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Abstract: Geological lineaments are the earth’s linear features indicating significant tectonic units
in the crust associated with the formation of minerals, active faults, groundwater controls, earth-
quakes, and geomorphology. This study aims to provide a systematic review of the state-of-the-art
remote sensing techniques and data sets employed for geological lineament analysis. The critical
challenges of this approach and the diverse data verification and validation techniques will be pre-
sented. Thus, this review spanned academic articles published since 1975, including expert reports
and theses. Landsat series, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Sentinel 2 are the prevalent optical remote sensing data widely used for lineament detec-
tion. Moreover, Shuttle Radar Topography Mission (SRTM) derived Digital Elevation Model (DEM),
Synthetic-aperture radar (SAR), Interferometric synthetic aperture radar (InSAR), and Sentinel 1
are the typical radar remotely sensed data which are widely used for the detection of geological
lineaments. The geological lineaments acquired via GIS techniques are not consistent even though
a variety of manual, semi-automated, and automated techniques are applied. Therefore, a single
method may not provide an accurate lineament distribution and may include artifacts requiring
integration of multiple algorithms, e.g., manual and automated algorithms.

Keywords: remote sensing; lineament; data; enhancement; filtering

1. Introduction

In the early 20th century the word “lineament” was used to describe earth surface
features such as (i) crests of ridges or boundaries of elevated areas, (ii) the drainage lines,
(iii) coastlines, and (iv) boundary lines of formations of petrographic rock types, or lines
of outcrops [1–4]. Later this terminology was expanded to cover additional features like
valleys and visible lines of fracture or fault breccia zones. Other definitions of lineament
are reported by [5]. Lineament is defined as any mappable, simple, or composite linear
feature of the earth surface in which the parts are aligned in rectilinear or slightly curvi-
linear coherent structures characterized by distinct patterns from adjacent features [5,6].
Genetically, three types of lineaments are separated; (i) geological lineaments, (ii) geo-
morphological or topographic lineaments, and (iii) Pseudo, manmade, or nongeological
lineaments [2,7,8] Earth surface linear features (rectilinear or curvilinear) caused by tectonic
activities are faults, fractures, joints, or lithological boundaries, and are termed geological
lineaments. Topographic lineaments are caused by geomorphological processes, such as
drainage systems and ridges. Pseudo or human-made features are roads, railroads, crop
field boundaries, or any variations in land use patterns. In satellite images, the geological
lineaments feature significantly brighter or darker linear features than the background pixel
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intensity [9–11]. Faults and fractures having apparent displacements and rupture with-
out significant fracture displacement (e.g., joint zones, cleavage belts, structural fissures,
and tectonic crush zones), large crustal fractures, deep faults, buried faults, linear micro-
geomorphological features, and linear traces reflecting abnormal hues also according to the
consensus, geological lineaments often represent fault systems. The crust’s failure along a
surface accompanied by the relative movement of the geological units from both sides of
that surface is called a fault [12,13]. Determination of fault system helps to monitor regional
groundwater, urban planning, site selection for infrastructure projects such as dams, roads,
and bridges, geohazards, hydrothermal fluids, geothermal, analysis of plate movement,
ore forming prognosis, magmas, and assist earthquake hazard assessment [2,9,14–16].

Determination of geological lineaments might lead to the characterization and iden-
tification of active faults, tectonic units, and seismically active regions [2]. Conventional
detection of geological lineaments on the field is costly and time-consuming, and some-
times, it is even impossible due to physical and geographical challenges. Therefore, during
the last decade, geological lineament detection via remote sensing has been widespread,
leading to effective results for many applications [9,17]. A variety of remote sensing tech-
niques, including manual and automated approaches, are used to delineate and analyze
lineament data [18–20]. The technique’s selection depends on analysis objectives and
remote sensing data types, such as satellite or aerial images. Optical and radar remote
sensing data are often used for lineament extraction and characterization of active faults.
Optical multispectral and hyperspectral data are utilized to resolve different scales. Land-
sat TM, ETM+, OLI/TIRS, ASTER, and Sentinel 2 are the state-of-the-art optical sensors
preferred by several researchers [13,21–33]. Likewise, the standard radar-based sensors for
lineament and active fault characterization include Sentinel 1, InSAR, ALOS PALSAR, and
DEM which have been extensively utilized [19,34–46]. The most common remote sensing
data utilized for lineament extraction are summarized in Table 1.

Furthermore, a useful and novel technique for geological lineament detection is se-
lected after many models are tested, or many relevant studies are reviewed. The present
review provides a path to decide which methods are better suited for geological lineament
extraction. Some review articles are available, focusing on remote sensing techniques
in literature, but they are limited to the other fields of geology, particularly lithological
mapping, exploration of mineral deposits, groundwater monitoring, volcanoes mapping,
seismic hazard, and risk assessment, etc. [30,47–51]. Review articles entirely focusing
on geological lineament extraction are limited [14,31]. For example, [31] is a review pa-
per available that commonly concentrates on lineament mapping and its application in
landslide hazard assessment. Ramli [31] in his work covered the works being conducted
using remote sensing data and techniques in the context of lineament mapping until 2010.
The present study is the first comprehensive review of remote sensing techniques and
geographic information systems to determine geological lineaments by reviewing the most
relevant scientific journals, books, and theses since 1975 written mostly in the English
language. Consequently, the main objectives of this study are (i) to introduce the common
remote sensing data with their properties used for geological remote sensing and geological
lineaments extraction, (ii) to highlight various manual and automated geological lineament
extraction methods and algorithms, and (iii) to discuss the challenges of the available
techniques and their accuracy on geological lineaments detection.
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Table 1. Details of the common remote sensing data used for geological lineaments detection.

Satellite/Senor Lunch
Year

Band
Number Band Name Wavelength

(µ)
Spatial

Resolution
Radiometric
Resolution

Spectral
Resolution

Temporal
Resolution

Swath
Width (km)

Landsat
1–MSS 1972

4 Green 0.5–0.6

80 6 bits 4 bands 18 days 185
5 Red 0.6–0.7

6 Near–IR 0.7–0.8

7 Near-IR 0.8–1.1

Landsat
2–MSS 1975

4 Green 0.5–0.6

80 6 bits 4 bands 18 days 185
5 Red 0.6–0.7

6 Near–IR 0.7–0.8

7 Near-IR 0.8–1.1

Landsat
3–MSS 1978

4 Green 0.5–0.6

80 6 bits 5 bands 18 days 185
5 Red 0.6–0.7

6 Near–IR 0.7–0.8

7 Near-IR 0.8–1.1

8 TIR 10.4–12.6

Landsat
4–TM 1982

1 Blue 0.45–0.52

30
8 bits 7 bands 16 days 185

2 Green 0.52–0.60

3 Red 0.63–0.69

4 Near–IR 0.76–0.90

5 SWIR-1 1.55–1.75

6 TIR 10.40–12.50 120

7 SWIR-2 2.08–2.35 30

Landsat
5–TM 1984

1 Blue 0.45–0.52

30
8 bits 7 bands 16 days 185

2 Green 0.52–0.60

3 Red 0.63–0.69

4 Near–IR 0.76–0.90

5 SWIR-1 1.55–1.75

6 TIR 10.40–12.50 120

7 SWIR-2 2.08–2.35 30

Landsat
7–ETM+ 1999

1 Blue 0.45–0.52

30

8 bits 8 bands 16 days 185

2 Green 0.52–0.60

3 Red 0.63–0.69

4 NIR 0.77–0.90

5 SWIR–1 1.55–1.75

6 TIR 10.40–12.50 60 (30)

7 SWIR–2 2.09–2.35 30

8 Panchromatic 0.52–0.90 15

Landsat 8
OLI 2013

1 Coastal/
Aerosol 0.43–0.45

30

12 bits
Level 1–16

bits
11 bands 16 days 185

2 Blue 0.45–0.51

3 Green 0.53–0.59

4 Red 0.64–0.67

5 NIR 0.85–0.88

6 SWIR–1 1.57–1.65

7 SWIR–2 2.11–2.29

8 Panchromatic 0.50–0.68 15

9 Cirrus 1.36–1.38 30

10 TIRS–1 10.60–11.19
100 (30)

11 TIRS–2 11.50–12.51
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Table 1. Cont.

Satellite/Senor Lunch
Year

Band
Number Band Name Wavelength

(µ)
Spatial

Resolution
Radiometric
Resolution

Spectral
Resolution

Temporal
Resolution

Swath
Width (km)

ASTER 1999

1

VNIR

0.52–0.60

15 8 bits

14 bands 16 days 60

2 0.63–0.69

3N 0.78–0.86

3B 0.78–0.86

4

SWIR

1.60–1.70

30 8 bits

5 2.145–2.185

6 2185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

10

TIR

8.125–8.475

90 12 bits

11 8.475–8.825

12 8.925–9.275

13 10.25–10.95

14 10.95–11.65

Sentinel 2 2017

1 Coastal
aerosol 0.433–0.453 60

12 bits 12 bands 5 days 290

2 Blue 0.458–0.523

103 Green 0.543–0.578

4 Red 0.650–0.680

5 Vegetation
red edge 0.698–0.713

206 Vegetation
red edge 0.733–0.748

7 Vegetation
red edge 0.773–0.793

8 NIR 0.785–0.900 10

8A Vegetation
red edge 0.855–0.875 20

9 Water vapor 0.935–0.955 60

10 SWIR–Cirrus 1.360–1.390 60

11 SWIR 1.565–1.655
20

12 SWIR 2.100–2.280

SPOT 5 2002

1 Panchromatic 0.51–0.73 2.5 & 5

8 bits 5 bands 2–3 days 120

2 Green 0.50–0.59

103 Red 0.61–0.68

4 NIR 0.79–0.89

5 Mid IR 1.58–1.73 20

ASTER
GDEM - 1 - - 1 arc-sec - - - 1◦ × 1◦

SRTM DEM - 1 - - 3 arc-sec - - - 5◦ × 5◦

CartoDEM 2005 1 - - 1 arc-sec - - - 1◦ × 1◦

JERS-1 SAR 1992 1 L 2.35e + 7
(23.5 cm) 18 3 bits 1 band 44 75

IRS LISS III 1995

2 Green 0.52–0.59

23.5
7 bits 5 bands 24

1423 Red 0.62–0.68

4 NIR 0.77–0.86

5 SWIR 1.55–1.70 70 148
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Table 1. Cont.

Satellite/Senor Lunch
Year

Band
Number Band Name Wavelength

(µ)
Spatial

Resolution
Radiometric
Resolution

Spectral
Resolution

Temporal
Resolution

Swath
Width (km)

ERS-1 SAR 1991 1 C 5,660,000
(5.66 cm) 10–30 5 bits 1 band 35 100

ERS-2 SAR 1995 1 C 5,660,000
(5.66 cm) 10–30 5 bits 1 band 35 100

PALSAR 2006 1 L 2.29e + 7
(22.9 cm)

10
30

100
5 bits 1 band 45

30
70

250–350

Sentinel 1 2014 1 C 3.75 0 7.5
cm

5 × 5
5 × 20

20 × 40
1 band 12

80
250
400
100

2. Remote Sensing Techniques

Considering the literature review since 1975, there is not a single technique of geologi-
cal lineament detection in remote sensing, however, as a general concept, the geological
lineaments are extracted using the three following techniques:

• Manual Lineament Extraction
• Semi-Automated Lineament Extraction
• Automated Lineament Extraction

2.1. Manual Lineament Extraction

Manual lineament extraction is performed by visual interpretation of human op-
erators and is well suited for spatial assessment; the extraction is conducted using an
image enhancement process e.g., directional filtering, band ratio, transformation, visual
interpretation, and manual digitization of the lineaments [36,52,53]. Manual lineament
extraction is applied when the main objective is to demarcate the geological features [54].
The output comes from manual lineament extraction and depends on analyst skills and
area of interest. The earliest lineament interpretation was performed using stereoscopic
aerial photos, where the lineaments were delineated on the transparent overlays and then
transferred to a map [31,55,56]. Digital Terrain Model (DTM) or high-resolution satellite
images are preferred by many researchers for the manual extraction of lineaments [54,57].
Lineaments are then extracted by the visual interpretation of an image after it is enhanced.
Advances in hardware and technology lead to improved visualization via photo interpreta-
tion. Acquired lineaments are reconstructed on the image as hard copies or on the screen
digitally [6]. The critical aspects of visual interpretation are generally tonal contrast and
textural pattern in which the geomorphological characteristics e.g., drainages pattern and
density, rock resistance, landforms, and development of bedding, and superficial cover
such as vegetation and cultivation can be reflected in the images [31,58].

In satellite imagery, lineaments usually appear as straight lines or edges that differ-
entiate by the tonal gradients of the surface material [59]. The user’s field experience is
essential for the accurate classification of lineaments and to complete the broken segments
into a longer lineament [59,60]. Furthermore, the quality of images is also considered a key
factor for better identifying lineaments in manual approach [61]. Some general features are
described by Wang & Howarth [23] to help determine lineaments, and they are topographic
features such as straight valley, continuous scarps, straight rock boundaries, a systematic
offset of rivers, sudden tonal variations, and alignment of vegetation. A continuous straight
valley is considered by Koike [62] as the most powerful feature in image processing for
lineament detection as satellite images have no direct information on the topography of the
area. The early geological lineaments detection method in remote sensing using a manual
approach goes back to the Landsat launch in 1972. Landsat 1 was launched on 23 July 1972;
it is known as the first Earth-observing satellite. It consisted of four multispectral bands
and was operating until 1978 [63]. The most relevant studies between 1975–2021 using
manual lineament extraction are listed in (Table A1 in Appendix A).
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This study describes the standard enhancement methods of satellite images that
significantly contribute to manual lineament extraction.

2.1.1. Enhancement Techniques

Basically, remote sensing sensors record reflected and emitted radiant flux from the
earth’s surface materials that one material would reflect—a large amount of energy in a
particular wavelength. In contrast, another material would reflect less energy in the same
wavelength. This mechanism would result in the difference between two types of materials
being recorded by the remote sensing sensors [64]. Sometimes different kinds of materials
reflect a similar amount of energy which causes low contrast. Therefore, the level of contrast
is determined by the variation in the amount of reflected energy. Image enhancement is
required during the image processing, as it not only highlights the weak edges or other
linear features but also can improve accuracy [65]. Image enhancement is considered one
of the main stages of image processing tools for the lineament extraction [66–68].

Furthermore, the difference is also determined based on the radiometric range of the
remote sensing systems. For example, a common remote sensing system is designed to
record a wide range of brightness values (e.g., 0 to 255) for 8 bits, but due to saturation
caused by the radiometric sensitivity of a detector, it cannot record the full range of
intensities of reflected or emitted energy from the scene, resulting in relatively low contrast
imagery [6,64].

In the visual interpretation and manual extraction of lineaments, the imagery is
enhanced in the radiometric range. Various digital methods are available for contrast
enhancement that generally are classified as linear and non-linear digital contrast enhance-
ment methods. Contrast stretching, minimum–maximum contrast stretch, and piecewise
contrast stretch are the common types of linear contrast enhancement, while histogram
normalization is the standard type of non-linear enhancement [64].

Several works have been done in manual lineament extraction using contrast enhance-
ment, particularly histogram equalization and stretching for a single band [69,70]. The
other relevant works are summarized in (Table A1).

2.1.2. Spatial Convolution Filtering

One of the characteristics of remotely sensed data is spatial frequency; it is defined as
the number of brightness value changes per unit distance for any part of an image [64,71].
Two levels of frequency in images are distinct: low-frequency and high-frequency. Suppose
there are fewer changes in brightness value over a given area in an image. In that case,
this is referred to as a low frequency area, whereas, if there is a dramatic change over
short distances, this is considered a high–frequency area [64,72]. In other words, high
spatial frequency in an image is associated with frequent changes of brightness with the
position. The most common examples of high-frequency data are edges, lines, and some
types of noise. Conversely, gradual changes of brightness value in an image represent low
frequency [20,73].

Spatial frequency in remote sensing data can be intensified or reduced using two
different techniques; spatial convolution filtering, which is based on convolution masks,
and Fourier analysis, which automatically separates an image into its spatial frequency
components [64]. The review of many studies shows that spatial convolution filtering is
commonly used for lineament extraction; therefore, Fourier analysis is out of the scope of
this review.

Based on [64,74], spatial convolution filtering is considered as a linear filter for which
the brightness value at a certain location in the output image is a function of the weighted
average of brightness values located in a particular spatial pattern around the specific
location in the input image. This process of the weighted neighboring pixel value is called
two–dimensional convolution filtering. This procedure is utilized for the spatial frequency
of an image, for instance, high-frequency linear filtering may sharpen the edges in an
image, while low-frequency linear spatial filtering is used to reduce noise within an image.
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Considering the literature [29,60,64,75–79], four types of spatial convolution filters
are common to be used for manual or automated lineament detection: (a) Low pass filter,
(b) High pass filter, (c) Linear edge detection, and (d) Non-linear edge detection.

Low-Pass Filtering

The types of image enhancement that reduce an image’s high spatial frequency are
called low frequency or low pass filters [64,80,81]. These filters are useful for removing
the noise in the images [64,82,83]. The simple low pass filter assesses a specific input pixel
brightness value and the pixels surrounding the input pixel and outputs a new brightness
value that is the mean of this convolution [64,84]. The size of the neighborhood convolution
mask or kernel is usually 3 × 3, 5 × 5, 7 × 7, or 9 × 9. A typical example is shown in
(Figure 1). Jensen [64] states that the coefficients in a low-frequency convolution mask are
usually set equal to 1. The calculation of the low pass filter is done using the equation below.

Convolution mask template =

 C1 C2 C3
C4 C5 C6
C7 C8 C9



Low frequency filter =

 1 1 1
1 1 1
1 1 1



Mask Template =

 C1 × V1 C2 × V2 C3 × V3
C4 × V4 C5 × V5 C6 × V6
C7 × V7 C8 × V8 C9 × V9


LFF = Int

∑n=9
i=1 Ci × Vi

n
where Ci is the coefficient, Vi is the individual pixel value, and n is the number of pixel
covered by the convolution mask.
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The filtered image in (Figure 2) is calculated based on the above equations:
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The new values in the filtered image:

3 = (0 × 1 + 1 × 1+ 3 × 1 + 2 × 1 + 5 × 1 + 4 × 1 + 8 × 1 + 3 × 1 + 1 × 1)/9

4 = (1 × 1 + 3 × 1 + 4 × 1 + 5 × 1 + 4 × 1 + 9 × 1 + 3 × 1 + 1 × 1 + 6 × 1)/9

5 = (3 × 1 + 4 × 1 + 7 × 1 + 4 × 1 + 9 × 1 + 7 × 1 + 1 × 1 + 6 × 1 + 4 × 4)/9

It is notable that low pass filters are used less for the manual extraction of lineaments
because the output image is only reduced in terms of noise, and the intensity of blurring is
high which causes confusion in lineament extraction. Figure 3 illustrates a visual example
of a low pass filtering operation on an original image from a residential area in Germany
taken by an unmanned aerial vehicle (UAV) derived from [64]. Figure 3a is a normal color
image, while Figure 3b is the low pass filtered image that has been applied on the red
band of the original image. In the example, the image becomes blurred by suppressing the
high-frequency image.
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High-Pass Filtering

High-pass filtering is applied to emphasize or increase the high-frequency components
of an image whereas it decreases the low-frequency components. Simply, high-pass filtering
is calculated by subtracting the low-pass filter (LPF) from twice the value of the original
central pixel value [64,84]:

HPF = (2 × BV)− LPF

where BV is brightness value.
Based on [64], due to the high correlation of brightness value with a nine element

in high-pass filtering, the filtered image will be characterized by the relatively narrow
intensity histogram. Furthermore, the standard kernel used in this filter is 3 × 3 with the
coefficients below, which results in a sharpening of the edges.
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High − frequency filter =

 1 −2 1
−2 5 −2

1 −2 1


High-pass filtering is commonly used for edge enhancement which increases the

chance of lineament extraction using manual interpretation. Typical examples of high-
pass filtering using 3 × 3 kernel with different coefficients for the geological lineament
extraction are used by [9,29,75]. In these examples, the authors have examined this filtering
on Landsat and DEMs over the different areas. Qari [75] examined high pass filtering
using a 3 × 3 kernel over the Al-Khabt area, Southern Arabian Shield to manually extract
geological lineaments. In this example which is shown in (Figure 4), the author applied the
filtering to TM band 5 for edge enhancement to achieve high lineament contrast. Manual
extraction of geological lineament from the original image (Figure 4a) seems difficult,
hence the image was changed after the filtering was done (Figure 4b). The image became
sharp and the features can be clearly highlighted. For better visualization, the author
superimposed the filtered image on the TM band 5 (Figure 4c), consequently, the existing
lineaments were achieved using manual digitization (Figure 4d).
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Linear Edge Detection Filtering

Usually, edges in an image are sharp changes in brightness value between two adjacent
pixels [85]. One of the most common methods in remote sensing for geological lineament
extraction is edge detection. This can be achieved by the edge enhancement techniques,
making the shapes and details more apparent and more convenient to analyze [64]. Based
on [85], the human eye considers a sharp and distinctive line between adjacent regions of
a picture, but the presence of noise and coarse resolution results in a blur and decreases
the chance of appearing of edges. Therefore, edge enhancement techniques are applied
to overcome this visual distinctiveness. The edges of remotely–sensed data with a gray
value and which change sharply are a significant clue for the delineation and extraction of
lineaments [86–88].

Like the previous filters, linear detection filtering is usually applied using a particular
convolution weighted mask or kernel. One of the most effective linear enhancement
filtering techniques causing the edges to appear as a plastic shaded-relief format is emboss
filters. The edges are obtained using emboss east and emboss northwest directions with
the coefficient below [64]:

Emboss East =

 0 0 0
1 0 −1
0 0 0

 Emboss NW =

 0 0 1
0 0 0

−1 0 0


Compass gradient masks are another type of linear edge detection filtering which is

used for discrete differentiation directional edge enhancement. The Compass filter uses
eight different commonly gradient mask directions (N, E, S, W, NE, SE, SW, NW) [64,89].
The different direction masks with their associated coefficients are shown in (Table 2).

Table 2. Directional filtering of the compass with their associated coefficient.

North

1 1 1

Northeast

1 1 1

1 −2 1 −1 −2 1

−1 −1 −1 −1 −1 1

East

−1 1 1

Southeast

−1 −1 1

−1 −2 1 −1 −2 1

−1 1 1 1 1 1

South

−1 −1 −1

Southwest

1 −1 −1

1 −2 1 1 −2 −1

1 1 1 1 1 1

West

1 1 −1

Northwest

1 1 1

1 −2 −1 1 −2 −1

1 1 −1 1 −1 −1

Jensen [64] examined typical examples of Emboss and Compass filters on the red band
of the original color image with high spatial resolution of a residential area in Germany
(Figure 5a). Jensen applied Emboss Northwest filtering to achieve the plastic shaded-relief
for better visualization of edges (Figure 5b). Figure 5c illustrates the Compass Northeast
filtering of the original image.
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Another four 3 × 3 alternative directional filters have been proposed by [73] for edge
detection with their associated coefficient, as below:

Vertical =

 −1 0 1
−1 0 1
−1 0 1

 Horizontal =

 −1 −1 −1
0 0 0
1 1 1



Diagonal =

 1 1 1
−1 0 1
−1 −1 1

 Diagonal =

 1 1 1
1 0 −1
1 −1 −1


The last linear edge detection filtering is referred to as Laplacian filtering, applied

to imagery to perform edge enhancement. This filtering is a second derivative edge
enhancement filter without regard to edge direction [64]. The 3 × 3 Laplacian filters are
described as below with their coefficients:

Laplacian 4 =

 0 −1 0
−1 4 −1

0 −1 0

 Laplacian 7 =

 1 1 1
1 −7 1
1 1 1



Laplacian 5 =

 0 −1 0
−1 5 −1

0 −1 0

 Laplacian 8 =

 −1 −1 −1
−1 8 −1
−1 −1 −1


Linear edge enhancement filtering has been widely used for geological lineaments over

the last few decades [76,79,90]. For instance, Farahbaksh [79] tested image transformation
and enhancement to extract geological lineaments over the Yinnietharra area, Western
Australia using Landsat 8 OLI/TIRS data. Farahbakhsh selected the output of Minimum
Noise Fraction (MNF) with the highest eigenvalue to apply the Laplacian and directional
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filtering (Figure 6). As a result, almost all linear features, including geological lineaments
and streams, can readily be extracted from the filtered images. The findings of [79] show
that directional filtering has more effective results in the different striking of geological
lineaments (Figure 6c–f), while the Laplacian filtering failed in detecting particular strike
(NW–SE) lineaments (Figure 6b).
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Nonlinear Edge Detection Filtering

The non-linear edge enhancement filtering is based on the non-linear combination
of pixels. The most common types of this filtering are the Sobel filter, Prewitt filter, and
Robert filter [64,73,91,92].

Sobel edge detection filter is followed by the 3 × 3 window numbering and is calculated
using the following equation:

Sobel =
√

X2 + Y2

where
X = (V3 + 2V6 + V9)− (V1 + 2V4 + V7)
Y = (V1 + 2V2 + V3)− (V7 + 2V8 + V9)

And V is the individual pixel value.
Sobel kernels are calculated in four principal directions (N–S, NE–SW, E–W, and NW–

SE) and are applied in a single band, particularly band 7 of ETM+ due to the greater wave-
length and lesser effect of moisture due to the minimal effect of atmospheric haze [59,60,70].
The associated coefficient in four directions is shown in (Table 3) [93–96].

Table 3. Four direction widows for Sobel and Prewitt filters with their associated coefficient.

N-S NW-SW E-W NW-SE

Sobel filter
window

−1 0 1 −2 −1 0 −1 −2 −1 0 1 2

−2 0 2 −1 0 1 0 0 0 −1 0 1

−1 0 1 0 1 2 1 2 1 −2 −1 0

Prewitt filter
window

−1 0 1 −1 −1 0 −1 −1 −1 0 1 1

−1 0 1 −1 0 1 0 0 0 −1 0 1

−1 0 1 0 1 1 1 1 1 −1 −1 0

An example of the capability of Sobel filtering for automatic geological lineaments
was carried out within the Ikole/Kabba region, southern Nigeria by [94] (Figure 7). In this
example, Salawu et al. examined Sobel directional filters mainly in the four directions:
N–S (Figure 7b), NW-SE (Figure 7c), NE–SW (Figure 7d), and E–W (Figure 7e), on the
band 8 image of Landsat 8 OLI/TIRS. A 3 × 3 convolution mask was used in this example
in which the results are promising in terms of linear features. The authors extracted the
lineaments for each filtered image corresponding to distinct directions, then integrated all
the extracted lineaments with the geophysical and field work data.

The Prewitt filtering for edge detection contains two groups of 3 × 3 windows, includ-
ing horizontal and vertical; however, the edges and lineaments in most cases have more
than two directions. Therefore, to detect more direction edges, a Prewitt filtering window
of six or eight is utilized (Table 3) [97,98]. The Prewitt filtering is more clarified in the
study conducted by [98]. Boutrika et al. [98] applied Prewitt filtering on Landsat 7 ETM+ to
extract geological lineaments associated with gold mineralization over the Central Hoggar,
South Algeria. In this work, Boutrika et al. performed Principal Component Analysis (PCA)
on a multispectral band, and then applied Prewitt filtering using a 3 × 3 convolution kernel
on PC1 in four directions (N-S, NE-SE, E-W, and NW-SE) (Figure 8). The structures can
clearly be distinguished in (Figure 8b), obtained from the overlaying four direction filtered
images. The authors highlighted the geological lineaments corresponding to the deep
faults on the filtered image (Figure 8c), in which the extracted lineaments are illustrated
(Figure 8d).
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The Robert edge detection filtering is performed by a simple, quick, two-dimension
spatial gradient measurement on an image. Once this filtering operation is done, the high
spatial frequency regions corresponding to edges are highlighted in the image. Robert
is using 2 × 2 mask convolution to give edges in x-direction and y-direction, respec-
tively [99–101].

Robert mask in X direction =

[
−1 0
0 1

]
Robert mask in Y direction =

[
0 −1
1 0

]
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A typical example of Robert filtering applied on the red band of high spatial resolution
color image of a residential area, Germany was carried out by [64] (Figure 9a,b).
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The directional and nondirectional filtering is applied for lineament extraction at
various scales and disciplines. The results achieved by them are diverse. In terms of
geological lineament extraction, directional filtering has more effective results because
faults and fractures are usually distributed at different strikes. Therefore, filtering in a
particular direction may not give a suitable product. Several studies are concerned about
the directional filters for geological lineaments, e.g., [76] tested directional (Sobel) and
nondirectional (Laplacian) filters on the particular bands of Landsat ETM and claims that
directional filters in NE-SW and NW-SE gave the best results because the prevailing tectonic
trends were at the NE-SW and the NW-SE directions considering the tectonic regime of the
study area.

Pour & Hashim [35] applied 7 × 7 user-defined directional filtering in the central
gold belt, Peninsular Malaysia on PALSAR data to map the lineaments with their specific
trends. Four lineaments in total, trending N-S, NE-SW, NNW-SSE, and ESE-WNW, were
determined, which are compatible with the ground truth studies and the previously
mapped faults.

Allou et al. [77] mapped the faults using different directional filters over an area in
western Africa. He applied 7 × 7 convolution of Sobel, Prewitt, and Yesou filters in three
major directions (N-S to NNE-SSE, N90o to N100o, NW-SE to NNW-SSE); the authors stated
that the high density of lineament had been detected using Prewitt filters on panchromatic
bands, while the less dense is detectable by Yesou filters. Further works on lineament
extraction using directional and nondirectional filters are stated in (Table A1).

2.1.3. Multiband Analysis

The usage of multiband analysis of remote sensing data plays a critical role in the
determination of lineaments. Multiband analysis of remote sensing imageries is mostly
applied in visual interpretation or manual lineament extraction of geological lineaments.
This analysis is impressive when it is integrated with other outputs of enhancement or
filtering. The most applied multiband analysis in lineament delineation through photo
interpretation are Principal Component Analysis (PCA), False Color Composite (FCC), and
Band Ratio (BR).

Principal Component Analysis (PCA)

Principle component analysis is a multivariate statistical technique to reduce the
data dimensionality by transforming the selected data into a new principal component
axis, generating an uncorrelated image that contains higher contrast than the original
bands [102,103]. According to [64], PCA is the spectral enhancement technique of an
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image by compressing the information of several spectral bands into just two or three
transformed principal component images. Singh & Harrison [104] states that new principal
component images may be more interpretable than the original data as the multispectral
dataset’s dimensionality is reduced. Furthermore, the newly generated PCA images have
more spectral difference, and the existing objects can be extracted effectively. PCA is more
applicable for lithological mapping, and each lithological unit is revealed clearly in PC
images; based on the selected minerals, the PC is selected, or sometimes, the composition of
several PCs is created. The boundary between two adjacent lithologies may be considered
a lineament or sometimes a fault. Therefore, the analyst can easily digitize the edges from
PC images.

PCA is mostly used as a supportive method; for instance, [70], in a study, used PCA
as multiband analysis to support the results of directional filters for geological lineaments.
In this study, band 7 of Landsat TM was used for spatial filtering, and then PCA improved
the image. The authors meant to transfer all the spectral information into three bands;
after the calculations, the information was accumulated into the three first bands (96.31%).
This could help the authors better to interpret the color composites of these three PCs
visually. The result of the lineament map by PC composite interpretation shows about a
17% increase with a concentration in a particular direction which causes authors to take the
directional filtering into account.

Novak & Soulakellis [28] examined PCA analysis for geomorphic features on Landsat
5 TM over an area in Greece. He visually interpreted the two sets of PCs (PC1, PC2, PC3)
and (PC4, PC5, PC6), respectively. 97% of information belongs to the first set. Furthermore,
he composed the Red and SWIR-2 with the first two PCs as a false color composite for
better visualization. The lineaments detected by this manual method were correlated to the
previously mapped faults and were considered new faults, tectonic and lithological contacts.
Another study by [90] reveals the PCA method’s capability in manual geological lineament
extraction using Landsat 5 TM in western Turkey. The author generated the principal
component of all six multispectral bands and then found the most loaded PC; finally, he
composed three highly loaded PC images to digitize the lineaments. Lastly, the author
integrated the results from PCA with the results obtained by edge enhancement filtering.
Several similar studies have been conducted, aiming at geological lineament extraction
using PCA along with other spatial and spectral enhancement methods, e.g., [79,105,106].

False Color Composite (FCC)

The band combination or color composite is composed of the three various bands
in red, green, and blue (RGB) order; if the composed bands are red, green, and blue, the
combination is called true color combination as every object is displayed in its natural color.
In contrast, the false color combination is the composition of electromagnetic spectrum
channels as red, green, and blue (RGB). The resultant image of the object is not visualized
in its natural color [107–109]. The Optimum Index Factor (OIF) procedure was devised
by [110] to rank all the possible combinations of triplets within a given set of spectral bands
in order of statistical information contents. In other words, it is the procedure of selection
of the best combination of spectral bands for subsequent false color composite. The suitable
selection of band composite is also performed using deterministic methods based on the
consideration of the targeted objects’ spectral characteristics.

Salvi [111] applied false color composite on Landsat TM over Central Italy to interpret
the existing geological faults and lineaments. The author utilized the OIF procedure on
six VNIR bands to select the best band composite. The OIF ranking result shows that the
composition of bands 5, 4, and 1 are suitable to differentiate the objects on the image.

According to [60], false color composite increases the interpretability of the data for
manual lineament extraction; among the composites, the author states that the best visual
quality is achieved with a false color composite of visible and near IR bands. Therefore,
the combination of 432 as red, green, and blue, respectively, for Landsat ETM, was used to
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identify the linear patterns of vegetations, geologic formation boundary, river channels,
and geologic weakness zones.

Band Rationing (BR)

Band rationing is the division of one spectral band by another, based on the spectral
characteristics of selected objects. Sometimes similar targeted surficial objects produce
different brightness values due to topographic slope and aspect, shadows, or seasonal
changes in sunlight illumination angles and density in single or multiple bands, which
may confuse the interpreter. Band rationing techniques transform the data, reduce the
environmental effects, and provide information that may not be available within a single
band [64,112]. BR is calculated as:

BVi,j,r =
BVi,j,k

BVi,j,l

where BVi,j,r is the output for a pixel at row i and column j; BVi,j,k is the brightness value in
band k at the same location and BVi,j,l is the brightness value in band l.

According to [113], several band ratios which are combined in RGB offer greater
contrast between the units than the individual band false color images. Furthermore,
sometimes band combinations are made of three band ratios for better visualization.

Sarp [60] tested a band ratio of 5/7 in Landsat ETM to remove the effect of shadows,
aiming to detect and interpret linear features easily. In most cases, lineament may be the
boundary of two adjacent lithologies. Therefore, the author examined three band ratios
(5/7, 2/3, 4/5) as an RGB combination to improve visualization in the manual lineament
extraction process. The logic behind selecting these band ratios is: 5/7 discriminates the
hydroxyl bearing minerals as a good indicator for the water effects along the fracture,
2/3 delineates the contrast between dense and sparse vegetation, and 4/5 highlights the
distributed areas in a dark or black tone. Most of the works associated with lineament
extraction using multiband analysis during the last few decades are shown (Table A1).

2.2. Semi-Automated Lineament Extraction

Semi-automated lineament extraction is the process of lineament detection based on
some digital image analysis techniques and visual interpretation. Once the pre-processing
and enhancement are performed, the lineaments are extracted using digital image anal-
ysis and somehow the manual editing of detected lineaments is also conducted by the
user [6,62,70,114]. Concerning manual lineament extraction approaches, this method takes
less time and achieves the result faster; however, it may mix the artifact lineament in
the resultant map. According to [115]’s statement, semi-automated lineament detection
produces more structure than human interpretation, as image processing might be bet-
ter to enhance the subjected image and linear features. In total, five steps are included
in semi-automated lineament extraction: pre-processing, edge detection, edge tracking,
edge linking, and vectorization [116]. A bit of enhancement and filtering operations are
carried out before the image processing; the enhancement and filtering techniques have
been discussed in the previous section. Once the pre-processing is completed, different
algorithms, including object-based classification, segmentation, segment tracing algorithm
(STA), Hough Transform, and PCI Line, are applied [116–118]. Those works which have
been done using the semi-automated method are stated in (Table A1).

Mallast et al. [117] have applied semi-automated lineament extraction, combining
linear filtering and object-based classification on DEM to delineate the lineaments over the
Dead Sea in Israel. The authors operated the 30 × 30 matrix filter and other 5 × 5 s-order
filters in four directions to enhance linear features’ appearance. Then, they ran the object-
based classification on the generated map using segmentation and vectorization. For a
better generation of lineament maps, the authors combined the resultant lineament with
the automated lineament extraction Canny algorithms; also, they used ancillary data such
as geology and drainages to differentiate the significant lineaments from insignificant.
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Lastly, the author concluded that medium resolution DEM is sufficient data for lineament
extraction if it is followed by the auxiliary data and highlighted the capability of semi-
automated lineament extraction.

A novel study by [119] shows the capability of the semi-automated method using
Unmanned Aerial Vehicles (UAVs) for the mapping of geological structures (faults, frac-
tures, and joints). The authors first detected the geological structures over a small area
in the 2D environment, then transferred them into a 3D model to calculate the dip and
dip direction. 79.8% accuracy of semi-automated methods is reported compared to expert
manual digitizing and interpretation methods. Furthermore, the authors estimated that
time is reduced from 7 h to 10 min when the geological structures are mapped using the
semi-automated method instead of the manual method.

Semi-automated tectonic structure mapping has been applied in a research by [120].
The author developed a semi-automated method by using software “CurvaTool” and user
thresholding. Digital Terrain Model (DTM) has been utilized in this study. The author
called this methodology semi-automated because two threshold values are asked from
the user, including the expected orientation of data sets of lineaments and their variability
range. After the edges are extracted, manual editing may be required to achieve a complete
and correct set of lineaments. The results achieved by this developed software were
compared with literature data for validation, and good correspondence between literature
data and CurvaTool was found concerning the geometry and distribution of the lineaments.

A recent work by [118] highlights the objectivity of semi-automated lineament ex-
traction using Object-Based Image Analysis (OBIA) with high-resolution remote sensing
and airborne geophysical datasets. The Southwest of England was tested for this analysis.
Here two complementary methods (top-down and bottom-up) segmentations were applied
using Trimble eCognition software. The results from the two methods are the same. The
results were validated by the data obtained during the survey and field works.

2.3. Automated Lineament Extraction

Automated lineament extraction is performed using computer-assisted software. The
automated processing includes enhancement, filtering, edge detection, and finally, linea-
ment extraction. There are several algorithms developed by scientists which automatically
extract the lineaments, e.g., Hough Transform [23], Lineament Extraction and Stripe Statis-
tical Analysis (LESSA) [121], Segment Tracing Algorithm (STA) [62], Canny Algorithm [69],
ADALGEO [122], TecLines [123], Lineament Detection and Analysis (LINDA) [124]. These
algorithms are designed to operate via a software package and give the final lineament map
in vector format. An automated lineament extraction algorithm takes into consideration
the noise, threshold, size, and orientation of linear features [125].

The automated lineament extraction methods help the analyst to produce the result
in a short time; however, they still will contain some problems. Sometimes the extracted
lineaments or linear features do not correspond to geological structures. Therefore, the
user or analyst is obliged to evaluate the extracted lineaments or integrate the manual
interpretations.

Many considerable works on geological faults and lineament detection exist which use
automated algorithms for diverse remote sensing data, e.g., Landsat MSS [12,80], Landsat
ETM+, OLI [59,76], ASTER [122], DEM [45,115], Radar data [34,126], high spatial resolution
data IKONOS [84] (Table A1).

The earliest automated lineament extraction is the application of Hough transform; a
technique being used to separate specific shape features in an image. The algorithm is com-
monly used for the detection of lines, circles, and ellipses [60]. The Hough transform was
firstly applied by [23] for the detection of straight lines representing geological lineaments
over an area in Sudbury in Canada. The author stated that being relatively unaffected
by gaps in lines and by noise are the main advantages of Hough transform algorithm.
The procedures involved in this study are finding local maxima, application of an inverse
Hough transform, and straight-line profile analysis. Firstly the author pre-processed the
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image using a 3 × 3 median filter, and an algorithm was applied to trace all the edges in
the image; then, Hough transform was applied to the edge image to produce the cumulator
arrays where the brighter tones represented higher counts. Once the local maxima was
selected, the inverse Hough transform, and straight-line profile analysis were done to
obtain the lineaments.

Vassilas et al. [11] also applied the automated lineament extraction using the Hough
transform algorithm; however, the algorithm was modified. The authors first performed
data clustering using a self-organizing map, then binarized the classification, and finally
applied the modified Hough transform in order to identify lineaments around the Vermion
area in Greece. Another study by [45] also shows a Hough transform automated lineament
extraction algorithm. In this study, the author tested three spatial data JERS-SAR, Landsat
TM, and DEM, for automated and manual interpretation. The final lineament map was
obtained using the pre-processing, filtered image in binary format, and finally, the Hough
transform algorithm application.

Another developed automated lineament extraction algorithm is the Segment Tracing
Algorithm (STA) by [62]. This algorithm was commonly used before the year 2010 for the
purpose of geological lineament detection. The STA principle is to delineate a line of pixels
as vector elements by examining local variance of the gray level in digital images and con-
necting the line elements along with their expected directions. In a study, Koike et al. [62]
described that the advantages of the proposed algorithm over usual filtering methods are
its capability to trace only continuous valleys and extract more lineaments parallel to the
sun’s azimuth and those located in shadow areas.

Masoud & Koike [126] performed an updated application of STA to automatically
delineate tectonically significant lineaments with SRTM DEM and geophysical data. In
this study, the authors used 30 arc-second DEM, 1-min gravity anomaly girds, and 2-min
total field magnetic intensity grids covering Egypt. Using the developed techniques,
orientations, and styles of faulting (normal, reverse, and strike-slip types) were detected.

Development in programming languages has also promoted the creation of self-
programmed software regarding the automated geological lineament. One of them is
TecLines, a MATLAB-based toolbox developed by [123]. In this toolbox, the authors have
integrated several functions e.g., filters in both frequency and spatial domains, tensor
voting framework to produce binary edge maps, and the Hough transform algorithm to
extract linear image discontinuities; also B-spline as polynomial curve fitting was used
to eliminate the artificial line segments, which are out of interest. The results have been
compared with Canny and other algorithms, which give considerable results. The TecLines
toolbox has two parts; Line segment detection and Extraction & Line Linking and Merging,
which have been published in two separate works [123,127].

In addition to other algorithms, wight overlay analysis is also considered a suitable
automated geological lineament extraction approach. Abdullah et al. [115] examined an
overlay model technique to produce a predictive fault potential map. The authors consid-
ered four significant factors: drainage patterns, previously mapped faults, lineaments, and
lithological contact layers. The layers have been created using various techniques; among
them, lineament maps were achieved automatically via band 5 of Landsat ETM −7 using
PCI Geomatica software. Then, the layers were weighted considering their importance in
terms of faulting. The final resultant map was classified into five potential zones: very low,
low, moderate, high, and very high. Lastly, the fault line was extracted and compared to
the data obtained from the field; a high correlation is seen between the data, which shows
the technique’s capability.

A recent visual basic-based software LiNDA (Lineament Detection and Analysis) was
developed by [124]. This software is a graphical user interface that automatically detects
and analyzes the linear features from grid data of DEM, gravity, magnetic, and other remote
sensing data. This software’s most useful ability is to calculate strike, dip, and estimate
the fault type with interactive viewing of lineament geometry. The main working scheme
of LINDA includes selection of source grid data, segment detection, and grouping based
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on STA, transformation from segments to lineaments based on B-Splines, identification
of fault type, estimation of strike & dip, construction of fault plane, and the final stage of
lineament display with fault type, rose diagram of strikes, and Schmidt’s net of directional
frequency [124].

Canny edge detection algorithm is another powerful automated linear feature detec-
tion that was developed by [128]. According to this algorithm, image convolution with
a Gaussian kernel is performed to smooth noise and computes the edge strength and
direction for each pixel in the smoothed image. Canny algorithm is based on computing
the gradient magnitude that is above some threshold, identified as edges. In other words,
this algorithm is applied to smooth the image and reduce the noise, and then find the
image gradient to highlight regions with high spatial derivatives.

Consequently, the algorithm goes through these regions and overthrows the pixels
which are not at the maximum. The gradient is still further reduced by hysteresis. Hystere-
sis is utilized to go along the remaining pixels that have not been overthrown. Hysteresis
uses two thresholds. Suppose the magnitude is below the first threshold. In that case,
it is marked to zero (made a non-edge); on the contrary, if the magnitude is above the
high threshold, it is made to an image. In contrast, if the magnitude is between the two
thresholds, then it is set to zero, representing a path from this pixel to a pixel with a gradient
above the threshold [69,79,128].

In recent years, LINE module of Geomatica software has become the common tool for
automated geological lineament extraction [79,84,129–131]. The LINE module’s logic is the
same as the STA algorithm; however, it also worked based on the Canny algorithm in the
first stage of operation. The LINE module of PCI Geomatica extracts the line features. It
gives the output as vector segments by using the six parameters: Filter Radius (RADI) with
recommended values between 3–8, Edge Gradient Threshold (GTHR) with accepted values
between 10–70, Curve Length Threshold (LTHR) with the common value of 10 in most
cases, Line Fitting Error Threshold (FTHR) with the recommended values between 2–5,
Angular Difference Threshold (ATHR) with the suitable angle between 3 to 20 degrees,
and Linking Distance Threshold (DTHR) with efficient values between 10 to 45 [34]. These
parameters are also operated by three stages (in blue), as depicted in (Figure 10).
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3. Discussion and Concluding Remarks

During the last few decades, remote sensing has proven its effectiveness in every
branch of geology, particularly in structural geology, tectonics, lithological mapping, and
earthquake monitoring. Lineament is a geological feature that includes faults, fractures,
joints, and lithological boundaries. These structures can predominantly be determined
from diverse remote sensing data sources and techniques. As such, the determination of
geological lineaments allows the sufficient exploration of mineral deposits associated with
hydrothermal alterations and magmatic processes. In addition, the lineaments can act as
the influencing factors of groundwater potentiality, natural hazard assessment, including
earthquakes and seismicity, and land sliding.

Conventional geological lineament methodology is time-consuming and expensive.
On the other hand, conventional approaches are challenging to apply due to the physi-
cal/geographical condition of the region of study. Remotely sensed mapping of geological
lineaments leads to determine the faults, and their tectonic implication is the substitution of
conventional methods. Manual geological extraction is carried out on the computer screen
or hard copies. The growth of technology has changed the photo interpretation operation
from the early usage of the stereoscope and transparent overlays to a very fast computer
screen with HD displays. Manual geological lineament extraction is directly associated
with the interpreter’s skill and experience and the remote sensing data. As the lineaments,
the sharp and distinctive line between adjacent regions of an image, are seen by human
eyes, therefore, an image with coarse resolution and noise resulting blur decreasing the
chance of appearing edges and/or linear features. To overcome this visual distinctiveness,
different edge enhancement and filtering are applied. Ramli et al. [31] stated the manual
lineament extraction subjectivity as a controversial result, reproductivity, and positioning
in highly vegetated or wide valleys. The authors also described the final lineament map as
integrated with the results from multiple observers to minimize the subjectivity.

Automated and semi-automated approaches of the lineament extraction are performed
using computer-assisted software, which is considered one of this approach’s main ob-
jectivities. The results of the automated and semi-automated techniques depend on the
remote sensing data and the algorithm to be applied. The remote sensing data are varying
regarding the contrast and the resolution. Therefore, various edge enhancement, direc-
tional, and nondirectional filtering are applied to data before the extraction algorithm’s
operation. STA, Hough Transform, LINDA, Curvatool, and TecLines are the standard
algorithm which are utilized for the determination of geological lineaments. Extraction of
lineaments is an easy task using automated algorithms. However, in most situations, the
algorithm generates segmented images containing several spurious lineament pixels that
are not corresponding to geological lineaments. Ramli et al. [31] consider this issue as the
main problem with automatic lineament extraction caused by the filtering.

Furthermore, the automatic algorithms cannot effectively map the geological lin-
eaments from low-contrast and mountain shadows, resulting in a low density of linea-
ments [62]. To overcome this problem, Koike et al. [62] proposed the STA non-filtering
method, which extracts the lineaments based on the entered thresholds. Currently, the
LINE module in PCI Geomatica software is widely used for the lineament extraction, which
is based on the STA and Canny algorithms.

The reviewed literature shows that automated and semi-automated techniques have
been applied to detect most works’ geological lineaments. The author’s experience and
review of the previous literature results disclose that a single technique may not efficiently
determine the exact geological lineaments excluding artifacts. Therefore, it is suggested
to generate a significantly tectonic–geological lineament map using the integration of
automatic and manual techniques. The generated map should be compared and verified
with the previously every possible mapped structure. In case of possibilities, integration
of geophysical data and extensive fieldworks is suggested. Geological lineaments are
extracted for various purposes such as tectonic faults, hydrogeology, urban studies, earth-
quakes. In each case, specific validation and accuracy assessment is applied. In targeting
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the tectonic faults, the generated geological faults are validated using paleoseismic data
or previously mapped faults. The generated map is suggested to be validated with the
land deformation deduced by the seismic activities to get the confidential result. The
seismic activity or land deformation must indicate an active fault. Therefore, geological
lineaments’ distribution might be observed in an area with high activity of seismicity and
land deformation. Assessment of land deformation around the detected lineaments is
performed using GPS stations, conventional geological methods, and remote sensing data.
Radar data, particularly Interferometric Synthetic Aperture Radar (InSAR), can effectively
produce the land deformation assessment maps showing uplift and land subsidence with
their associated velocity.
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Appendix A

Table A1. Geological lineament detection using various techniques between 1975 to 2021.

No Date Method Data Place Reference

1 1975
Manual lineament extraction including high-pass

filtering
Computer-aided automated lineament extraction

Landsat 1
Anadarko basin,
Oklahoma, and

Colorado Plateau
[29]

2 1985 Automated lineament extraction using an algorithm
based on the maximum local brightness gradient Landsat MSS Cevennes,

Southern France [21]

3 1986 Geological lineament extraction using visual
interpretation Landsat MSS Western England [132]

4 1989 Automated lineament extraction following
enhancement filter Landsat 1 Tamilnadu state,

India [125]

5 1990 Automated lineament mapping using Hough
Transform Landsat TM Sudbury, Canada [23]

6 1991 Manual lineament structures mapping using edge
enhancement by high pass filtering in band 5 Landsat TM

Al-Khabt Area,
Southern Arabian

Shield
[75]

7 1992
Automated lineament extraction using LESSA

(Lineament Extraction and Stripe Statistical
Analysis)

Landsat TM Moscow Russia [121]

8 1995 Automated lineament analysis using Segment
Tracing Algorithm (STA)

Landsat TM and
DEM Japan [62]

9 1995 Visual interpretation using OIF, FCC Landsat TM Abruzzi region
Central Italy [111]

10 1998
Manual lineament extraction using band

combination
Automated lineament extraction

Landsat TM Ebro Basin
NE Spain [133]

11 1998
Manual geological lineament extraction using

histogram equalization and stretching, PCA, Prewitt,
and Sobel filters

Landsat TM Central Turkey [70]
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Table A1. Cont.

No Date Method Data Place Reference

12 2000 Geomorphic features detection by visual
interpretation using PCA and FCC Landsat TM Lesvos Greece [28]

13 2001 Automated lineament extraction using the SWIR
bands and GeoAnalysis PCI EASI/PACE Landsat TM Natash area Egypt [134]

14 2001 Manual interpretation for delineation of tectonic
features Landsat ETM Northern half of

Arabian Shield [135]

15 2002 Automated lineament extraction using Hough
transform Landsat TM Vermion Greece [11]

16 2002 Automated lineament extraction using Hough
transform

Landsat TM,
JERS-1 SAR, DEM

Kyungsang basin,
Korea [45]

17 2003 Visual Interpretation using band 4 of Landsat 4 and
234 of IRS

Landsat 4 MSS, IRS
LISS-I

Pranhita-Godavari
basin, India [136]

18 2003
Manual lineament extraction using Weighted
Moving Average (WMA) for fracture pattern

determination
Landsat TM Coastal Cordillera,

Northern Chile [137]

19 2003

Manual lineament extraction using Laplacian, Ford,
Sobel, Kirch, and directional filters.

Automated lineament extraction using Canny
multi-scale edge detector was applied for

verification

Landsat 7 ETM+ Alevrada, Central
Greece [76]

20 2004
Manual lineament extraction using visual

interpretation of anaglyph images for fault system
and geomorphological feature detection

Landsat TM,
ASTER, DEM SW Turkey [58]

21 2004 Manual lineament extracting using FCC, PCA, edge
detection filters Landsat 5–TM Bakircay plain,

western Turkey [90]

22 2004 Active fault mapping using visual interpretation ASTER Bam, SE Iran [27]

23 2004 Discontinuity mapping using automated lineament
extraction in LINE module of PCI Geomatica IKONOS Golbasi, Ankara,

Turkey [84]

24 2005 Automated lineament extraction and analysis after
fusion using LINE module of PCI Geomatica

Landsat ETM+,
ASTER

Suoimuoi
catchment,
Vietnam

[138]

25 2005 Morphotectonic lineament detection using wavelet
analysis DEM Kali basin,

Hungary [114]

26 2006 Automated lineament mapping using segment
tracing algorithm (STA)

Landsat ETM+ and
DEM

Siwa region, NW
Egypt [139]

27 2007 Geological fault detection using object-based
classification DEM and SAR Near lake Magadi,

Kenya [140]

28 2009 Active fault detection using interferometric analysis ERS 1 & 2 Peloponnese,
Greece [46]

29 2010

Enhancement using histogram equalization
technique

and automated lineament extraction using Canny
algorithm and 3D visualization

Landsat TM and
SRTM DEM Sharjah, Emirates [69]

30 2010 Automated lineament mapping shaded relief images
using LINE module of PCI Geomatica DEM

Maran–Sungi
Lembing area,

Malaysia
[129]

31 2011
Automated detection of tectonically significant
lineament using enhancement, segment tracing

algorithm (STA), segment grouping, and connecting
SRTM DEM SW Sinai

Peninsula, Egypt [126]
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Table A1. Cont.

No Date Method Data Place Reference

32 2011 Semi-automated lineament extraction using edge
filtering and object-based classification SRTM DEM Dead Sea, Israel [117]

33 2013
Automated lineament extraction using

panchromatic band using LINE module of PCI
Geomatica

Landsat ETM+ Northern Iraq [33]

34 2013 Fault segmentation using overly analysis Landsat ETM+ Taiz area, Yemen [115]

35 2013 Automated lineament extraction using LINE
module of PCI Geomatica Landsat ETM+ SW part of Taiz

area, Yemen [141]

36 2013 Automated geological lineament extraction using
MATLAB-based code ASTER North Chile [122]

37 2014 Automated tectonic lineament extraction using
MATLAB-based toolbox DEM Andarab,

Afghanistan [123]

38 2014 Semi-automated fault detection UAV - [119]

39 2015 Visual interpretation of lineaments using PCA, FCC,
BR

Landsat ETM+ and
OLI Central Kenya [106]

40 2015
Manual extraction of bedrock lineaments by

consideration of scale, illumination azimuth, and
operation factors

LiDAR DEM Goddo island,
Norway [36]

41 2015 Manual geological structure mapping using
directional filters PALSAR Peninsular,

Malaysia [35]

42 2015 Manual structural mapping using SOBEL directional
filters Landsat ETM+ Western Africa [77]

43 2015 Semi-automated linear feature extraction using
Curvatool DTM Monferrato

domain, NW Italy [120]

44 2015 Automated lineament extraction using enhancement,
filtering, and LINE module of PCI Geomatica Landsat TM Zahret Medien,

Northern Tunisia [131]

45 2016
Automated and manual lineament extraction using

Sobel and Kernal filters and user–suggested
parameters on Panchromatic band

Landsat 8 OLI Northeastern
Cairo, Egypt [59]

46 2016 Automated lineament extraction using LINE
module of PCI Geomatica DEM

Some areas in
Slovakia and the

Czech
[142]

47 2017 Lineament tracing detection using visual
interpretation and aeromagnetic lineaments

Landsat OLI, SPOT
5, and SRTM DEM SW Saudi Arabia [143]

48 2017
Automated lineament extraction using enhancement

and edge detection using LINE module of PCI
Geomatica

Landsat 8 OLI,
ASTER, Sentinel 1,

and DEM

Moroccan Anti
Atlas [34]

49 2017
Automated lineament extraction using a

self-developed program LINDA (Lineament
Detection and Analysis)

Landsat 7 ETM+
and DEM

Eastern Desert of
Egypt [124]

50 2017 Automated geological lineament extraction using
azimuth angle DEM Tamil Nadu, India [144]

51 2017 Semi-automated lineament extraction using
Curvatool and visual interpretation DTM Cuneo, NW Italy [145]

52 2018 Automated lineament extraction using Gaussian
high pass filtering and Hough Transform

Landsat 8 OLI and
DEM

Northern Baoji,
China [9]

53 2018 Manual lineament extraction in scale 1:100,000
Landsat 8 OLI and

ASTER, SRTM,
Cartosat DEM

Konkan region,
India [54]
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No Date Method Data Place Reference

54 2018 Automated lineament extraction based on the
different azimuth angle Cartosat DEM Parvara Basin,

Maharashtra, India [146]

55 2019 Manual lineament extraction aiming to determine
fault using spatial and spectral enhancement

Sentinel 2A and
DEM

Crete Island,
Greece [13]

56 2019 Manual lineament extraction using Laplacian and
Sobel enhancement filters

Landsat ETM+,
OLI, 49LISS IV,

and DEM

Himalayan
segment [78]

57 2019
Automated lineament extraction using multiple

illumination directions using LINE module of PCI
Geomatica

DEM
Khyber-

Pakhtunkhwa,
Pakistan

[130]

58 2019 Semi-automated lineament extraction using
enhancement and object-based classification DEM SW England [118]

59 2020 Manual lineament mapping using PCA and Sobel
filter in four directions on a single band Landsat ETM+

Ikare area,
Southwestern

Nigeria
[105]

60 2020
Automated lineament extraction using dimension

reduction (PCA, ICA, MNF), Laplacian filter, Canny
edge detector, also LINE module of PCI Geomatica

Landsat 8 OLI Yinnetharra,
Western Australia [79]

61 2021 Manual geological lineament extraction using image
fusion approach

Landsat 8 OLI,
ALOS/PALSAR,

SRTM DEM

West Gulf of Suez,
Egypt [18]

62 2021 Automatic lineament extraction using LINE module DEM
Olele area,
Gorontalo,
Indonesia

[38]

63 2021 Automatic lineament extraction using a topographic
fabric algorithm SRTM DEM

Bau Mining
district, Sarawak,
Eastern Malaysia

[19]

64 2021 Automatic lineament extraction using LINE module
Sentinel–1,

ALOS-2, PALSAR
-2

Indo-Burma
ranges of Manopur

region,
Northeastern India

[37]

65 2021 Automatic lineament extraction using LINE module ASTER DEM,
Landsat OLI

Ugwueme,
Southeastern

Nigeria
[147]
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University: Ankara, Turkey, 2003.
113. Sabins, F.F. Remote Sensing: Principles and Interpretation, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1996.
114. Jordan, G.; Schott, B. Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital

terrain models. A case study. Remote Sens. Environ. 2005, 94, 31–38. [CrossRef]
115. Abdullah, A.; Nassr, S.; Ghaleeb, A. Landsat ETM-7 for Lineament Mapping using Automatic Extraction Technique in the SW

part of Taiz area, Yemen. Globa J. Hum. Soc. Sci. Geogr. Geo-Sci. Environ. Disaster Manag. 2013, 13, 35–37.
116. Middleton, M.; Schnur, T.; Sorjonen-ward, P.; Hyvönen, E. Geological lineament interpretation using the Object-Based Image

Analysis Approach: Results of semi-automated analyses versus visual interpretation. Geol. Surv. Finland, Spec. Pap. 2015, 57,
135–154.

117. Mallast, U.; Gloaguen, R.; Geyer, S.; Rüdiger, T.; Siebert, C. Derivation of groundwater flow-paths based on semi-automatic
extraction of lineaments from remote sensing data. Hydrol. Earth Syst. Sci. 2011. [CrossRef]

118. Yeomans, C.M.; Middleton, M.; Shail, R.K.; Grebby, S.; Lusty, P.A.J. Integrated Object-Based Image Analysis for semi-automated
geological lineament detection in southwest England. Comput. Geosci. 2019. [CrossRef]

119. Vasuki, Y.; Holden, E.J.; Kovesi, P.; Micklethwaite, S. Semi-automatic mapping of geological Structures using UAV-based
photogrammetric data: An image analysis approach. Comput. Geosci. 2014. [CrossRef]

120. Bonetto, S.; Facello, A.; Ferrero, A.M.; Umili, G. A tool for semi-automatic linear feature detection based on DTM. Comput.
Geosci. 2015. [CrossRef]

121. Zlatopolsky, A.A. Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features
analysis-experimental results. Comput. Geosci. 1992, 18, 1121–1126. [CrossRef]

122. Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G. A new code for automatic detection and analysis of the lineament patterns for
geophysical and geological purposes (ADALGEO). Comput. Geosci. 2013. [CrossRef]

123. Rahnama, M.; Gloaguen, R. TecLines: A matlab-based toolbox for tectonic lineament analysis from satellite images and DEMs,
part 1: Line segment detection and extraction. Remote Sens. 2014, 6, 5938–5958. [CrossRef]

124. Masoud, A.; Koike, K. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and
shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput. Geosci.
2017, 106, 89–100. [CrossRef]

125. Joshi, A.K. Automatic detection of lineaments from Landsat data. Dig.-Int. Geosci. Remote Sens. Symp. 1989, 1, 85–88. [CrossRef]

http://doi.org/10.1007/s12517-018-4201-3
http://doi.org/10.1016/j.protcy.2012.05.033
http://doi.org/10.11591/ijece.v7i5.pp2574-2580
http://doi.org/10.14419/ijbas.v3i3.2821
http://doi.org/10.1080/01431168508948511
http://doi.org/10.5897/jgmr2019.0310
http://doi.org/10.1016/j.heliyon.2018.e00542
http://www.ncbi.nlm.nih.gov/pubmed/29560456
http://doi.org/10.1111/rge.12117
http://doi.org/10.7753/IJSEA0704.1002
http://doi.org/10.1016/0034-4257(94)00039-P
http://doi.org/10.1016/j.rse.2004.08.013
http://doi.org/10.5194/hess-15-2665-2011
http://doi.org/10.1016/j.cageo.2018.11.005
http://doi.org/10.1016/j.cageo.2014.04.012
http://doi.org/10.1016/j.cageo.2014.10.005
http://doi.org/10.1016/0098-3004(92)90036-Q
http://doi.org/10.1016/j.cageo.2013.03.019
http://doi.org/10.3390/rs6075938
http://doi.org/10.1016/j.cageo.2017.06.006
http://doi.org/10.1109/igarss.1989.567160


Geosciences 2021, 11, 183 31 of 31

126. Masoud, A.A.; Koike, K. Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-
sensed geophysical data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 818–832. [CrossRef]

127. Rahnama, M.; Gloaguen, R. TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs,
part 2: Line segments linking and merging. Remote Sens. 2014. [CrossRef]

128. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986. [CrossRef]
129. Abdullah, A.; Akhir, J.M.; Abdullah, I. Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital

Elevation Model (DEMs) in the Maran-Sungi Lembing Area, Malaysia. Electron. J. Geotech. Eng. 2010, 15, 949–958.
130. Akram, M.S.; Mirza, K.; Zeeshan, M.; Ali, I. Correlation of Tectonics with Geologic Lineaments Interpreted from Remote Sensing

Data for Kandiah Valley, Khyber-Pakhtunkhwa, Pakistan. J. Geol. Soc. India 2019, 93, 607–613. [CrossRef]
131. Gannouni, S.; Gabtni, H. Structural Interpretation of Lineaments by Satellite Image Processing (Landsat TM) in the Region of

Zahret Medien (Northern Tunisia). J. Geogr. Inf. Syst. 2015. [CrossRef]
132. Parsons, A.J.; Yearley, R.J. An analysis of geologic lineaments seen on LANDSAT MSS imagery. Int. J. Remote Sens. 1986, 7,

1773–1782. [CrossRef]
133. Arlegui, L.E.; Soriano, M.A. Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain).

Int. J. Remote Sens. 1998, 19, 3169–3185. [CrossRef]
134. Madani, A. Selection of the Optimum Landsat Thematic Mapper Bands for Automatic Lineaments Extraction, Wadi Natash Area,

South Eastern Desert, Egypt. Asian Conf. Remote Sens. 2001, 2, 5–9.
135. Divi, R.S.; Zakir, F.A. Delineation of Tectonic Features Utilizing Satellite Remote Sensing Data: I-The Southern-Half of the Arabian

Shield. Gondwana Res. 2001, 4, 159–161. [CrossRef]
136. Das, D.P.; Chakraborty, D.K.; Sarkar, K. Significance of the regional lineament tectonics in the evolution of the Pranhita-Godavari

sedimentary basin interpreted from the satellite data. J. Asian Earth Sci. 2003, 21, 553–556. [CrossRef]
137. Leech, D.P.; Treloar, P.J.; Lucas, N.S.; Grocott, J. Landsat TM analysis of fracture patterns: A case study from the Coastal Cordillera

of northern Chile. Int. J. Remote Sens. 2003, 24, 3709–3726. [CrossRef]
138. Hung, L.; Batelaan, O.; Smedt, D.F. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case

study: Suoimuoi tropical karst catchment, Vietnam. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5983, 59830t. [CrossRef]
139. Masoud, A.; Koike, K. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the

hydrogeologic setting in Siwa region, NW Egypt. J. African Earth Sci. 2006, 45, 467–477. [CrossRef]
140. Gloaguen, R.; Marpu, P.R.; Niemeyer, I. Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear

Process. Geophys. 2007, 14, 131–138. [CrossRef]
141. Abdullah, A.; Nassr, S.; Ghaleeb, A. Remote Sensing and Geographic Information System for Fault Segments Mapping a Study

from Taiz Area, Yemen. J. Geol. Res. 2013, 2013, 1–16. [CrossRef]
142. Šilhavý, J.; Minár, J.; Mentlík, P.; Sládek, J. A new artefacts resistant method for automatic lineament extraction using Multi-

Hillshade Hierarchic Clustering (MHHC). Comput. Geosci. 2016. [CrossRef]
143. Benaafi, M.; Hariri, M.; Abdullatif, O.; Makkawi, M.; Al-Shaibani, A. Analysis of lineaments within the Wajid Group, SW Saudi

Arabia, and their tectonic significance. Arab. J. Geosci. 2017, 10. [CrossRef]
144. Raj, N.J.; Prabhakaran, A.; Muthukrishnan, A. Extraction and analysis of geological lineaments of Kolli hills, Tamil Nadu: A study

using remote sensing and GIS. Arab. J. Geosci. 2017, 10. [CrossRef]
145. Bonetto, S.; Facello, A.; Umili, G. A new application of curvatool semi-automatic approach to qualitatively detect geological

lineaments. Environ. Eng. Geosci. 2017. [CrossRef]
146. Das, S.; Pardeshi, S.D. Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: A study based on

four watersheds in Konkan region, India. Spat. Inf. Res. 2018, 26, 47–57. [CrossRef]
147. Enoh, M.A.; Okeke, F.I.; Okeke, U.C. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon

seepage in Ugwueme, South-Eastern Nigeria. Geod. Cartogr. 2021, 47, 34–44. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2011.08.003
http://doi.org/10.3390/rs61111468
http://doi.org/10.1109/TPAMI.1986.4767851
http://doi.org/10.1007/s12594-019-1224-7
http://doi.org/10.4236/jgis.2015.72011
http://doi.org/10.1080/01431168608948967
http://doi.org/10.1080/014311698214244
http://doi.org/10.1016/S1342-937X(05)70675-4
http://doi.org/10.1016/S1367-9120(02)00025-1
http://doi.org/10.1080/0143116031000102520
http://doi.org/10.1117/12.627699
http://doi.org/10.1016/j.jafrearsci.2006.04.005
http://doi.org/10.5194/npg-14-131-2007
http://doi.org/10.1155/2013/201757
http://doi.org/10.1016/j.cageo.2016.03.015
http://doi.org/10.1007/s12517-017-2860-0
http://doi.org/10.1007/s12517-017-2966-4
http://doi.org/10.2113/gseegeosci.23.3.179
http://doi.org/10.1007/s41324-017-0155-x
http://doi.org/10.3846/gac.2021.12099

	Introduction 
	Remote Sensing Techniques 
	Manual Lineament Extraction 
	Enhancement Techniques 
	Spatial Convolution Filtering 
	Multiband Analysis 

	Semi-Automated Lineament Extraction 
	Automated Lineament Extraction 

	Discussion and Concluding Remarks 
	
	References

