation

Chemical separation technologies for liquid media consist of separating and concen-
trating the contaminants from groundwater. The process generates residuals such as filters,
filter cakes, carbon units, and ion exchange resins requiring further treatment, storage, or
disposal. According to the types and concentrations of the contaminants, the extractabil-
ity rates of the different chemical separation technologies may vary considerably. Still,
site-conditions and characteristics will determine the applicability of chemical separation
technologies when considering a specific site. Another issue remains from the ex-situ
chemical separation technologies (ion exchange and chemical precipitation) in which a
groundwater extraction and delivery system are required. These technologies will generate
a treated effluent and a contaminated residual that requires further treatment or disposal.

2.1.1. Ion-Exchange

This technology has been successfully used in reducing radionuclide and inorganic
metal concentrations in water bodies to levels suitable for effluent discharge. In a simplistic
way, this technology separates and replaces radionuclides in a waste stream with ions from
a synthetic resin or natural zeolite. The process can remove up to 99% of the contaminants
(beta and alpha emitters, radium, and uranium) suspended in water by passing the wa-
ter through cation (positively) or anion (negatively) charged resin media that binds the
contaminants [13] (Figure 1).

Exchange resins for radium often use sodium and potassium, removing hardness
elements such as iron, calcium, magnesium, and manganese. Resins have an insoluble
structure with numerous ion transfer sites and an affinity for specific types of ions. When
the exchangeable ions are bound to the resin with a weaker ionic bond than the one of the
ion to be recovered (contaminant), the exchange ion goes into the solution, and the ionic
contaminant binds to the resin. Resins must be regenerated regularly by exposing them to
a concentrated solution of the original exchange ion. When zeolites are depleted, they are
disposed of as solid waste. Resins are more expensive than other adsorption reagents, such
as carbon, but they have higher selectivity than activated carbon [37].
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Figure 1. The general process involved in ion exchange [13].

Ion exchange technology immobilizes the contaminant in the exchange media but
does not affect the radiotoxicity of the contaminant itself and, therefore, the concentrated
waste removed from the resin and the spent resin must be treated, stored, or disposed of.
Several factors can limit the effectiveness of this technology [13]:

• The cation-exchange capacity (CEC) of the resin media may be affected by the hardness
ions which compete with radium ions;

• Clogging of the resin media due to high levels of Mg and Fe in source waters;
• Pretreatment of anionic waste streams or waste streams with suspended solids must

be considered.
• pH, temperature, concentration, flow rate, selectivity of the resin, and exchange capacity;
• If more than one radioactive contaminant is present, more than one resin or treatment

process may be required.

The recovery of uranium from groundwater waste streams depends strongly on the
type of uranium species in the solution. The higher the ion charge of the molecule, the
more selective the resin will be towards the species (e.g., the uranyl carbonate complex
has a very high selectivity for the ion exchange resin, this means that exhaustion of the
resin will take a long time, although it will still be possible to remove uranium to very
low levels).

This process generates waste management issues requiring treatment, storage, or
disposal of the radioactive brine, which will be a caustic or acid solution and require
neutralization. Wastes can become highly concentrated and difficult to handle as anion
exchange resins have a very high adsorption capacity for uranium [13].

In general, removal rates for radium and uranium range between 65 to 97% and 65 to
99%, respectively. For beta emitters, the removal range is 95 to 99% [38].

Ion exchange technology was applied on a wastewater stream at Hanford, where
the uranium concentration was reduced by 94% [13,39,40]. Treatment of municipal drink-
ing water with ion exchange using zeolites has reduced uranium levels by 99.7% [41]
and radium levels to an average of 98% [42]. In Finland, at municipal waterworks, it
was possible to reduce uranium concentration by 99.9% after treatment by a strong acid
cation exchanger and a strong base anion exchanger [43]. In Bulgaria, the treatment of
uranium-contaminated mine waters is carried out by ion exchange as part of the mitigation
consequences from the uranium mining and processing activities [44,45]. In Germany,
the Wismut Company uses this technology at two sites (Aue and Königstein) to separate
uranium from flood water [46], and in Romania, ion exchange is also applied to treat



Geosciences 2021, 11, 250 5 of 27

uranium-contaminated mine waters achieving a removal rate of 99.5%; radium is also
removed to a certain extent [47]. A summary of these examples is presented in Table 1.

Table 1. Summary of the ion exchange (IX) performance for uranium and radium removal.

Source for IX 1 Removal Efficiency Mechanism Remarks References

Synthetic resin 94.0% U Anion exchanger resin (a) [13,39]
DOWEX 21 K resin 97–99% U Anion exchanger resin (b) [40]

Zeolites Z-92™ resin 99.7% U Cation exchanger (c) [41]
Zeolites Z-88™ resin 97.3% Ra Cation exchanger (d) [42]

ORWA resin >95% U Anion exchanger resin (e) [43]
ORWA resin >94% Ra Cation exchanger resin (f) [43]
ORWA resin 99.9% U Cation/Anion exchanger resin (g) [43]

Synthetic resin 99.7% U Cation exchange resin (h) [46]
Synthetic resin 99.5% U Cation exchange resin (i) [47]

1 Ion Exchange identified as a Best Demonstrated Available Technology for the removal of radium-226, radium-228, and uranium.

(a) Eight cycles with an approximated uranium loading of 0.035 kg/kg resin. The initial
concentration in groundwater was 0.1 kg/m3 of uranium.

(b) Changes in uranyl speciation due to pH variation and concentration of other ground-
water constituents have a direct implication for removal efficiency.

(c) Applied successfully at several sites in the USA for drinking water treatment.
(d) Applied successfully at several sites in the USA for drinking water treatment.
(e) The uranium removal rate by a strong basic anion resin was independent of the filter

type, water quality, and bed volume. The radium removal rate ranged between 35%
and 65%.

(f) Radium removal using a strong acidic cation resin.
(g) Removal rate using a strong acid cation exchanger followed by a strong base anion ex-

changer.
(h) The water treatment plant includes barium chloride treatment to remove radium and

ion exchange columns to remove uranium.
(i) Radium is also removed to a certain extent.

Several examples describing the application of this method to remove other radionu-
clides not related to uranium mining can be found in the literature, such as the removal
of tritium with an efficiency of 69 to 97% at pilot-plant testing carried out by DOE at
Clemson University [48]. At the Savannah River Site, a demonstration of ion exchange
to remove cesium from water achieved an efficiency of 99.9% [49]. In bench-scale tests of
self-assembled monolayers on mesoporous supports, the removal efficiencies were 99%
for plutonium and cesium [50]. Groundwater treatment contaminated with technetium-99
by ion exchange using selective separation cartridges achieved removals of 70 to 94% at
Ashtabula, Ohio [51].

Ion exchange technology is fully developed and has been applied to waste streams
contaminated with radionuclides and metals.

2.1.2. Chemical Precipitation

Precipitation methods are the most widely used treatments for uranium mine and
mill water effluents. They are very efficient as they use small amounts of chemicals and are
low-cost. Their disadvantage is the large volume of residues produced [52].

Chemical precipitation transforms the soluble radionuclides into an insoluble form
through a chemical reaction or changing the solvent’s composition to reduce solubility. The
chemical reaction occurs with the addition of a chemical precipitant to the aqueous waste
with radionuclides in a stirred reaction vessel. A stage of sedimentation is followed where
other chemicals may be added (e.g., flocculants). The most commonly used precipitants
include carbonates, sulfates, sulfides, phosphates, polymers, lime, and other hydroxides.
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The process’s efficiency depends on the precipitant and dosage used, the concentration of
radionuclides in the aqueous waste media, and the pH of the solution.

This process does not reduce the mobility of the contaminants remaining in the liquid
medium, although it generates a purified liquid medium. The contaminated residuals from
the process (precipitated sludges) will need to be stored, further processed, or disposed of.
It is considered that the chemical precipitation technology includes coagulation/filtration,
in which a flocculant precipitate is formed, and lime softening that removes water hardness
by the formation of insoluble calcium carbonate and magnesium hydroxide. At high pH
levels, lime softening is very effective in removing dissolved uranium from water [37].
A generic representation of the process is shown in Figure 2.

Figure 2. The general process involved in chemical precipitation [13].

This process effectively reduces high levels of radionuclides, especially radium (226Ra
and 228Ra) and uranium, and dissolved metals from mine water, groundwater, surface
water, wastewater, liquid waste, and leachates, using reagents and filters considering the
particular radionuclide that is present.

The technology is fully developed and has been applied to liquid waste streams (in-
cluding municipal water systems) contaminated with radionuclides (radium and uranium
from uranium mine wastewater) and metals [53]. Nevertheless, several factors can affect
the applicability and effectiveness of chemical precipitation, in particular, physical and
chemical properties, such as temperature, pH, and flow rate of the media to be treated. Also,
the presence of multiple radionuclides could affect the effectiveness requiring multiple
treatment processes.

When applicable, it may be necessary to adjust the pH of the treated effluent or
remove precipitating agents. It is also necessary to dewater the sludge resulting from
the precipitation before disposed of. Additional treatment may be required (e.g., sulfide
removal) for treated effluents before discharged.

The bulk precipitation using lime to remove radionuclides will also remove most
heavy metals from the solution. For radium, 75 to 95% removal can be achieved in the
precipitation through lime softening [54].

Barium chloride is specifically used to remove radium from uranium mill process
waters [55]. The removal rates are within 95–99%. The precipitates (barium/radium sulfate)
are challenging to retain by filtration. Therefore, it is common practice to co-precipitate
radium with other more abundant species, e.g., during bulk neutralization or together
with the precipitation of arsenic by ferric chloride [56]. In all precipitation processes, the
precipitate is managed as radioactive waste, which requires a proper disposal strategy.
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Uranium can be removed with an efficiency of 80%, 92% and, 95%, using ferric sulfate,
ferrous sulfate, and alum, respectively [57].

Chemical precipitation is commonly used in the treatment systems for the removal
of radionuclides and metals in water from mining uranium operations and sites already
remediated or under remediation: Uranium Ranger mine and Olympic Dam (Australia);
Wismut (Germany); Saskatchewan (Canada) [11], and is being used at DOE’s Savannah
River Site to remove uranium from contaminated groundwater since 2000 [58].

In the last few years, several studies have been conducted highlighting the advances in
the chemical treatment of radionuclide-contaminated water in different contexts [23,59–62].
A summary of some of the mentioned case studies is presented in Table 2.

Table 2. Summary of the chemical precipitation (CP) performance for uranium removal.

Reagent for CP 1 Removal Efficiency Mechanism Remarks References

Ferric sulfate 80% U Removal by coagulants (a) [57]
Ferrous sulfate 92% U Removal by coagulants (b) [57]

Aluminum sulfate 95% U Removal by coagulants (c) [57]

Barium chloride 95–99% Ra Co-precipitation of barium and
radium sulphate (d) [56]

Lime softening 75–95% Ra Single stage softening (e) [54]
Hydrogen sulfide 99.9% U Precipitation (f) [57]
Sodium hydroxide 68.0% U Partial precipitation (g) [57]

Iron chloride, sodium hydroxide 96.7% U Co-precipitation/adsorption (h) [58]
1 Chemical precipitation identified as a Best Demonstrated Available Technology for the removal of radium-226, radium-228, and uranium [13].

(a) At pH 6 and 10, the removal rate was approximately 88%, but it was only 40% and
20% at pH 8 and 4, respectively, for the same dosage of 25 mg/L of reagent.

(b) Removal rate at pH 10. At pH 8 and 4, the removal rate was only 20% and 40%,
respectively, for the same dosage of 25 mg/L of reagent.

(c) Removal rate at pH 10. At pH 8 and 4, the removal rate was only 48% and 21%,
respectively, for the same dosage of 25 mg/L of reagent.

(d) The best method of radium removal from sulphate rich and radium rich waters.
(e) Softening removes hardness and alkalinity; therefore, water from softening plants

may change the corrosivity of the water. Conventional single stage softening can
remove between 50 and 80% of radium. Enhanced lime softening can remove up to
90% of radium and uranium and may also remove arsenic, iron, and manganese.

(f) Possibility of generating a toxicity problem.
(g) No toxicity problem.
(h) Contaminant removal (metals and actinides) during neutralization and precipitation.

2.1.3. Permeable Reactive Barriers

A permeable reactive barrier (PRB), also known as a passive treatment wall, is an
engineered barrier of reactive material placed in the subsurface designed to intercept the
flow path of the contaminated plume. The barrier allows the groundwater to flow through
the reactive media but retains the movement of the radionuclides [63,64] (Figure 3).

The process relies on the natural gradient to move groundwater through the barrier;
therefore, there is no need for energy input and workforce into the remediation process.
There is no mechanical breakdown, thus minimizing the long-term operation and mainte-
nance costs of remediation projects.

The process involves excavating a trench perpendicular to the groundwater flow path
and filling it with reactive materials, sometimes mixed with sand to increase permeability.
According to the nature of the contaminants, treatment agents are selected and placed
within the wall, such as chelators (specific for a given radionuclide), sorbents (peat, bone
char phosphate, apatite, activated carbon, or zeolites), and reactive minerals (limestone).
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This mixture of materials should have a higher permeability than that of the aquifer to
prevent hydraulic head build up and escape the plume around (or under) the barrier [13,65].

Figure 3. The layout of the process involved in permeable reactive barrier [13].

As radionuclides are retained by and concentrated within the barrier material, the
treatment agents may require periodic replacement [66]. Also, the process can take several
years or more for implementation, particularly in aquifers with low permeability. For that
reason, the timing for achieving the remediation goals at a specific site will determine if
permeable reactive barriers can be considered or not as a potential remedial technology.

There are some limitations in what concerns the applicability and effectiveness of this
technology [13,67,68]:

• Longer treatment time when compared with other remediation technologies (three to
30 years);

• Potential for losing reactivity of the reactive treatment material, requiring replacement
of the material;

• Potential for a decrease in hydraulic conductivity of the reactive treatment material
due to biological clogging and or chemical precipitation;

• Potential of plume bypassing the PRB due to seasonal fluctuations in the flow regime;
• Currently limited to shallow depths;
• The longevity of PRB performance is uncertain.

If the spent reactive media cannot be left in place, it will need to be removed. This
spent media may present high radioactivity levels, depending on radionuclides and con-
centrations being treated, and therefore it should be managed as radioactive waste.

It is necessary to install monitoring wells upgradient, downgradient, and within the
barrier wall to periodically verify the effectiveness and performance of the system and the
need to replace the reactive media.

Full-scale demonstrations of this technology have been applied at several sites: Oak
Ridge National Laboratory, Tennessee, (U, Tc, Sr-90) [13]; Fry Canyon, Utah (U) [69]; Chalk
River Laboratories, Ontario, Canada (Sr-90) [70]. The uranium removal rates range from 60
to over 99.9% depending on the reactive media: PO4 = 60% to 92% removal; zero-valent
iron (ZVI) = over 99.9%; amorphous ferric oxyhydroxide = 37% to 90%; and chabazite
zeolite = over 99% [13].

Over the years, permeable reactive barriers have been successfully applied to hun-
dreds of sites for the treatment of water with metals, organic and inorganic contaminants
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but mainly in the USA [71,72]. It has been applied to a quite number of the sites with
radionuclide-contaminated groundwater.

Three of these sites are given as examples, where permeable reactive barrier technol-
ogy was selected to reduce the uranium concentration in groundwater as a part of the
remediation approach. In the Monticello Mill Tailings site in Utah, approximately 99.9% of
uranium was removed (initial concentrations of 700 µg/L reduced to < 0.41 µg/L) with
a pilot study [73]. In the Rocky Flats Environmental Technology Site in Colorado, it was
possible to achieve an approximately 99% uranium removal [74], and in the Lincoln Park
site in Colorado (PRB was implemented as an interim measure), the uranium removal rate
was similar [13,75].

Permeable reactive barriers have been successfully used for uranium removal with
zero-valent iron as the reactive media [11]. Clinoptilolite zeolite (reactive media) has
shown high sorption capability for radium-226 (and also for cesium-137, strontium-90, and
cobalt-60) [76].

Other studies have been developing both at bench and field-scale for better and
more efficient reactive media. Laboratory and field tests were performed by Kornilovych
et al. [77] at the Ukrainian Uranium Center (Zhovty Vody city, Ukraine) for the treatment
of uranium-contaminated groundwater. The removal rate ranged between 60.5% and 82%,
using ZVI and organic carbon as treatment media. In Hungary, a pilot-scale zero-valent
iron-based experimental permeable reactive barrier was built in 2002 for in situ treatment of
uranium-contaminated groundwater. The six years results show that uranium is retarded
by the reactive zones with very high efficiency (> 99%) [14,78]. Kumar et al. [79] investigated
the use of biochar produced from switchgrass by hydrothermal carbonization as sorbent
for treating uranium-contaminated groundwater. The results from the adsorption studies
allowed the authors to conclude that biochar could be used as an effective adsorbent in
PRB medium for U(VI), with potentially competitive low cost. Florez et al. [80] studied
the applicability of clay ceramic pellets as PRBs material for the treatment of uranium-
contaminated groundwater. The results suggest that clay ceramic pellets can effectively
intercept and remove uranium from contaminated groundwater (89% was removed in the
first hour with smectite minerals). A summary of these case studies is presented in Table 3.

Table 3. Summary of the permeable reactive barrier (PRB) performance for uranium removal.

Reactive Media Removal Efficiency Mechanism Remarks References

Bone-char phosphate (PO4) 60–92% Precipitation of an insoluble
uranylphosphate phase (a) [13,69]

ZVI pellets >99.9% Reductive precipitation (a) [13,69]
Amorphous ferric

oxyhydroxide (AFO) 37–90% By adsorption to the iron
oxyhydroxide surface (a) [13,69]

Gravel and ZVI 99.9% Reductive precipitation (b) [13,71,73]
High carbon steel iron filings 99% Reductive precipitation (c) [13,74]

ZVI 99% Reductive precipitation (d) [13,75]
ZVI 80–99.6% Reductive precipitation (e) [13]

ZVI and organic carbon 60.5–82% Reduction, sorption, and precipitation
and biological reduction (f) [77]

ZVI 99% Reductive precipitation (g) [14,78]
Biochar produced from

switchgrass Adsorption (h) [79]

Clay ceramic pellets 89% Adsorption (i) [80]

(a) Field demonstration at Fry Canyon site. Three walls, each using different types of
materials: funnel and gate design.

(b) Funnel and gate system with a three-zone PRB. During the first year of operation
(1999), contaminant concentrations were reduced to non-detectable levels in ground-
water passing through the system. By 2005 it was recognized that PRB has become
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ineffective in treating the groundwater due to a progressive loss of permeability. It
was necessary to implement a supplemental remedy technique.

(c) The Rocky Flats Mound Site (Colorado) system (French drains, reaction vessels) was
installed in 1998 and differed from a conventional barrier in that groundwater is
collected in a trench lined on the downhill side with an impermeable liner. In 2006
Rocky Flats site achieved closure state.

(d) Funnel and gate design. The PRB uses zero-valent iron (ZVI) as the reactive medium
to mitigate molybdenum and uranium contamination in groundwater. After less
than one year of operation, uranium in the ZVI zone had remained at concentrations
less than 0.006 mg/L. Monitoring data suggested that molybdenum is removed from
solution by ZVI but that the reaction is slower than for uranium removal.

(e) Funnel and gate design (continuous trench) installed in 1997. Removed a combination
of contaminants (U, Tc, nitric acid). After 2.5 years, significant amounts of cemented
iron filings were observed in the upgradient portion of the iron (mineral precipitants
are responsible for the cementation observed within the iron barrier).

(f) The PRB design consists of rows of cylinders with iron-reactive materials. Two years
of monitoring data showed a reduction of uranium concentration in groundwater at
the PRB site from 0.38 mg/L to 0.07–0.15 mg/L. The greatest decrease was obtained
using ZVI-based reactive media and the combined media of ZVI/phosphate/organic
carbon combinations.

(g) Pilot-scale of a ZVI experimental permeable reactive barrier for in situ treatment
of uranium-contaminated groundwater. To avoid a permeability reduction in an
elemental iron barrier, the reactive matrix had to be mixed with sand.

(h) Batch adsorption experiment at the natural pH (~3.9) of biochar. The sorption capacity
was estimated to be ca. 2.12 mg of uranium per g of biochar (H-type isotherm).

(i) Results from column experiments with clay ceramics having negatively charged
sites on their surfaces which adsorb and hold positively charged uranyl ions by
electrostatic force.

2.2. Physical Separation

Physical separation technologies are ex-situ processes requiring the construction and
operation of groundwater extraction and injection system. They are based on contaminants’
physical properties to separate the contaminated media into clean and contaminated
fractions. The separation results in a liquid fraction and a contaminated solid residue
(sludge, filter cake, or carbon adsorption unit), requiring further treatment or disposal. It
can be applied to groundwater, surface water, wastewater, and slurried sludge or sediment.

The applicable processes to radionuclides present in this media, resulting from the
uranium mining, are membrane filtration (reverse osmosis and microfiltration) and car-
bon adsorption.

2.2.1. Membrane Filtration

This method consists of a semi-permeable membrane to separate dissolved radionu-
clides or solid radionuclide particles from liquid media (e.g., groundwater, surface water).
To protect the integrity of the membrane, a pretreatment (e.g., filtration of suspended
solids) may be required (Figure 4). To ensure optimal conditions, water flow rate and pH
should be controlled [11–13,81].

The process may be implemented through micro or ultrafiltration and reverse osmosis.
The first two rely on the size of the pores of the membrane, while the last one is based
on the selectivity of the permeable membrane. The membrane allows the water to pass
through it but traps the radionuclide ions on the concentrated, contaminated liquid side of
the membrane.
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Figure 4. The layout of the general process involved in membrane filtration [13].

Micro, ultra, and nanofiltration processes work better to remove fine particles
(0.001–0.1 microns). In the ultra-filtration separation, the contaminated liquid may need to
be pretreated to form larger molecular complexes (e.g., metal-polymers or chelates), which
are then more easily separated by the membranes [69].

For reverse osmosis, usually, the materials used as a membrane are cellulose acetate,
aromatic polyamide, and thin-film composites [82]. This process is affected by the size
and charge of the ion being treated. Radium and uranium ions, in particular, are large and
highly charged, and thus the removal of these dissolved radionuclides from contaminated
solutions is especially effective with reverse osmosis. Reverse osmosis removes molecules
with diameters of 0.0001 microns or less [83].

In most membrane filtration processes, a buildup of solute (contaminant) occurs on
the feed side of the membrane that needs to be controlled to maintain the efficiency of
removal. Fouling of membranes may be reduced by periodic cleaning with alkalis or acids
and, in the case of reverse osmosis, reversal of flow [13,84].

The membrane filtration technology may be applied to remove a variety of contami-
nants (metals and organics) from water and most radionuclides as well, with high efficiency
(with the exception of tritium) [2,85,86]. Reverse osmosis has been applied for the removal
of radium-226, radium-228, and uranium [57]. This process has also been identified as an
effective treatment for beta emitters such as cesium-137, strontium-89, and iodine-131 [87],
and it was used at DOE’s Savannah River Site as the first step in a treatment process to
remediate groundwater contaminated with several radionuclides (uranium, technetium,
strontium, and iodine) [87].

Membrane filtration technology may be considered when radionuclide and heavy
metal contaminants are associated with suspended solids in a liquid media or when
precipitating agents are available for pre-treating the liquid media [88,89].

A groundwater extraction and delivery system is needed to maintain the treatment
system. A pretreatment stage is required for waste solutions containing high levels of
suspended solids, high or low pH, oxidizers, or non-polar organics to avoid membrane
damage. After pretreatment steps such as precipitation, flocculation, and microfiltration,
reverse osmosis is sometimes used as a polishing step in a treatment train. Depending
on the degree of contaminant reduction attained, the treated effluent might need addi-
tional treatment.

The micro/ultrafiltration process will generate three waste streams depending on
what enters into the system: a filtrate of treated effluent, a liquid concentrate, and a filter
cake of solid material with the dissolved contaminants. Reverse osmosis produces a filtrate
and a liquid concentrate from treated effluent. The filter cake and liquid concentrate
demand further treatment or disposal [13].

The removal rates with membrane filtration processes have been in the order of
90–99.9% for uranium [56] and for radium in the order of 43–99% (strongly dependent on
the initial concentration) [13,56,85,90]. At Savannah River Site, uranium concentrations
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were reduced by 99% in the filtrate or treated effluent by microfiltration [91]. In Finland,
tests carried out by the Radiation and Nuclear Safety Authority showed a uranium removal
from the water of 90 to 95% using nanofiltration membranes and 98 to 99.5% using reverse
osmosis membranes [92]. Bench-scale testing of membrane ultrafiltration achieved 99 to
99.9% removals of uranium and thorium [93].

Microfiltration/ultrafiltration and reverse osmosis treatments are widely used in mu-
nicipal drinking water systems and industrial wastewater treatment systems [94]. In some
situations, ultrafiltration and reverse osmosis are used to meet drinking water standards
for radionuclides in drinking water [95–97].

Membrane processes are well-developed technologies and have been applied at both
the pilot-scale and full-scale for liquids contaminated with radionuclides, although most of
the time, as a treatment step within the overall treatment process. A summary of the case
studies is presented in Table 4.

Table 4. Summary of the membrane filtration performance for uranium and radium removal.

Filtration Media Removal Efficiency Mechanism Remarks References

Spiral wound (cellulose acetate) 99% U Reverse osmosis (a) [57]
Polyamide (hollow fiber) – Ultrafiltration (b) [57]

Spiral wound (cellulose acetate) 99% Ra Reverse osmosis (c) [90]
DuPont/Oberlin’s microfiltration 99% U Microfiltration (d) [13,91]

Polyamide (hollow fiber) 90–95% U Nanofiltration (e) [13,92]
Spiral wound (cellulose acetate) 98–99.5% U Reverse osmosis (e) [13,92]

Membrane polymers or surfactants 99% U Ultrafiltration (f) [93]

(a) Problems associated with fouling or membrane degradation during long-term operation.
(b) Suitable for suspended or colloidal but not for dissolved uranium.
(c) Reverse osmosis hyperfiltration removes radium to a somewhat greater extent than it

does hardness. For the standard pressure modules, radium removal exceeded 99%.
An experimental low-pressure membrane module removed 90% of the hardness and
91% of the radium.

(d) The microfiltration system utilized DuPont’s Tyvek T-980 membrane filter media in
conjunction with the Oberlin automatic pressure filter. Aluminum forming and metal
finishing operations generate a high content of solids, aluminum, and turbidity.

(e) Simultaneous removal (>95%) of uranium, radium, lead, and polonium could be
carried out by nanofiltration and reverse osmosis. The reverse osmosis side-effect
was the quality of the effluent; the water becomes almost totally demineralized and
therefore corrosive.

(f) Laboratory scale tests of membrane ultrafiltration in conjunction with water-soluble
polymers or surfactants with added metal-selective chelating agents (membrane
combined with polymers or surfactants).

2.2.2. Adsorption

The process involves the adsorption of dissolved contaminants on the surface and
within the pores of the carbon granules [98]. It consists of pumping groundwater through a
series of vessels containing granular activated carbon, which efficiency is given by its large
surface to volume ratio (Figure 5). Other adsorbents may also be used, such as activated
alumina (which has been demonstrated to be effective in the adsorption of uranium and
radium), forager sponge, lignin adsorption/sorptive clay, and synthetic resins [99].

Carbon adsorption systems are made up of continuous flow columns set up in se-
ries. When the system is not functioning at a certain level given by the concentration
of contaminants in the effluent, the carbon can be regenerated in place; removed and
regenerated at an off-site facility, or removed and disposed of. For metals-contaminated
groundwater, usually, the used carbon cannot be regenerated, and, in this case, it will need
to be adequately managed. There are two reactor configurations commonly used for carbon
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adsorption systems: the pulsed or moving bed and the fixed bed (most widely used for
adsorption from liquids) [100].

Figure 5. The general process involved in adsorption [11,13].

Granular activated carbon can be used for radionuclides such as uranium and radium-
226 (also, cobalt-60, ruthenium-106, and polonium-210); for organics contaminants and
some inorganics as well [56,92].

Pretreatment is required in high concentrations of heavy metals and oil and grease
concentrations of over ten ppm [37] which can make activated carbon ineffective and
damage the system. The combination with multiple contaminants can also impact the
activated carbon performance [100]. Groundwater will need to be pumped and injected
after treatment. An adequate power to maintain the treatment system will be required.

The spent carbon will be replaced, further treated, or disposed of after use for the
treatment of water contaminated with radionuclides. This process requires periodic mon-
itoring to determine when activated carbon bed exhaustion has occurred and when the
activated carbon must be replaced.

When radon is present in the influent, the daughter products from its decay can
accumulate in the activated carbon with the possibility of elevated gamma radiation [37].
This is why this process has not been promoted for the municipal water system because the
accumulation of radionuclides can be significant [57]. Nevertheless, it has been commonly
used in industrial wastewater treatment systems with a removal efficiency of 90 to 99.9%.

Activated carbon has been used to adsorb radium-226 and polonium-210 [56,92]. It
also has been effectively used to reduce groundwater uranium concentrations with an
efficiency removal between 96% and 99%. Nevertheless, in this case, after several months
of operation, the carbon capacity appeared to be limited [13,56].

Activated alumina has been used effectively in the adsorption of uranium (removal
efficiency 90 to 99%) and radium (removal efficiencies from 90 to 97% in pilot plant studies
using manganese dioxide) [5,54,57,101].

Over the years, several alternative adsorbents have been studied mostly at a labora-
tory scale, not only for their removal efficiency but also for their low-cost and eco-friendly
performance, to remove radionuclides from liquid media [60]. The effect of several pa-
rameters on the adsorption efficiency, such as the solution pH, contact time, initial U(VI)
concentration, and temperature, is also studied.

Chen [102] used phosphate rock apatite to remove U from wastewater. The highest
uranium removal efficiency was 77%. Police et al. [103] studied seven different types of
adsorbents: tea waste, teak wood, rice husk, coconut charcoal, bentonite clay, corn cob
powder, and fly ash. The results showed that tea waste had a uranium removal efficiency
of 95–97%, and fly ash had a removal efficiency of 98.5%. Yang et al. [104] developed
a composite cotton fibre composite for uranium removal from water. The efficiency of
removal was approximately 88%. Su et al. [105] studied the removal efficiency of U(VI)
from a mining effluent by porous hydroxyapatite. The maximum efficiency was 92.6%.

Patel and Clifford [22] studied the radium removal from water by manganese dioxide
adsorption followed by diatomaceous-earth filtration. The removal efficiency was in the
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range of 80% to 97%. Different types of zeolites, both natural (clinoptilolite) and synthetic,
were recently studied for radium removal. The best efficiency of radium removal (98%)
from the water was obtained for the synthetic zeolite produced by fly ash with NaOH [106].
In Table 5 is presented a comparison between some of the case studies approached.

Table 5. Summary of the adsorption performance for uranium, radium, and radon removal.

Adsorption Removal Efficiency Mechanism Remarks References

Activated carbon 90–99.9% Rn Adsorption (a) [13,92]
Activated carbon 97–100% U Adsorption (b) [13,92]
Activated carbon ~100% Ra Adsorption (b) [13,92]
Activated carbon 99.9% U Adsorption (c) [13,57]
Titanium oxide 96% U Adsorption (d) [57]

Activated alumina 90–99% U Adsorption (e) [57]
Manganese dioxide 90–97% Ra Adsorption (f) [22]

Phosphate rock apatite 77% U Adsorption (g) [102]
Fly ash (FA) 98.5% U Adsorption (h) [103]

Tea waste (TW) 96% U Adsorption (h) [103]
Cotton fibre composite (HCF) 88% U Adsorption (i) [104]
Porous hydroxyapatite (HAP) 92.6% U Chemisorption (j) [105]

Synthetic zeolite 98% Ra Adsorption (k) [106]

(a) For radon removal, a granular activated carbon filtration system was used. The
adsorption process is one of purely physical adsorption. The short-lived decay
products of radon are retained on the filter matrix. As a consequence, the filter matrix
will emit gamma radiation.

(b) Batch experiments with seven different activated carbons derived from hard coal,
brown coal, peat, wood, and coconut (7). The removal rates were different according
to the types of coal: (1) 97–100%; (5) 70–85%; (1) 50% for uranium and, (1) ~100%;
(5) 86–94%; (1) 70% for radium.

(c) Removal of uranium from municipal water. Removal rate of 97% obtained in very
specific conditions (carbonate concentration and pH); 75% and < 1% removal rates
were also observed.

(d) Removal of uranium from municipal water. Removal rate of 96% obtained in very
specific conditions (carbonate concentration and pH); 93%, 85% and < 1% removal
rates were also observed.

(e) Activated alumina can remove up to 99% of the contaminant, depending on pH and
concentrations of competing ions. It is also effective at removing other ions such as
arsenate, fluoride, sulfate, and selenite. However, when multiple contaminants are
being removed, there may be issues with optimizing removal for all contaminants.

(f) Adsorption radium onto MnO2 followed by diatomaceous earth filtration. The pro-
cess seems to follow a linear isotherm. Radium rate removal decreased with total
hardness increase.

(g) The batch experimental results were well described by the Langmuir isotherm and
Pseudo-second-order kinetic model. The uranium adsorption is found to be through
a chemisorption mechanism.

(h) Adsorption of uranium on both adsorbents followed pseudo-second-order kinetics.
The uranium adsorption on FA and TW is found to be a physical process. The results
indicate that FA is a better adsorbent as compared to TW.

(i) Recycling experiments showed that HCF could be used up to five times with less than
10% efficiency loss.

(j) The results follow a pseudo-second-order kinetic model, suggesting that uranium
adsorption is primarily attributed to chemisorption with porous HAP.

(k) A wide range of zeolites was studied for radium removal from water: natural (clinop-
tilolite) and synthetic (NaP1, 13X, 3A, 5A). The best efficiency of radium removal was
obtained for the NaP1 type zeolite produced on the base of FA with the use of NaOH.
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2.3. Biological Treatment

The treatment of radioactively contaminated groundwater, surface water, and wastew-
ater by biological processes is done through the plant root systems and, for some radionu-
clides, with the transpiration to the air, through the uptake of groundwater by plants. The
process is known as phytoremediation and is implemented at lower costs than conven-
tional treatments; however, the process demands a more extended period of time to reach
remediation goals. Phytoremediation uses hyper-accumulator plants and their rhizosphere
microorganisms to remove, transfer, stabilize, or destroy contaminants in groundwater,
surface water, or wastewater [13].

Phytoremediation

The process can be applied in-situ or ex-situ (e.g., hydroponically) to groundwater
or surface water. For contaminants, in general, several phytoremediation mechanisms are
available for liquid media, however as radionuclides cannot be destroyed, these mecha-
nisms are reduced to rhizofiltration, hydraulic control, and phytovolatilization [107,108],
although with limited effectiveness for this type of contaminants (Figure 6).

Figure 6. Phytoremediation processes [13].

In rhizofiltration, contaminants are uptake by the roots of hydroponically grown
plants, translocated, and accumulated into plant shoots and leaves. Rhizofiltration has
been demonstrated at several scales (bench-scale and field tests), reducing the uranium
concentration effectively in water [108–111].

Rhizofiltration has been used to clean up waters contaminated with heavy metals (Pb,
Cd, Cu, Fe, Ni, Mn, Zn, Cr) and radionuclides (U, Pu, Sr, Cs, I) [112].

In particular, the process was used to remove uranium from wastewater at DOE’s
Ashtabula site (Ohio) with a reduction in uranium concentration by 90% [13,111,113]. It
was also used to remove cesium and strontium from pond water at Chernobyl, Ukraine,
with a removal efficiency of 95% for cesium and strontium.

The uranium uptake by rhizofiltration has been studied considering several aspects
related to site characteristics and contaminant conditions (speciation, retention, mobility,
and bioavailability phenomena), plant species, and the effect of microbial activity. Wang
et al. [114] found out that 87.1% of uranium was fixed on root surfaces of common reed
in a tailing wetland. However, these authors verified that the uranium complex-forming
particles were not tightly adhered to the root surface but surrounding the root loosely.
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Results from laboratory-scale studies demonstrate that the rhizofiltration technique using
beans efficiently removes uranium and cesium from groundwater [115]. In Portugal,
macrophytes are used in the passive treatment system for water resources (surface water,
groundwater, mine water) in the already rehabilitated mines. The process is part of the
monitoring plan and control mine effluents to meet regulatory values limits for Utotal,
Ra-226, Fe, and Mn [116]. In Germany, a pilot system was constructed to remove U, Ra-226,
As, Fe, and Mn from the water of a flooded mine (Wismut) with an average pH of 7.3. Three
years of monitoring data showed that Ra-226, As, Fe, and Mn were removed effectively and
that the removal was based on the geochemical characteristics of the contaminants. The
removal rates for Ra-226, As, Fe, and Mn were 70.6%; 40–70%; 100%, and ~70%, respectively.
However, under the pH value of 7.3 and in the presence of high bicarbonate concentration
in this mine water, uranium was not removed [117].

Phytoremediation hydraulic control consists of slowing the movement of contaminants
in groundwater through the use of deep-rooted plants. This process is similar to a pump
with the roots establishing a dense root mass at the water table, taking up large quantities
of groundwater. The root systems should reach and grow directly into the groundwater
table. Some of the trees that have been used successfully to “pump” water include poplar,
cottonwood, and willow family (reaching as much as 757 L of water per day) [118].

The process can contain the movement of a groundwater plume toward clean areas
off-site, reduce or prevent infiltration and leaching [119].

The USDOE is responsible for several former uranium mill sites concerning site
characterization and groundwater remediation. Groundwater contamination at these
sites resulted mostly from the large volumes of processing liquids seeped from tailings
impoundments during mills operation. For these sites, evapotranspiration by native plants
is evaluated to hydraulically control groundwater flow as an alternative to pump-and-treat
remedies at three sites in Arizona and New Mexico [120].

One special radionuclide is tritium (although not related to uranium mining and
milling activities). For tritium-contaminated plumes, the hydraulic control of ground-
water plumes by plant uptake has been effectively demonstrated at Argonne National
Laboratory [121,122], and the remediation of tritium-contaminated groundwater by phyto-
volatilization has been in operation at the Savannah River Site since 2000 [123,124].

Phytovolatilization, or phytoevaporation, is addressed to treat water with volatile or
evaporable contaminants (e.g., tritium). In this process, plants uptake the contaminated
water and transpire the contaminants into the air through their leaves. The root systems of
the selected plants should reach and grow directly into the groundwater table.

A phytovolatilization process has been in operation at Savannah River Site (South
Carolina, USA) as an enhanced-passive system since 2000. Although the process is low-
energy-consumption and low-carbon-emission, it is not completely passive. Contaminated
water with tritium is collected and discharged to a dam/pond system. This water is used
to irrigate a pine forest where trees uptake this water through the roots and release very
low concentrations of tritium vapor into the atmosphere, where it is diluted.

This semi-passive system combines the natural processes of hydrology and evapo-
transpiration to reduce the volume of tritium-contaminated water entering site streams
and, ultimately, the Savannah River [31,123,124]. The process has resulted in the reduc-
tion of tritium by 70% [31,124]. Evapotranspiration has been determined to be 80–90%
effective [31].

At Argonne National Laboratory, the phytovolatilization of tritium-contaminated
groundwater resulted in a reduction of the average tritium concentration by 73% over a
period of three years [122].

There are a few constraints for the application of phytoremediation mechanisms to
liquid media: the process is limited to shallow groundwater requiring a significant land
surface area for implementation. There are also aspects that will constrain the applicability
and effectiveness of phytoremediation hydraulic control, such as the confinement of shallow
groundwater and the vertical flow downward of the plume [125].
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For each case, it is necessary to perform bench-scale tests to select plant type and
confirm performance [126]. Climatic or seasonal conditions will affect the growth of
plants used in phytoremediation [108]. Plant toxicity effects may also occur and limit the
process [82]. Also, the residue from the harvested biomass will have to be further treated
or disposed of as radioactive waste [127–129]. A comparison of some of these case studies
is presented in Table 6.

Table 6. Summary of the phytoremediation performance for uranium and radium removal.

Species Removal Efficiency Mechanism Remarks References

Sunflower (Helinathus annuus L.) 98.9% U Rhizofiltration (a) [111,113]
Sunflower (Helinathus annuus L.) 40–45% U Rhizofiltration (b) [112]
Sunflower (Helinathus annuus L.) 30–35% Ra Rhizofiltration (b) [112]

Common reed (Phragmites australis) 87.1% U Rhizofiltration (c) [114]
Bean (Phaseolus vulgaris L. var. vulgaris) 90.2–98.9% Rhizofiltration (d) [115]
Macrophytes (Ceratophyllum demersum) 99% Ra Biosorption (e) [116]
Macrophytes (Ceratophyllum demersum) 89% U Biosorption (e) [116]

(a) Rhizofiltration of uranium-contaminated water at concentrations of 21–874 µg/L
reduced uranium concentration to <20 µg/L before discharge to the environment.

(b) Formation of precipitates in which a major part of the radionuclides are bound with
the rest fixed to the roots and very low translocation to the aerial parts of the plant.
For both situations, the results suggest an effect of saturation, at elimination levels of
about 40–45% for uranium and 30–35% for radium.

(c) Uranium was accumulated only to a small extent within roots (rhizofiltration in
sensu strictu).

(d) Laboratory scale rhizofiltration experiments. At a pH of 3, the ability to accumulate
uranium was 1.6 times higher than it was for solutions of pH 7 and pH 9. Using
SEM and EDS analyses, the uranium removal in solution at pH 7 was determined
based on adsorption and precipitation on the root surface in the form of insoluble
uranium compounds.

(e) Results of the water resources monitoring plan and mine water control implemented
in the old radioactive mines. This type of system demonstrated success, in some cases
associated with groundwater natural attenuation processes for uranium, radium, and
other metals.

2.4. Natural Attenuation

In-situ natural attenuation refers to the natural physical, chemical, and biological
processes that reduce the concentration of contaminants in the subsurface [130].

Remediation of groundwater using attenuation-based technologies relies on natural
processes to clean up or decrease radionuclides concentration in groundwater. These
processes occur in the subsurface at most radioactively contaminated sites and include
different mechanisms: abiotic degradation, dispersion, sorption, and evaporation, and ra-
dioactive decay (for some radionuclides) (Figure 7). In most cases, the source of radioactive
contamination is treated or removed previously of the initiation of the process.

Natural attenuation is used within the context of a carefully controlled and moni-
tored site cleanup approach to achieve site-specific remediation objectives. Using natural
attenuation as a remedial strategy is not equivalent to ‘no action’ and nor is it a ‘walk
away’ option; monitoring of these processes is to confirm that natural attenuation is taking
place (Monitored Natural Attenuation—MNA), which implies a certain degree of insti-
tutional control [12]. The application of this technology can require multidisciplinary
expertise in several technical areas, including radiochemistry, hydrogeology, geochemistry,
and phytoremediation.
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Figure 7. Mechanisms involved in the natural attenuation process [13].

Monitored Natural Attenuation

Monitored natural attenuation can be selected for the remediation of sites with differ-
ent radionuclides [12], where the natural subsurface processes are able to progressively
reduce radionuclide concentrations to remediation goal levels. However, it should not
be applied to radionuclides with a longer half-life or more toxic and mobile daughter
products [131].

Radionuclides cannot be biodegraded, but the radioactive contaminants’ chemical
state may be transformed by microbial action modifying their solubility and mobility,
typically through coprecipitation or sorption processes [53,132]. Long-term monitoring is
necessary to confirm that the contaminant reduction is occurring at rates consistent with
meeting cleanup objectives [133].

Removing or containing metal or radionuclide contaminants in groundwater below
specific concentrations are often inefficient and quite costly (that may still be above regula-
tory criteria). Also, dispersed low-level contamination may be especially challenging at
many cleanup sites.

Possible changes due to geochemistry reactions that may result in the remobilization
of previously stabilized contaminants must be taken into attention when considering MNA
as a remedial alternative. Since with this remediation option, metal and radionuclide
contaminants remain in place; MNA is generally acceptable only for sites that intrinsically
have a low potential for contaminant migration. This technology is therefore coupled with
institutional controls (land-use restrictions and groundwater use restrictions) and with
source treatment or removals [13].

Modeling is required as well as the evaluation of radionuclide reduction rates, path-
ways, and prediction of the radionuclide concentration at the downgradient exposed
receptor. It is necessary to demonstrate that MNA will achieve radionuclides concentra-
tions meeting remedial goals [133]. Data for the input parameters of models is essential:
soil and groundwater quality data (three-dimensional plume definition, historical data,
and geochemical data), aquifer characteristics, and locations of potential receptors (wells
and surface water discharge points) [133]. It is also necessary to install monitoring wells
for surveillance.

Applicable regulatory policies and available technical guidance should be consid-
ered before proceeding with the application of this remediation option at radionuclides
contaminate the site. It should be noted that performance monitoring and contingency
plans, respectively, are required to evaluate the long-term effectiveness of the process and
to provide a fallback option should the solution fail [12]. In general, monitored natural
attenuation can be an appropriate remediation approach when the contaminants degrade
or disperse readily, and there are no significant risks to public health and the environment
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while they attenuate, in particular when the contamination source has been removed or
contained. Therefore, in general, monitored natural attenuation is not an appropriate
technology when (1) the site contains a significant amount of non-aqueous phase liquids
(NAPLs); (2) concentration of contaminants are so high that they represent an unacceptable
threat to public health and or an ecosystem, or become toxic to microorganisms; (3) where
imminent site risks are present; (4) where radionuclide levels are meaningfully above
remediation goals, and (3) the rate of attenuation is unacceptably slow [18]. The timeframe
for reaching the remediation goals should be compatible with anticipated future land use
and groundwater use [134].

Sites with complex, heterogeneous geology, folded and faulted areas, or highly jointed
rock, are not suitable for monitored natural attenuation as modeling might not predict
groundwater flow, and representative monitoring and sampling might not be possible [131].

Monitored natural attenuation has been selected as the groundwater remedy option
for several sites in the United States: the Teledyne Wah Chang Superfund site in Oregon
(radium) [135,136]; the Hanford Site 300-Area (uranium, tritium) [137,138]; the DOE’s
Weldon Spring Site in Missouri (uranium) [9,139]; Monticello Mill Tailing Site (uranium)
(Utah) [61,140]. It was also selected as the groundwater remedy option at the Savannah
River Site, but for strontium. However, the behavior of an acidic-U(VI) plume was studied
through reactive transport modeling evolution and long-term mobility focus on the pH
range where U(VI) is highly mobile [31,141].

Although monitored natural attenuation has been applied at several contaminated
sites with radionuclides, the information available on process rates and total reductions
achieved is scarce. This lack of documented efficiency is caused, in part, by the length of
the process in comparison to other remediation technologies.

In the last few years, protocols have been developed to guide evaluations of the po-
tential for natural attenuation to occur (these protocols outline a strategy and methodology
to be followed). These documents continue to increase in number over the years [142].

The US Environmental Protection Agency made available online a few toolbox screen-
ing tools that provide assistance in assessing the applicability of monitored natural atten-
uation at a candidate site [143,144]. A comparison between some of the presented case
studies is shown in Table 7.

Table 7. Summary of the monitored natural attenuation (MNA) performance for uranium and radium removal.

Contaminants Monitoring Data (Max.) Mechanism Remarks References

Radium, VOCs, PCBs, ammonium, metals 0.22 1 Bq/L (Ra) Adsorption (a) [135,136]

Uranium, tritium, VOCs 3 520 µg/L (U) Enhanced attenuation
(sequestration) (b) [137,138]

Uranium, metals, organic compounds 525 µg/L (U) Adsorption (c) [9,139]
Uranium and metals 900 µg/L (U) Adsorption (d) [61,139]

Uranium, strontium, tritium, nitrates 0.57 µg/L (U) Adsorption (e) [31,141]
1 Average data from 2010. The record of decision (5 µg/L) was exceeded.

(a) Site with several contaminants of concern (COCs). Some of the actual remedial actions
consist of a groundwater extraction and treatment system (GETS), through granular
activated carbon, with enhanced in-site bioaugmentation and monitored natural
attenuation. Although GETS has reduced the concentrations of radium and COCs
in groundwater, low pH conditions persist, contributing to COCs above cleanup
levels. Between October 2002 and November 2010, on average, Ra-226 concentration
in groundwater decreased from 1.15 Bq/L to 0.22 Bq/L. Institucional controls are in
place preventing exposure to contaminants of concern above cleanup goals through
on-site and off-site deed restrictions on groundwater use, zoning, and access controls.
The plant continues to operate, employing several hundred workers.

(b) An extensive groundwater monitoring program is operated at this site where natural
attenuation is specified in the interim action to be used in conjunction with active
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remedies. The size of the tritium plume has declined due to natural attenuation, but
the uranium plume is attenuating more slowly. The enhanced attenuation remedy for
uranium involves injecting and infiltrating polyphosphate solutions, with the goal
of sequestering residual mobile uranium that presents a continuing groundwater
contamination source. This remedy was implemented in November 2015 (Stage A)
and September 2018 (Stage B) for uranium.

(c) Remedial activities at the site have been completed with the exception of long-term
groundwater monitoring. The adsorption of uranium onto the overburden limited
its extent in groundwater. Sulfate concentrations are monitored in groundwater
(an indicator of oxidation-reduction conditions). Performance monitoring locations
indicate that concentrations within the area of impact are decreasing or remaining
stable. However, uranium levels in monitoring wells showed seasonal variations (e.g.,
from 0.074 to 2.23 Bq/L from 2011 through 2015). MNA goals are expected to require
approximately 100 years to achieve. ICs are also in place to prevent groundwater
from being used in restricted areas.

(d) Remedial actions to encapsulate the contamination sources were completed in 1999.
MNA has reduced the concentration of most of the contaminants of concern to near
or below acceptable levels; however, elevate uranium concentration persists in the
alluvial aquifer (at a concentration as great as 30 times the remedial goal) even after the
onset of pump-an-treat remediation. The restoration of the alluvial aquifer continues
to proceed slowly. It is estimated that uranium groundwater concentrations below
maximum contaminant level values will take approximately 42 years.

(e) After many years of active remediation, the groundwater remains acidic, and the
concentrations of uranium and other radionuclides are still significant. MNA was not
a solution to the problem. A decision was made to apply in situ treatment technologies
that would lead to low pH and uranium. Alkaline solutions were injected into the
subsurface to neutralize the acidic groundwater downgradient of the seepage basins.
Monitoring downgradient of the treatment zone showed that adsorption of uranium
has occurred.

3. Conclusions

In the past few decades, much effort has been dedicated to the remediation of ra-
dioactively contaminated sites worldwide. Several countries have initiated programs to
assess and remediate radionuclide-contaminated sites from several industrial activities.
Therefore, much experience has been gained over the past decades in the use of control and
treatment technologies applied to different configurations and types of contaminated sites.
There is a wide range of demonstrated and industrial proven remediation technologies or
combinations of remediation technologies and their variations to suit particular radionu-
clide contaminated-site conditions. However, it has been recognized that many techniques
and technologies may be too costly to implement on a large scale or may be inadequate to
address the magnitude and combinations of contamination problems at a specific site. Also,
it is important to stress out that there is no universal remediation plan. Moreover, a great
effort is required to organize the remediation work to best utilize the available resources
and taking the greatest advantage of technology research and development. International
organizations (e.g., the International Atomic Energy Agency and the US Environmental
Protection Agency) made a lot of effort to provide guides and recommendation for different
remediation approaches based on research studies, practical experience, case studies and
lessons learned.

For the remediation technologies applicable to radionuclide-contaminated ground-
water, even for those well-developed and implemented at full scale, several issues remain
unresolved. Transforming some radionuclides (e.g., uranium) into a harmless and stable
form is a way forward in contamination control and reduction. More mobile radionuclides
require more effective methods or the improvement of the efficiency of the existing ones,
also to reduce the generation of water treatment residues (secondary wastes). The further
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treatment or the safe and long-term stable disposal of these wastes (usually large volume)
should be integrated into the overall treatment concept. For some of these methods (mostly
passive or semi-passive systems), the window of applicability is relatively narrow. It may
not comply with regulatory constraints at several levels, such as insufficient reliability and
time of performance to achieve remediation goals.
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14. Csővári, M.; Földing, G.; Csicsák, J.; Frucht, É. Experience gained from the experimental permeable reactive barrier installed
on the former uranium mining site. In Uranium, Mining and Hydrogeology; Merkel, B.J., Hasche-Berger, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008. [CrossRef]

15. Litter, M. Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. In Advances
in Chemical Engineering; de Lasa, H.I., Rosales, B.S., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 36, pp. 37–67.
[CrossRef]

http://doi.org/10.1007/978-94-011-4546-6_13
https://minerals.org.au/sites/default/files/Environmental%20impacts%20of%20uranium%20mining%20in%20Australia_May%202017_WEB.pdf
https://minerals.org.au/sites/default/files/Environmental%20impacts%20of%20uranium%20mining%20in%20Australia_May%202017_WEB.pdf
https://connect.itrcweb.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=fd058d3e-9bdc-4103-8f13-4195efa8499f
https://connect.itrcweb.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=fd058d3e-9bdc-4103-8f13-4195efa8499f
https://frtr.gov/costperformance/pdf/Monticello_PeRTWall.pdf
https://frtr.gov/costperformance/pdf/Monticello_PeRTWall.pdf
https://semspub.epa.gov/work/01/568445.pdf
http://www.thomastelford.com
https://semspub.epa.gov/work/HQ/187957.pdf
https://semspub.epa.gov/work/HQ/187957.pdf
https://semspub.epa.gov/work/HQ/187052.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/media.pdf
http://doi.org/10.1007/978-3-540-87746-2_20
http://doi.org/10.1016/S0065-2377(09)00402-5


Geosciences 2021, 11, 250 22 of 27

16. U.S. Environmental Protection Agency. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Technology,
EPA/600/R-10/093, 2010; Volume 3, Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium,
Iodine, Radium, Thorium, Cesium, and Plutonium-Americium. Available online: https://semspub.epa.gov/work/HQ/153375
.pdf (accessed on 3 June 2021).

17. Interstate Technology & Regulatory Council. A Decision Framework for Applying Monitored Natural Attenuation Processes
to Metals and Radionuclides in Groundwater. APMR-1. Washington, DC: Interstate Technology & Regulatory Council, Atten-
uation Processes for Metals and Radionuclides. 2010. Available online: https://connect.itrcweb.org/HigherLogic/System/
DownloadDocumentFile.ashx?DocumentFileKey=0e667759-d96a-45d3-a2b5-f831b2d4b961 (accessed on 19 April 2021).

18. Yeung, A.T. Remediation Technologies for Contaminated Sites. In Advances in Environmental Geotechnics; Chen, Y., Zhan, L.,
Tang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [CrossRef]

19. Wan, J.; Dong, W.; Tokunaga, T.K. Method to Attenuate U(VI) Mobility in Acidic Waste Plumes Using Humic Acids. Environ. Sci.
Technol. 2011, 45, 2331–2337. [CrossRef] [PubMed]

20. Dresel, P.E.; Wellman, D.M.; Cantrell, K.J.; Truex, M.J. Review: Technical and Policy Challenges in Deep Vadose Zone Remediation
of Metals and Radionuclides. Environ. Sci. Technol. 2011, 45, 4207–4216. [CrossRef] [PubMed]

21. Daniel, M.; Ollivier, D.; Merten, D.; Bochel, G.; Bergman, H.; Willscher, S.; Jablonski, L.; Wittig, J.; Werner, P. The New Uranium
Mining Boom: Challenges and Lessons Learned; Springer: Berlin/Heidelberg, Germany, 2011; Part 3; pp. 433–442, ISBN 978-3-642-
22121-7.

22. Patel, R.; Clifford, D. Radium Removal from Water by Manganese Dioxide Adsorption and Diatomaceous-Earth Filtration Final
Report (PB–92-115260/XAB). United States. 1991. Available online: https://www.osti.gov/biblio/5865700-radium-removal-
from-water-manganese-dioxide-adsorption-diatomaceous-earth-filtration-final-report (accessed on 3 June 2021).

23. Borch, T.; Roche, N.; Johnson, T.E. Determination of contaminant levels and remediation efficacy in groundwater at a former in
situ recovery uranium mine. J. Environ. Monit. 2012, 14, 1814–1823. [CrossRef] [PubMed]

24. Vokál, V.; Mužák, J.; Ekert, V. Remediation of Uranium In-Situ Leaching Area at Stráž pod Ralskem, Czech Republic. In
Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management,
Brussels, Belgium, 8–12 September 2013. [CrossRef]

25. Willscher, S.; Wittig, J.; Bergmann, H.; Büchel, G.; Merten, D.; Werner, P. Phytoremediation as an Alternative Way for the Treatment
of Large, Low Heavy Metal Contaminated Sites: Application at a Former Uranium Mining Area. Adv. Mater. Res. 2009, 71–73,
705–708. [CrossRef]

26. Phillips, E.; Yarmak, E. Frozen Soil Barrier Technology—Facts about the Oak Ridge National Laboratory Barrier—14554. In
Proceedings of the WM 20104 Conference, Phoenix, AZ, USA, 2–6 March 2014.

27. Truex, M.J.; Jonhnson, C.D.; Becker, D.J.; Lee, M.H.; Nimmons, M.J. Performance Assessment for Pump-and-Treat Closure or
Transition. Pacific Northwest National Laboratory PNNL-24696, RPT-DVZ-AFRI-029. 2015. Available online: https://www.pnnl.
gov/main/publications/external/technical_reports/PNNL-24696.pdf (accessed on 3 June 2021).

28. Rosenberg, E.; Pinson, G.; Tsosie, R.; Tutu, H.; Cukrowska, E.; Edward, R.; Glenn, P.; Ranalda, T.; Hlanganani, T.; Ewa, C. Uranium
Remediation by Ion Exchange and Sorption Methods: A Critical Review. Johns. Matthey Technol. Rev. 2016, 60, 59–77. [CrossRef]

29. Zhang, X.; Gu, P.; Liu, Y. Decontamination of radioactive wastewater: State of the art and challenges forward. Chemosphere 2019,
215, 543–553. [CrossRef]

30. Denham, M.E.; Amidon, M.B.; Wainwright, H.M.; Dafflon, B.; Ajo-Franklin, J.; Eddy-Dilek, C.A. Improving Long-term Monitoring
of Contaminated Groundwater at Sites where Attenuation-based Remedies are Deployed. Environ. Manag. 2020, 66, 1142–1161.
[CrossRef]

31. Savannah River Nuclear Solutions, LLC. Savannah River Site Groundwater Management Strategy and Implementation Plan
(U). WSRC-RP-2006-4074. 2020. Available online: https://www.srs.gov/general/programs/soil/gen/gw_mgmt_strategy_and_
implementation_plan.pdf (accessed on 3 June 2021).

32. Nedjimi, B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021,
3, 286. [CrossRef]

33. Li, C.; Ji, X.; Luo, X. Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018.
Int. J. Environ. Res. Public Health 2019, 16, 4755. [CrossRef]

34. Nariyan, E.; Sillanpää, M.; Wolkersdorfer, C. Uranium removal from Pyhäsalmi/Finland mine water by batch electrocoagulation
and optimization with the response surface methodology. Sep. Purif. Technol. 2018, 193, 386–397. [CrossRef]

35. Hossain, F. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. J. Environ.
Radioact. 2020, 225, 106423. [CrossRef]

36. Zaheri, A.; Mohed, A.; Keshtkar, R.A.; Shirani, A.S. Uranium Separation from Wastewater by Electrodialysis. Iran. J. Environ.
Health. Sci. Eng. 2010, 7, 429–436.

37. Kapline Enterprises Inc. Aqueous-Stream Uranium-Removal Technology Cost/Benefit and Market Analysis. Prepared for U.S.
Department of Energy, Office of Technology Development, March 1994. DOE/OR-2006. Available online: https://inis.iaea.org/
collection/NCLCollectionStore/_Public/30/057/30057666.pdf (accessed on 3 June 2021).

38. Oak Ridge National Laboratory. Y-12 Plant Remedial Action Technology Logic Diagram, Volume 3, Technology Evalua-
tion Data Sheets, Part A, Remedial Action, 1994. Y/ER-161/V3/PtA. Available online: https://inis.iaea.org/collection/
NCLCollectionStore/_Public/29/015/29015704.pdf?r=1&r=1 (accessed on 3 June 2021).

https://semspub.epa.gov/work/HQ/153375.pdf
https://semspub.epa.gov/work/HQ/153375.pdf
https://connect.itrcweb.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=0e667759-d96a-45d3-a2b5-f831b2d4b961
https://connect.itrcweb.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=0e667759-d96a-45d3-a2b5-f831b2d4b961
http://doi.org/10.1007/978-3-642-04460-1_25
http://doi.org/10.1021/es103864t
http://www.ncbi.nlm.nih.gov/pubmed/21319737
http://doi.org/10.1021/es101211t
http://www.ncbi.nlm.nih.gov/pubmed/21395250
https://www.osti.gov/biblio/5865700-radium-removal-from-water-manganese-dioxide-adsorption-diatomaceous-earth-filtration-final-report
https://www.osti.gov/biblio/5865700-radium-removal-from-water-manganese-dioxide-adsorption-diatomaceous-earth-filtration-final-report
http://doi.org/10.1039/c2em30077j
http://www.ncbi.nlm.nih.gov/pubmed/22706154
http://doi.org/10.1115/ICEM2013-96247
http://doi.org/10.4028/www.scientific.net/AMR.71-73.705
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24696.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24696.pdf
http://doi.org/10.1595/205651316X690178
http://doi.org/10.1016/j.chemosphere.2018.10.029
http://doi.org/10.1007/s00267-020-01376-4
https://www.srs.gov/general/programs/soil/gen/gw_mgmt_strategy_and_implementation_plan.pdf
https://www.srs.gov/general/programs/soil/gen/gw_mgmt_strategy_and_implementation_plan.pdf
http://doi.org/10.1007/s42452-021-04301-4
http://doi.org/10.3390/ijerph16234755
http://doi.org/10.1016/j.seppur.2017.10.020
http://doi.org/10.1016/j.jenvrad.2020.106423
https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/057/30057666.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/057/30057666.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/015/29015704.pdf?r=1&r=1
https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/015/29015704.pdf?r=1&r=1


Geosciences 2021, 11, 250 23 of 27

39. U.S. Department of Energy. Decommissioning Handbook. Office of Environmental Restoration, March 1994. DOE/EM-0142.
Available online: https://www.nrc.gov/docs/ML1108/ML110800146.pdf (accessed on 3 June 2021).

40. Campbell, E.L.; Levitskaia, T.G.; Fujimoto, M.S.; Holfeltz, V.E.; Chatterjee, S.D.; Hall, G.B. Analysis of Uranium Ion Exchange Resin
from the 200 West Pump-and-Treat Facility. Prepared for U.S. Department of Energy under the Contract DE-AC05-76RL01830.
Available online: https://www.osti.gov/servlets/purl/1488863 (accessed on 3 June 2021).

41. Water Remediation Technology. Pilot Study Report for Z-Uranium Treatment Process Conducted at the Mountain Water &
Sanitation District, Conifer, Colo. Revised 11 November 2004. Available online: https://www.wrtnet.com/category/pilot-
studies/uranium-pilot-studies/ (accessed on 3 June 2021).

42. Water Remediation Technology. Pilot Study Report for Z-Radium Treatment Process Conducted at the Richland Special Utility
District Richland Springs, Texas. 18 May 2004. Available online: https://www.wrtnet.com/category/pilot-studies/radium-pilot-
studies/ (accessed on 3 June 2021).

43. Salonen, L.; Turunen, H.; Mehtonen, J.; Mjönes, L.; Hagberg, N.; Wilken, R.; Raff, O. Removal of Radon by Aeration: Testing of
Various Aeration Techniques for Small Water Works. Radiation and Nuclear Safety Authority of Finland (STUK), Helsinki, 2002.
Report No. STUK-A193. Available online: https://core.ac.uk/download/pdf/33459481.pdf (accessed on 3 June 2021).

44. Dinis, M.L.; Fiúza, A. Overview of the Long-Term Stewardship of the Remediated Uranium Mining and Milling Sites in
Europe—20079. In Proceedings of the WM2020, Phoenix, AZ, USA, 8–12 March 2020.

45. Sixth National Report Fulfilment of the Obligations under the Joint Convention on the Safety of Spent Fuel Management an on
the Safety of Radioactive Waste Management, Sofia, Bulgaria. 2017. Available online: https://www.iaea.org/sites/default/files/
national_report_of_bulgaria_for_the_6th_review_meeting_-_english.pdf (accessed on 3 June 2021).

46. Sixth National Report Fulfilment of the Obligations under the Joint Convention on the Safety of Spent Fuel Management and on
the Safety of Radioactive Waste Management, Report of the Federal Republic of Germany for the Sixth Review Meeting. May
2018. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Nukleare_Sicherheit/jc_6_bericht_
deutschland_en_bf.pdf (accessed on 3 June 2021).

47. European Commission, Uranium Mining, Processing, Fuel Fabrication and National Monitoring Networks, Romania, Technical
Report, Verifications under the Terms of Article 35 of the EURATOM Treaty, RO-12/05 (2012). Available online: https://ec.europa.
eu/energy/sites/default/files/documents/tech_report_romania_2012_en.pdf (accessed on 3 June 2021).

48. Jeppson, D.W. Separation of Tritium from Wastewater. In Proceedings of the WM2000 Conference, Tucson, AZ, USA, 27
February–3 March 2000.

49. Oji, L.; Thompson, M.; Peterson, K.; May, C.; Kafka, T. Cesium Removal from R-Reactor Building Disassembly Basin Using
3M®Empore Web-Membrane Filter Technology. Prepared by Westinghouse Savannah River Company for U.S. Department of
Energy, 1998. WSRC-TR-98-00209. Available online: https://digital.library.unt.edu/ark:/67531/metadc679901/ (accessed on 19
April 2021).

50. Fryxell, G. Final Report: Actinide-Specific Interfacial Chemistry of Monolayer Coated Mesoporous Ceramics. Prepared by Pacific
Northwest National Laboratory for U.S. Department of Energy, Report No. EMSP-65370. September 2001. Available online:
https://digital.library.unt.edu/ark:/67531/metadc779176/m2/1/high_res_d/833249.pdf (accessed on 3 June 2021).

51. Hoffman, K. Radionuclide Capture Using Membrane Technology. In Proceedings of the FETC Industry Partnerships to Deploy
Environmental Technology Conference, Morgantown, WV, USA, 12–14 October 1999.

52. Gusek, J.J.; Figueroa, L.A. Mitigation of Metal Mining Influenced Water. In Management Technologies for Metal Mining Influenced
Water; Gusek, J.J., Figueroa, L.A., Eds.; Society for Mining, Metallurgy, and Exploration, Inc. (SME): Englewood, CO, USA, 2007;
Volume 2, pp. 85–109.

53. International Atomic Energy Agency. Review of the Factors Affecting the Selection and Implementation of Waste Management Technologies;
IAEA-TECDOC-1096; IAEA: Vienna, Austria, 1999.

54. Sorg, T. Treatment of Radioactive Compounds in Water. Radioactive Site Remediation Technologies Seminar, Speaker Slide Copies;
EPA/540/K-92/001; EPA Office of Research and Development: Washington, DC, USA, 1992.

55. Nuclear Energy Agency. Environmental Remediation of Uranium Production Facilities. A Joint Report by the OECD Nuclear Energy
Agency and the International Atomic Energy Agency; OECD: Paris, France, 2002.

56. Chałupnik, S.; Wysocka, M.; Chmielewska, I.; Samolej, K. Modern technologies for radium removal from water—Polish mining
industry case study. Water Resour. Ind. 2020, 23, 100125. [CrossRef]

57. Sorg, T.J. Methods for Removing Uranium from Drinking Water. J. Am. Water Work. Assoc. 1988, 80, 105–111. [CrossRef]
58. Serkiz, S.; Rebout, S.; Bell, N.; Kanzleiter, J.; Bohrer, S.; Lovekamp, J.; Faulk, G. Reengineering Water Treatment Units for

Removal of Sr-90, I-129, Tc-99, and Uranium from Contaminated Groundwater at the DOE’s Savannah River Site. Prepared
by Westinghouse Savannah River Company for U.S. Department of Energy, 2000. WSRC-MS-2000-00097. Available online:
https://semspub.epa.gov/work/HQ/175254.pdf (accessed on 3 June 2021).

59. Tokunaga, T.; Kim, Y.; Wan, J. Potential Remediation Approach for Uranium-Contaminated Groundwaters through Potassium
Uranyl Vanadate Precipitation. Environ. Sci. Technol. 2009, 43, 5467–5471. [CrossRef] [PubMed]

60. WenChao, Y.; Yadan, G.; Bai, G.; Ping, L. Research Advances of Chemical Treatment of Wastewater with Low Concentration of
Uranium. In Proceedings of the 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT),
Hangzhou, China, 23–24 January 2016.

https://www.nrc.gov/docs/ML1108/ML110800146.pdf
https://www.osti.gov/servlets/purl/1488863
https://www.wrtnet.com/category/pilot-studies/uranium-pilot-studies/
https://www.wrtnet.com/category/pilot-studies/uranium-pilot-studies/
https://www.wrtnet.com/category/pilot-studies/radium-pilot-studies/
https://www.wrtnet.com/category/pilot-studies/radium-pilot-studies/
https://core.ac.uk/download/pdf/33459481.pdf
https://www.iaea.org/sites/default/files/national_report_of_bulgaria_for_the_6th_review_meeting_-_english.pdf
https://www.iaea.org/sites/default/files/national_report_of_bulgaria_for_the_6th_review_meeting_-_english.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Nukleare_Sicherheit/jc_6_bericht_deutschland_en_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Nukleare_Sicherheit/jc_6_bericht_deutschland_en_bf.pdf
https://ec.europa.eu/energy/sites/default/files/documents/tech_report_romania_2012_en.pdf
https://ec.europa.eu/energy/sites/default/files/documents/tech_report_romania_2012_en.pdf
https://digital.library.unt.edu/ark:/67531/metadc679901/
https://digital.library.unt.edu/ark:/67531/metadc779176/m2/1/high_res_d/833249.pdf
http://doi.org/10.1016/j.wri.2020.100125
http://doi.org/10.1002/j.1551-8833.1988.tb03074.x
https://semspub.epa.gov/work/HQ/175254.pdf
http://doi.org/10.1021/es900619s
http://www.ncbi.nlm.nih.gov/pubmed/19708383


Geosciences 2021, 11, 250 24 of 27

61. Cujic, M.; Petrovic, J.; Dragovic, S. Review of Remediation Approaches Implemented in Radioactively Contaminated Areas. In
Remediation Measures for Radioactively Contaminated Areas; Gupta, D.K., Voronina, A., Eds.; Springer International Publishing AG:
Cham, Switzerland, 2019; pp. 1–9. [CrossRef]

62. Szenknect, S.; Mesbah, A.; Descostes, M.; Maihatchi-Ahamed, A.; Bonato, L.; Massonnet, M.; Ziouane, Y.; Vors, E.; Vercouter, T.;
Clavier, N.; et al. Uranium removal from mining water using Cu substituted hydroxyapatite. J. Hazard. Mater. 2020, 392, 122501.
[CrossRef] [PubMed]

63. Vidic, R.D.; Pohland, F.G. In situ Groundwater Remediation Using Treatment Walls. In Emerging Technologies in Hazardous Waste
Management 8; Tedder, D.W., Pohland, F.G., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2002; pp. 119–139. [CrossRef]

64. Palmer, P.L. Permeable treatment barriers. In Situ Treatment Technology, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 2001;
pp. 459–482.

65. U.S. Environmental Protection Agency. Permeable Reactive Barrier Technologies for Contaminant Remediation. Office of
Research and Development, Office of Solid Waste and Emergency Response, September 1998b. EPA/600/R-98/125. Available
online: https://clu-in.org/download/rtdf/prb/reactbar.pdf (accessed on 3 June 2021).

66. Federal Remediation Technologies Roundtable. Remediation Technologies Screening Matrix and Reference Guide, Version 4.0:
Passive/Reactive Treatment Walls. 2002. Available online: http://www.frtr.gov/matrix2/section4/4-41.html (accessed on 3
June 2021).

67. Sharma, H.D.; Reddy, K.R. Geoenvironmental Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2004.
68. Henderson, A.D.; Demond, A.H. Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review.

Environ. Eng. Sci. 2007, 24, 401–423. [CrossRef]
69. U.S. Environmental Protection Agency. Field Demonstration of Permeable Reactive Barriers to Remove Dissolved Uranium

From Groundwater, Fry Canyon, Utah, September 1997 through September 1998, Interim Report. Office of Air and Radiation,
November 2000. EPA/402/C-00/001. Available online: https://www.epa.gov/sites/production/files/2015-05/documents/402-
c-00-001.pdf (accessed on 3 June 2021).

70. U.S. Environmental Protection Agency. Cost and Performance Report–Permeable Reactive Barriers Interim Summary Report:
Permeable Reactive Barriers Using Continuous Walls to Treat Metals, May 2002. Office of Solid Waste and Emergency Response,
Technology Innovation Office, 2002b. Available online: https://frtr.gov/costperformance/pdf/continuouswallformetals.pdf
(accessed on 3 June 2021).

71. U.S. Environmental Protection Agency. EPA Superfund Record of Decision: Monticello Mill Tailings (USDOE), EPA ID:
UT3890090035, OU 3, Monticello, Utah, 09/29/1998. EPA/ROD/R08-98/106. 1998. Available online: https://semspub.
epa.gov/work/HQ/188239.pdf (accessed on 19 April 2021).

72. Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.; Bennett, T.A.; Puls, R.W. Treatment of inorganic contaminants using
permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123–137. [CrossRef]

73. U.S. Department of Energy. First Five-Year Review Report for Monticello Mill Tailings Site, San Juan County Monticello,
Utah, June 2017. Prepared by U.S. DOE, Legacy Management, for U.S. EPA, LMS/MNT/S14775. Available online: https:
//www.lm.doe.gov/Monticello/Documents.aspx (accessed on 3 June 2021).

74. U.S. Department of Energy. First Five-Year Review Report for Rocky Flats Environmental Technology Site, Golden, Colorado,
July 2002a. Prepared by U.S. DOE, Rocky Flats Field Office for U.S. EPA. Available online: https://semspub.epa.gov/work/08/6
1084.pdf (accessed on 3 June 2021).

75. U.S. Environmental Protection Agency. EPA Superfund Record of Decision: Lincoln Park, EPA ID: COD042167858, OU 02, Canon
City, Colo., 01/03/2002, 2002a. EPA/ROD/R08-02/108. Available online: https://semspub.epa.gov/work/08/490323.pdf
(accessed on 3 June 2021).

76. U.S. Environmental Protection Agency. Evaluating Performance of the Monticello PRB in Treating Uranium and Metals.
Technology News and Trends, July 2003. EPA CLU-IN Newsletter. Available online: http://clu-in.org (accessed on 3 June 2021).

77. Kornilovych, B.; Wireman, M.; Ubaldini, S.; Guglietta, D.; Koshik, Y.; Caruso, B.; Kovalchuk, I. Uranium Removal from
Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies.
Metals 2018, 8, 408. [CrossRef]

78. Roehl, K.E.; Meggyes, T.; Simon, F.G.; Stewart, D.J. Long-term Performance of Permeable Reactive Barriers. In Trace Metals and
other Contaminants in the Environment; Nriagu, J.P., Ed.; Elsevier: Leeds, UK, 2005; Volume 7.

79. Kumar, S.; Loganathan, V.A.; Gupta, R.B.; Barnett, M.O. An Assessment of U(VI) removal from groundwater using biochar
produced from hydrothermal carbonization. J. Environ. Manag. 2011, 92, 2504–2512. [CrossRef]

80. Florez, C.; Park, Y.H.; Valles-Rosales, D.; Lara, A.; Rivera, E. Removal of Uranium from Contaminated Water by Clay Ceramics in
Flow-Through Columns. Water 2017, 9, 761. [CrossRef]

81. Mullett, M.; Fornarelli, R.; Ralph, D. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource
Recovery and Water Discharge. Membranes 2014, 4, 163–180. [CrossRef] [PubMed]

82. U.S. Naval Facilities Engineering Command. Naval Facilities Engineering Service Center, Port Hueneme, Environmental
Restoration & BRAC Website. 2004. Available online: http://enviro.nfesc.navy.mil/erb (accessed on 3 June 2021).

83. Dow Chemical Company. Nanofiltration for Municipal Water Treatment. 26 September 2000. Available online: http://www.dow.
com/liquidseps/news/NF-Backgrounder.htm (accessed on 3 June 2021).

84. LaGrega, M.; Buckingham, P.; Evans, J. Hazardous Waste Management, 2nd ed.; McGraw-Hill Inc.: New York, NY, USA, 2000.

http://doi.org/10.1007/978-3-319-73398-2_1
http://doi.org/10.1016/j.jhazmat.2020.122501
http://www.ncbi.nlm.nih.gov/pubmed/32208317
http://doi.org/10.1007/0-306-46921-9_11
https://clu-in.org/download/rtdf/prb/reactbar.pdf
http://www.frtr.gov/matrix2/section4/4-41.html
http://doi.org/10.1089/ees.2006.0071
https://www.epa.gov/sites/production/files/2015-05/documents/402-c-00-001.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/402-c-00-001.pdf
https://frtr.gov/costperformance/pdf/continuouswallformetals.pdf
https://semspub.epa.gov/work/HQ/188239.pdf
https://semspub.epa.gov/work/HQ/188239.pdf
http://doi.org/10.1016/S0169-7722(00)00122-4
https://www.lm.doe.gov/Monticello/Documents.aspx
https://www.lm.doe.gov/Monticello/Documents.aspx
https://semspub.epa.gov/work/08/61084.pdf
https://semspub.epa.gov/work/08/61084.pdf
https://semspub.epa.gov/work/08/490323.pdf
http://clu-in.org
http://doi.org/10.3390/met8060408
http://doi.org/10.1016/j.jenvman.2011.05.013
http://doi.org/10.3390/w9100761
http://doi.org/10.3390/membranes4020163
http://www.ncbi.nlm.nih.gov/pubmed/24957170
http://enviro.nfesc.navy.mil/erb
http://www.dow.com/liquidseps/news/NF-Backgrounder.htm
http://www.dow.com/liquidseps/news/NF-Backgrounder.htm


Geosciences 2021, 11, 250 25 of 27

85. U.S. Environmental Protection Agency. The Superfund Innovative Technology Evaluation Capsule: Filter Flow Technology Inc.,
Colloid Polishing Filter Method, July 1994. EPA/540/R-94/501a. Available online: https://clu-in.org/download/toolkit/540r9
4501.pdf (accessed on 3 June 2021).

86. Munter, R. Technology for the removal of radionuclides from natural water and waste management: State of the art. Proc. Estonian
Acad. Sci. 2013, 62, 122. [CrossRef]

87. U.S. Environmental Protection Agency. Approaches for the Remediation of Federal Facility Sites Contaminated with Explosive
or Radioactive Wastes, 1993. EPA/625/R-93/013. Available online: https://cfpub.epa.gov/si/si_public_record_report.
cfm?Lab=NRMRL&direntryid=124645&subject=homeland+security+research&view=desc&sortby=pubdateyear&count=25
&showcriteria=1&searchall=ceri&submit=search& (accessed on 3 June 2021).
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