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Abstract: We present a generalized Geertsma solution that can consider any number of finite-thick-
ness layers in the subsurface whose mechanical properties are different from layer to layer. In addi-
tion, each layer can be assumed either isotropic or anisotropic. The accuracy of the generalized so-
lution is validated against a numerical reference solution. The generalized Geertsma solution is fur-
ther extended by a linear superposition framework that enables a response simulation due to an 
arbitrarily-distributed non-uniform pressure anomaly. The linear superposition approach is tested 
and validated by solving a realistic synthetic model based on the In Salah CO2 storage model and 
compared with a full 3D finite element solution. Finally, by means of a simple inversion exercise 
(based on the linear superposition approach), we learn that the stiffnesses of cap rock and reservoir 
are the most influencing parameter on the inversion result for a given layering geometry, suggesting 
that it is very important to estimate high-confidence mechanical properties of both cap rock and 
reservoir. 

Keywords: generalized Geertsma solution; CO2 storage; surface deformation; anisotropic subsur-
face 
 

1. Introduction 
Disturbing underground pore pressure by fluid injection or production may induce 

significant changes in stress and strain fields in a subsurface reservoir, which can then 
propagate to neighboring layers both down- and upwards and even to ground surface or 
seabed [1]. Such a mechanical behavior can be well described by the poro-elasticity theory 
(e.g. [2,3]) and have been used for characterization and monitoring of subsurface geome-
chanical behavior in many different areas of engineering and geoscience (e.g., [4–6]). The 
same mechanical behavior is relevant for understanding geomechanics related to geolog-
ical CO2 storage sites. In particular, the interferometric synthetic aperture radar (InSAR) 
data acquired at the In Salah CO2 storage project in Algeria have been successfully applied 
to understand the pressure front evolution and hydraulic communication network in the 
subsurface during the whole period (around 7 years) of CO2 injection (e.g., [7–10]). In ad-
dition, Hu et al. [11] showed how the change in temperature and pressure may influence 
CO storage capacity, which is also one of the main parameters together with the geome-
chanical integrity in the context of CO2 storage characterization and monitoring. 

When relating surface deformation to the change in pore pressure, stress, and strain 
in the subsurface, we need a well-developed solution-frame that can calculate the quanti-
tative dependency between the surface deformation and disturbed pore pressure under 
realistic geological environment e.g., heterogeneous stratigraphy, arbitrarily-distributed 
pressure anomaly. The Geertsma’s solution [2] is well known to provide good insights (as 
a first-order approximation) on how ground deformation behaves, when a fluid is injected 
into or produced yet only from an isotropic homogeneous subsurface. In addition, the 
Geertsma’s solution is relevant only for a disk-shaped reservoir with a uniform pressure 
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perturbation. Du and Olson [12] extended the Geertsma’s solution by numerically inte-
grating the nucleus of poro-elastic strain over a rectangular prism so that the spatial 
change of pore pressure can be taken into account, followed by superposing results from 
each rectangular prism. Fokker and Orlic [13] presented an advanced semi-analytical so-
lution that is based on a boundary element method and can consider a multi-layered 
visco-elastic subsurface. The semi-analytical solution can be faster than e.g., finite element 
approach, but is still rather slow compared to the analytical Geertsma's solution. Tempone 
et al. [14] extended the Geertsma’s solution a bit further by adding a rigid layer beneath a 
compacting reservoir, and also reported a correction to an error found in [15]. Lately, 
Mehrabian and Abousleiman [16] not only provided a good overview of the analytical 
solutions developed further to address the limitations of the Geertsma’s solution, but also 
presented a poro-elasticity framework that can simulate an isotropic layered-stratigraphy. 

The current study makes further improvements in such a Geertsma type problem by 
deriving a more-generalized analytical solution that can consider any number of finite-
thickness layers, each of which can have not only different but also anisotropic stiffnesses. 
These novelties are not found in any of the previous studies mentioned above. The ana-
lytical solution requires a numerical Hankel transform, whose accuracy and efficiency are 
also discussed. The accuracy of the analytical solution is validated in comparison with a 
finite element solution. Then, we discuss the importance of the heterogeneity in the layers 
through a set of synthetic models. In addition, we discuss the possibility of applying the 
analytical solution for a spatially-varying pressure anomaly, not only a single cylinder-
shaped constant pressure. The approach is based on a linear superposition and should be 
efficient, since it avoids the numerical integration presented by Du and Olson [12]. At the 
end, we apply the analytical solution to analyze a realistic synthetic surface heave data 
that is made based on the In Salah CO2 storage site in Algeria. 

2. Analytical Solution for Anisotropic Layered Subsurface 
Here, we present an analytical solution for displacement field for an anisotropic lay-

ered subsurface subjected to fluid-induced pore pressure disturbance in a reservoir layer. 
The anisotropy herein refers to a particular case of vertically-transverse isotropic (VTI) 
stiffness, as shown in Figure 1. Note that the anisotropy (horizontal-to-vertical velocity 
ratio) can be applied individually to S- and P-wave velocities and each layer may have 
different velocity ratios. The analytical solution is derived for a constant pressure change 
within a reservoir layer, and the pressure change is of cylinder shape i.e., axis-symmetric 
problem. The reservoir thickness can be any value, not only very small as in [2]. In addi-
tion, any number of VTI or isotropic layers can be taken into account. Therefore, the ana-
lytical solution in the present study can be considered as a generalized Geertsma solution 
(GGS). 
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Figure 1. VTI anisotropic subsurface model consisting of N layers and subjected to fluid-induced 
constant pore pressure p(r, z) (darker-shaded) of radius R in an n-th layer. Note ρ, Vs, Vst, Vp, Vpt, 
and h are mass density, radial/horizontal and vertical S-wave velocities, radial/horizontal and ver-
tical P-wave velocities, and layer thickness, respectively. Axis-symmetric coordinates (r, z) are 
used and z-positive is upwards. 

To derive the analytical solution for the VTI medium shown in Figure 1, we apply 
the following axis-symmetric governing equation in cylindrical coordinate (r, z) and 
Hankel transforms with k being the transform parameter (or wavenumber). 

Governing equation: ቈ൜𝜆 + 2𝐺 ⋅⋅ 𝐺௧ൠ 𝜕ଶ𝜕𝑟ଶ + ൜𝐺௧ ⋅⋅ 𝜆௧ + 2𝐺௧ൠ 𝜕ଶ𝜕𝑧ଶ + ൜ ⋅ 𝜆௧ + 𝐺௧𝜆௧ + 𝐺௧ ⋅ ൠ 𝜕ଶ𝜕𝑟𝜕𝑧  
   + ൜𝜆 + 2𝐺 ⋅⋅ 𝐺௧ൠ ଵ௥ డడ௥ + ቄ ⋅ ⋅𝜆௧ + 𝐺௧ ⋅ቅ ଵ௥ డడ௭ − ቄ𝜆 + 2𝐺 ⋅⋅ ⋅ቅ ଵ௥మቃ ቄ𝑢௥𝑢௭ቅ = −𝛻ሺ𝛼𝑝ሻ 

(1)

Hankel transforms: 𝑢௥ = ׬ 𝑈ଵஶ଴ ሺ𝑧ሻ𝑘𝐽ଵሺ𝑘𝑟ሻ𝑑𝑘 : radial displacement 𝑢௭ = ׬ 𝑈ଷஶ଴ ሺ𝑧ሻ𝑘𝐽଴ሺ𝑘𝑟ሻ𝑑𝑘 : vertical displacement 𝑝 = ׬ 𝑃ஶ଴ ሺ𝑧ሻ𝑘𝐽଴ሺ𝑘𝑟ሻ𝑑𝑘 : pore pressure 
(2)

In the equations above, ur and uz are the radial and vertical displacements, respec-
tively; p is the pressure anomaly of radius R; ∇ is the gradient operator; (λ, G) and (λt, Gt) 
are the two pairs of the Lamé first parameter and shear modulus for the horizontal (or 
radial) and vertical directions, respectively; α is the Biot coefficient. It is also noted that 
the Lamé and shear moduli are related to the elastic P- and S-wave velocities as below by 
Park and Kaynia [17]: 𝑉௣ଶ = ఒାଶீఘ , 𝑉௦ଶ = ఘீ, 𝑉௣௧ଶ = ఒ೟ାଶீ೟ఘ , 𝑉௦௧ଶ = ீ೟ఘ  (3)

where ρ, Vs, Vst, Vp, and Vpt are, respectively, mass density, radial/horizontal and vertical 
S-wave velocities, radial/horizontal and vertical P-wave velocities of each layer. Formally 
applying the Hankel transforms defined above to the governing equation, we obtain the 
governing equation in the k-z domain as below: −ሺ𝜆 + 2𝐺ሻ𝑘ଶ𝑈ଵ + 𝐺௧ 𝑑ଶ𝑈ଵ𝑑𝑧ଶ − 𝑘ሺ𝜆௧ + 𝐺௧ሻ 𝑑𝑈ଷ𝑑𝑧 = −𝑘𝛼𝑃 −𝐺௧𝑘ଶ𝑈ଷ + ሺ𝜆௧ + 2𝐺௧ሻ 𝑑ଶ𝑈ଷ𝑑𝑧ଶ + ሺ𝜆௧ + 𝐺௧ሻ𝑘 𝑑𝑈ଵ𝑑𝑧 = 𝜕𝛼𝑃𝜕𝑧  

(4)

The solution to this linear system of ordinary differential equations can be obtained 
through a standard algebra and the final results are given below: 𝑈ଵ = 1𝑘൫𝜌𝑉௣ଶ൯ 𝛼𝑃 + 𝐴𝑒௞భ௭ + 𝐵𝑒ି௞భ௭ + 𝐶𝑒௞మ௭ + 𝐷𝑒ି௞మ௭ 𝑈ଷ = 𝐴𝜙ଵ𝑒௞భ௭ − 𝐵𝜙ଵ𝑒ି௞భ௭ + 𝐶𝜙ଶ𝑒௞మ௭ − 𝐷𝜙ଶ𝑒ି௞మ௭ 

(5)
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where: 

𝜙±ଵ,±ଶ = ൫𝑉௣௧ଶ − 𝑉௦௧ଶ ൯ ൬𝑘ଵ,ଶ𝑘 ൰𝑉௦௧ଶ − 𝑉௣௧ଶ ൬𝑘ଵ,ଶ𝑘 ൰ଶ  

൬𝑘ଵ,ଶ𝑘 ൰ = ±ඩ12 ൣ𝑉௣ଶ − ൫𝑉௣௧ଶ − 2𝑉௦௧ଶ ൯൧𝑉௦௧ଶ ± ඨቆൣ𝑉௣ଶ − ൫𝑉௣௧ଶ − 2𝑉௦௧ଶ ൯൧𝑉௦௧ଶ ቇଶ − 4 𝑉௣ଶ𝑉௣௧ଶ  

(6)

In addition, there are four unknown coefficients of A, B, C, and D for each layer, 
which can be determined by satisfying the interface conditions between adjacent layers 
(i.e., displacement continuity and traction equilibrium). Furthermore, by imposing the 
zero-displacement boundary conditions at the bottom of the last finite-thickness layer, we 
can also simulate the rigid layer beneath a compacting reservoir studied by Tempone et 
al. [14]. The related two traction components (Srz and Szz) at the layer interfaces can also 
be written in the k-z domain as below: 

   𝑆௥௭ = 𝜌𝑉௦௧ଶ ሾሺ+𝑘ଵ − 𝑘𝜙ଵሻ𝐴𝑒௞భ௭ − ሺ𝑘ଵ − 𝑘𝜙ଵሻ𝐵𝑒ି௞భ௭ + ሺ𝑘ଶ − 𝑘𝜙ଶሻ𝐶𝑒௞మ௭ − ሺ𝑘ଶ − 𝑘𝜙ଶሻ𝐷𝑒ି௞మ௭ሿ 
       𝑆௭௭ = +𝜌ൣ൫𝑉௣௧ଶ − 2𝑉௦௧ଶ ൯𝑘 + 𝑘ଵ𝜙ଵ𝑉௣௧ଶ ൧ሺ𝐴𝑒௞భ௭ + 𝐵𝑒ି௞భ௭ሻ + 𝜌ൣ൫𝑉௣௧ଶ − 2𝑉௦௧ଶ ൯𝑘 + 𝑘ଶ𝜙ଶ𝑉௣௧ଶ ൧ሺ𝐶𝑒௞మ௭ +𝐷𝑒ି௞మ௭ሻ − ఈ௉ൣ௏೛మି൫௏೛೟మ ିଶ௏ೞ೟మ ൯൧௏೛మ  

(7)

Once we determine the four coefficients of A, B, C, and D for each layer, we can then 
obtain the final displacement field in the full-space (r, z) domain by performing numeri-
cally the Hankel transforms defined above. In theory, the integrations above should be 
done from 0 to infinite along parameter k. In practice, however, we should define the up-
per limit of parameter k (denoted as kmax) so that the numerical calculation can be termi-
nated. Throughout an auxiliary numerical experiment, it is found that kmax is inversely 
proportional to the total thickness of the overburden (denoted as Hob), and the criterion of 𝑘୫ୟ୶ ≥ 10/𝐻௢௕ is suggested. 

It is useful to notice that the horizontal S-wave velocity (Vs) is not showing up in the 
final expression of the analytical solution. Therefore, if we know the vertical S-wave ve-
locity (Vst), we need to measure the anisotropic factor only for the P-wave velocity (Vp, Vpt). 
It is also important to remember that the solution derived above is valid only for VTI lay-
ers, not for an exact isotropic layer (i.e., Vp = Vpt), because the linear independence among 
the four unknown coefficients are not valid for the exact isotropic case. For the latter, we 
need to use the corresponding solution for the isotropic medium, which is presented by 
Mehrabian and Abousleiman [16]. Therefore, if both anisotropy and isotropy exist in a 
subsurface media, the two solutions are used jointly. Alternatively, to simulate an iso-
tropic layer, we may specify the ratio of horizontal-to-vertical velocities as ~1 but not ex-
actly 1.0, e.g., 1.001, which also produces almost the same result as that by the exact iso-
tropic layer solution. 

Correction to Mehrabian and Abousleiman  
In addition to the analytical solution for the VTI medium derived above, we also 

write down the solution for the isotropic medium derived by Mehrabian and Abouslei-
man [16], for the completeness of the current manuscript. It should also be noted that a 
few critical typos in Mehrabian and Abousleiman [16] are found through [18]. The cor-
rected solutions for U1, U3, Srz, and Szz for the isotropic layer are given in the following 
form, using the two same parameters of a and cm as in [16]: 𝑈ଵ = 𝑐௠𝑃𝑘 + 𝑎𝑧ሺ𝐴𝑒௞௭ − 𝐵𝑒ି௞௭ሻ + 𝐶𝑒௞௭ + 𝐷𝑒ି௞௭ 𝑈ଷ = ൬𝑎 + 1𝑘 − 𝑎𝑧൰ 𝐴𝑒௞௭ − ൬𝑎 + 1𝑘 + 𝑎𝑧൰ 𝐵𝑒ି௞௭ − 𝐶𝑒௞௭ + 𝐷𝑒ି௞௭ 𝑆௥௭ = 2𝐺 ൤൬𝑎𝑘𝑧 − 12൰ 𝐴𝑒௞௭ + ൬𝑎𝑘𝑧 + 12൰ 𝐵𝑒ି௞௭ + 𝑘𝐶𝑒௞௭ − 𝑘𝐷𝑒ି௞௭൨ 

(8)
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𝑆௭௭ = 2𝐺 ቂቀ1 − 𝑎𝑘𝑧 + 𝜈1 − 2𝜈ቁ 𝐴𝑒௞௭ + ቀ1 + 𝑎𝑘𝑧 + 𝜈1 − 2𝜈ቁ 𝐵𝑒ି௞௭ − 𝑘𝐶𝑒௞௭− 𝑘𝐷𝑒ି௞௭ − 𝑐௠𝑃ቃ 
where 𝑎 = ଵଶሺଵିଶఔሻ, 𝑐௠ = ఈሺଵିଶఔሻଶீఔ  (P modulus), and ν is the Poisson’s ratio. Then, following 
the same Hankel transform procedure, we can calculate the displacement field for an iso-
tropic layered subsurface subjected to the same type of axis-symmetric pore pressure dis-
turbance of finite radius and thickness. 

3. Validation 
In order to validate the analytical solutions for the VTI anisotropic layered medium 

developed in this study, we solve a set of numerical examples and compare the results 
with a finite element solution via COMSOL Multiphysics™ (Solids Mechanics Module, 
version 5.3.0.316). Table 1 shows the reference isotropic model consisting of 3 layers. Layer 
2 is the reservoir where we apply a 500 m-radius pore pressure anomaly of 10 MPa (fluid 
injection scenario). Note that a constant Poisson’s ratio is applied to all the three layers of 
the reference isotropic model. For simplicity, we apply a constant horizontal-to-vertical 
velocity ratio not only to all the layers, but also both of P- and S-waves. However, we 
consider two different velocity anisotropy ratios of 0.8 and 1.2 and compare the results 
with those obtained for the reference isotropic model. Figure 2 shows the results by com-
paring the radial and vertical displacements at surface obtained from the analytical (de-
noted as GG) and FE solutions for the three different horizontal-to-vertical velocity ratios. 
First, we notice that the agreement between the analytical and FE solutions is almost per-
fect, which confirms that the analytical solution derived in this study and the implemen-
tation are correct. In addition, we see that the anisotropic models with ±20% horizontal-
to-vertical velocity contrast (blue and yellow curves/dots) behaves quite differently in 
comparison to the reference isotropic model (red curves/dots). Therefore, it is suggested 
to apply the VTI medium model, when relevant. 

Table 1. Layering and material properties for the reference isotropic model for validation. Note 
that we apply the velocity ratio of horizontal to vertical for the VTI anisotropic models as specified 
in Figure 2. 

Layer. Thickness 
[m] 

Mass Density 
[kg/m3] 

z-dir. S-Wave Velocity 
[m/s] 

z-dir. P-Wave Velocity 
[m/s] 

1 1500 1000 1500 2598 
2 100 1500 1000 1732 
3 ∞ 2000 2000 3464 
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(a) (b) 

Figure 2. Comparison of surface (a) radial and (b) vertical displacements calculated by the analytical (GG, solid) and FE 
(circle) solutions for a VTI medium for different anisotropy ratio of horizontal to vertical velocities (indicated at the end 
of each legend). Note that the vertical axis in the plot has the positive upward convention. 

4. Representation of Arbitrarily-Distributed Pressure Anomaly 
The analytical solutions presented above provide the surface deformations for a sim-

ple case where the pressure anomaly is uniform and cylindrical. However, the pressure 
in a real reservoir is typically non-uniformly and varies in space (Figure 3a). In practice, 
such distribution can be described via a series of square-cuboid grids. Such a grid can be 
represented approximately by an equivalent cylinder (or drum) whose volume is the same 
as the square-cuboid grid (See Figure 3b). Then, we can describe arbitrarily-distributed 
pressure anomaly of any shape by applying the linear superposition of the contribution 
from as many square-cuboid grids as needed, for each of which we apply the analytical 
solution presented in the current study and using the equivalent radius (Req). The linear 
superposition can be expressed as below: 

𝑢௭,௜ = ෍ 𝑔௭,௜௝𝑝௝௃
௝ୀଵ  (9)

where uz,i is the total vertical displacement at point i, gz,ij is a vertical displacement at point 
i due to a unit-magnitude pressure anomaly at grid j (i.e., so-called fundamental or 
Green’s function), and pj is the pressure magnitude at grid j. When we have the displace-
ment at multiple points (Figure 3a), then we can also write the linear superposition ex-
pression in the following matrix form: 𝐔௭ = 𝐆௭𝐏 (10)

with: 𝐔௭ = ൣ𝑢௭,ଵ, 𝑢௭,ଶ, … 𝑢௭,௜, … , 𝑢௭,ூ ൧், 𝐏 = ൣ𝑝ଵ, 𝑝ଶ, … , 𝑝௝, … , 𝑝௃ ൧், 

𝐆௭ = ൥𝑔௭,ଵଵ ⋯ 𝑔௭,ଵ௃⋮ ⋱ ⋮𝑔௭,ூଵ ⋯ 𝑔௭,ூ௃ ൩ 
(11)

Note that the linear superposition expression in matrix form can also be used for an 
inversion problem where we invert known (or measured) surface displacement (Uz) to 
estimate pressure anomaly distribution (P). In this case, it is assumed that the subsurface 
model (layering and stiffness or the Green’s function matrix Gz) is known. 
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(a) (b) 

Figure 3. (a) Schematic description of arbitrarily-distributed pressure anomaly. We assume that the pressure anomaly is 
discretized into J number of square-cuboid grids, to each of which a value of pressure pj is specified. The vertical displace-
ment at a point (say uz,i) on the surface can be obtained by linearly summing up the contribution from all the pressure 
grids. (b) Illustration of an equivalent cylinder (radius Req = Lre/√π) to a square-cuboid of length Lre. Note both of the square-
cuboid and the equivalent cylinder have the same height of Hre. 

Since the equivalent-radius representation is an approximation, we need to know its 
performance and limitation so that we can decide Req to be used without introducing any 
significant error in the calculation. To investigate this issue, we perform a parameter study 
by using FE simulation (COMSOL Multiphysics™, version 5.3.0.316). Namely, we com-
pare two FE solutions obtained (1) by the exact square-cuboid shape pressure anomaly 
and (2) by the equivalent-radius cylinder shape pressure anomaly, respectively, with var-
ying the lateral length of reservoir pressure anomaly (length, Lre). For the simplicity in 
calculation, we simulate an isotropic homogeneous half-space of 1 GPa shear modulus 
and 0.25 Poisson’s ratio. Figure 4 shows the results of the parameter study by plotting the 
relative difference between the two FE solutions versus the ratio of the radial coordinate 
to the overburden thickness (Hob). Note that in the parameter study we fix the pressurized 
reservoir thickness (Hre) to be 100 m, while we consider four different overburden thick-
nesses of 500m, 1000m, 1500m, and 2000 m. In addition, for each overburden thickness, 
we vary the ratio of Lre/Hob from 0.5 to 2. As shown in Figure 4, the relative difference 
between the two FE solutions depends on all the parameters used in the current sensitiv-
ity. It is also noticed that the dependency is most influenced by the ratio of Lre/Hob, and the 
cylinder-shape approximation for a square-cuboid-shape constant pressure anomaly 
works very well (<1% relative error) as long as Lre/Hob ≤ 1.4–1.5 (depending on reservoir 
depth). For the practical purpose, we choose the condition of Lre/Hob ≤ 1.0 (i.e., Req/Hob ≤ 
1/√π) in order to guarantee the accurate displacement calculation at the top surface for a 
square-cuboid shape pressure via the equivalent cylinder shape pressure. The purple 
dashed lines in Figure 4 correspond to the upper limit of the criterion (i.e. Lre/Hob = 1.0). 
However, note that the real size for Lre (i.e., size of square-cuboid grids) to be used is also 
depending on the spatial variation of pore pressure disturbance in the subsurface e.g., 
sharp variation requiring smaller Lre. 
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(a) (b) 

  
(c) (d) 

Figure 4. Relative difference between the two FE solutions by the exact rectangular-cuboid shape and the equivalent-
cylinder shape as function of the ratio of Lre/Hob (ranging from 0.5 to 2 as shown in each legend), and for four different 
overburden thicknesses Hob of (a) 500 m, (b) 1000 m, (c) 1500 m, and (d) 2000 m.  

5. Synthetic Model Study Inspired by in Salah CO2 Storage Dataset 
Here, we apply the linear superposition approach presented in the previous section 

to a realistic synthetic model and evaluate the performance by comparing with a full 3D 
FE solution. Furthermore, we also utilize the same superposition approach in the context 
of the simple inversion problem described earlier to explore the influence of the subsur-
face properties on the inverted pressure. For these purposes, we use an available FE model 
that was made for the history-matching study of the injection data and surface heave of 
the In Salah storage site [3]. To make things simpler, we remove the vertical fault (F12) at 
Well KB502, and the pressure build-up within the fault from the FE simulation. Namely, 
we take only the pressure build-up in the reservoir layer of 20 m thickness from the FE 
simulation results, and produce a synthetic surface deformation data by means of the sim-
plified FE model. Then, using the superposition approach combined with the analytical 
solution derived in the present study, we invert for the reservoir pressure. Table 2 shows 
the layering and material properties for the In Salah model simplified from [3]. In addi-
tion, Figure 5 shows the reservoir pressure change calculated by Bjørnarå et al. [3] in a 
grid setting of 1000 m × 1000 m × 20 m (i.e., Lre = 1 km and Hre = 20 m for each square-cuboid 
grid), covering a large area of 25 km × 25 km. 
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Table 2. Layering and material properties for In Salah-inspired isotropic synthetic model (after 
Bjørnarå et al. [3]). 

Layer Thickness 
[m] 

Young’s Modulus 
[GPa] 

Poisson’s Ratio 
[-] 

Remark 

1 900 3 0.25 Shallow aquifer 
(Cretaceous) 

2 750 5 0.30 
Cap rock (Visean 

mudstone) 
3 130 2 0.30 Lower cap rock 
4 20 20 0.25 Tight sandstone 
5 20 9 0.15 Reservoir 
6 ∞ 15 0.30 Devonian (underburden) 

 
Figure 5. Distribution of reservoir pressure change for an In Salah-inspired synthetic model, sim-
plified after Bjørnarå et al. [3]. Note that the size of each grid is 1000 m × 1000 m and each grid is 
represented by a filled circle. 

First, we re-calculate the surface deformation resulting from the reservoir pressure 
build-up shown in Figure 5 yet now by using the linear superposition approach with the 
analytical solution derived earlier in order to check if the linear superposition approach 
produces the same results as the simplified FE model. The comparison of the results is 
shown in Figure 6. It is clearly seen that the two results look almost identical to each other. 
Note that the surface deformation in Figure 6 is plotted in a grid setting of 125 m × 125 m. 
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(a) (b) 

Figure 6. Surface vertical displacement resulting from an In Salah-inspired reservoir pressure shown in Figure 5: (a) FE 
solution; (b) Generalized Geertsma (GG) solution. Note that the vertical displacement in mm scale is plotted via surface 
plot and the grid size is 125 m × 125 m. 

The next task is to invert the surface deformation calculated by the FE model (i.e., 
shown in Figure 6a) by means of the inversion idea explained earlier. In our inversion 
study here, we introduce some changes in the layer stiffness to see the impact of such 
stiffness change on the inverted reservoir pressure build-up. Namely, we increase the stiff-
ness of each layer by 10% in the three different following scenarios. In Scenario 1, we in-
crease the stiffnesses of Layers 1–3, while keeping the other layers’ stiffnesses unchanged. 
In Scenario 2, we increase the stiffnesses of only Layers 4 and 5 and in Scenario 3, for Layer 
6 only. In addition, we also run the inversion without changing any stiffness as Scenario 
0. The inversion results for all the four scenarios are plotted in Figure 7 in terms of inverted 
pressure (left panels) and difference between inverted and true (right panels). It is clearly 
shown that the stiffness change has noticeable impact on the inverted pressure, and the 
impact is the most significant (more than 1 MPa or 10%) when the stiffnesses of cap rock 
and reservoir are changed (Scenario 2 and shown in Figure 7e,f). This observation illus-
trates that it is very important to estimate the high-confidence stiffnesses of cap rock and 
reservoir in comparison to the other layers in the subsurface. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 7. (left panels) Inverted reservoir pressure and (right panels) difference between inverted and true pressure: (a,b) 
for Scenario 0 with all the stiffness as in Table 2; (c,d) for Scenario 1 with 10% higher-stiffness in overburden; (e,f) for 
Scenario 2 with 10% higher-stiffness in cap rock and reservoir; (g,h) for Scenario 3 with 10% higher-stiffness in underbur-
den. Note that the color range for the plots in the left panels is fixed between 0 and 10, and any higher or lower value is 
saturated and not showing correctly. 
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6. Conclusions 
We have presented a generalized Geertsma solution that can consider any number of 

layers in the subsurface whose properties and thicknesses can be different from layer to 
layer. In addition, each layer can be VTI anisotropic, with which more realistic stiffness 
can be simulated depending on condition of in situ stress or sediment bedding plane. The 
accuracy of the newly-derived analytical solution is validated with respect to an FE-based 
reference solution. Furthermore, it is found that the Hankel transform to be numerically 
performed can be done via a definite integral whose upper limit can be determined opti-
mally as inversely proportional to the overburden thickness (i.e., 𝑘୫ୟ୶ ≥ 10/𝐻௢௕). The 
generalized Geertsma solution is then applied to a linear superposition framework via 
square-cuboid-shaped grids so that we can calculate arbitrarily-distributed pressure 
anomaly cases, not only the simple case of a constant pressure anomaly of cylinder shape. 
Furthermore, we have also defined the condition that the lateral length of a square-cuboid 
should be shorter than the overburden thickness (i.e., Lre/Hob ≤ 1.0) in order to guarantee 
the accurate displacement calculation at the top surface for a square-cuboid shape pres-
sure via the equivalent cylinder shape pressure. The performance of this linear superpo-
sition approach is tested by solving a realistic synthetic model based on the In Salah CO2 
storage site, simplified by removing the vertical fault in Well KB502. Finally, we look at 
the influence of subsurface stiffness on inverted pressure by means of a simple inversion 
based on the linear superposition approach. It is learned that the stiffnesses of cap rock 
and reservoir are the most influencing parameters on the inversion result, suggesting that 
it is very important to estimate the mechanical properties of cap rock and reservoir with 
high accuracy (i.e., low uncertainty). 

The next step to follow up among many possibilities would be that we apply the 
solution approach presented in the current study to real data inversion of the In Salah 
storage with taking into account known fault structure such as F12. For this purpose, we 
may have to improve a limitation of the current approach that the subsurface should be a 
horizontally-layered medium and cannot consider any tilted structure (e.g., faults with 
different properties from layers). Tackling this limitation is our immediate task to pursue. 
Finally, since the analytical solution approach is fast, its application to machine learning-
based inversion is also a desired task to follow up. 
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Nomenclature 
r radial coordinate [m] 
z vertical coordinate [m] 
ρ mass density [kg/m3] 
Vp P-wave velocity in horizonal direction [m/s] 
Vs S-wave velocity in horizonal direction [m/s] 
Vpt P-wave velocity in vertical direction [m/s] 
Vst S-wave velocity in vertical direction [m/s] 
h layer thickness [m] 
R radius of pressure anomaly [m or km] 
λ Lamé first parameter in horizontal direction [Pa] 
G Shear modulus in horizontal direction [Pa] 
λt Lamé first parameter in vertical direction [Pa] 
Gt Shear modulus in vertical direction [Pa] 
ur radial displacement [m] 
uz vertical displacement [m] 
σrz traction in radial direction on z-plane 
σzz traction in vertical direction on z-plane 
p pore pressure anomaly [Pa] 
U1 horizontal displacement in Hankel transform domain [m] 
U3 vertical displacement in Hankel transform domain [m] 
Srz traction in radial direction on z-plane in Hankel transform domain 
Szz traction in vertical direction on z-plane in Hankel transform domain 
P pore pressure anomaly in Hankel transform domain [Pa] 
k Hankel transform parameter in radial direction [1/m] 
∇ gradient operator 
α Biot coefficient 
A,B,C,D unknown coefficients to be determined for each layer 
k1,2 Hankel transform parameter in vertical direction [1/m] 
f1,2 vertical-to-horizontal displacement ratio in Hankel transform domain [-] 
kmax upper limit of Hankel transform parameter k 
Hob total thickness of whole overburden 
cm P modulus [Pa] 
ν Poisson’s ratio 

gz,ij 
Green’s function for vertical displacement at point i due to a unit-magnitude pressure 
anomaly at grid j [m] 

Uz column vector of vertical displacements on top surface grid [m] 
P column vector of pore pressure anomalies within reservoir grid [Pa] 
Gz Green’s function matrix [m/Pa] 
Req equivalent radius to a square rectangular of Lre×Lre 
Lre horizontal edge length of a square-cuboid within reservoir grid 
Hre height of a square-cuboid within reservoir grid 
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