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Abstract: The boreal winter 2019/2020 was very irregular in Europe. While there was very little
snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the
Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many
places. Since the last severe spring floods occurred in the region in 2018, this raises the question
of whether more frequent occurrences can be expected in the future. To assess the variability of
snowmelt related flooding we used snow cover maps (derived from the DLR’s Global SnowPack
MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight
unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess
the development of the parameters, and the interdependencies of the parameters were examined
with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to
this region. We noticed an extraordinary variability in the duration of snow cover. If this extends
well into spring, rapid air temperature increases leads to enhanced thawing. According to the last
flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood
types based on their special hydrometeorological and snow situation and simulate them with the
snowmelt runoff model (SRM).

Keywords: remote sensing; snow parameters; snow variability; MODIS; snow hydrology; spring
flood; Sapmi; Mann-Kendall test; snowmelt runoff model

1. Introduction

The hydroclimatic regime in the Arctic and sub-Arctic is predominantly nival and
spring floods triggered by snowmelt occur every year [1-4]. Spring floods are defined as the
characteristic high discharge events that occur after prolonged low flows over the winter.
Characteristics of spring floods are discharge peaks demonstrating rapid acceleration in
discharge followed by distinct kurtosis; these indicate the sudden onset of widespread
snowmelt in spring [5]. As a major component of the cryosphere, the seasonal snow cover
and its alteration is a clearly visible indication of changing climatic conditions.

Climate change has and will continue to result in two effects: shorter winter conditions
and more inter-annual variability. The increasing variability of snow in mountains for
example has become a serious problem with regular seasons experiencing low snow
accumulation. Ski areas in both the Alps [6,7] and the Pyrenees [8] will have to cope
with unpredictable snow conditions. In addition, although most climate models predict
a decrease in snow cover in the northern hemisphere [9,10], contrary developments have
also been observed [11,12]. The spatial complexity of snowfall makes prediction and
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generalization difficult. That said, an increase in moisture availability is expected to lead to
more snow in the Scandinavian highlands and less snow, more rain in the lowlands and
coastal regions [13]. This will have implications for the timing and intensity of the spring
flood and for the generation of floods associated with extreme weather events. Currently
snowmelt is the main mechanism of flood generation in northern Fenno-Scandia [14]. The
winter of 2019/2020 was particularly snowy in large parts of Scandinavia—especially in
the north. This led to severe spring floods in the Sdpmi region, particularly in the Kemijoki
river system in Finland [15]. In the unregulated rivers of northern Sweden, the spring
floods were less pronounced in 2020 (compared to the last major floods 2010 and 2018),
which raises the question of the driving forces.

In this investigation we analyze the spatio-temporal patterns in snow cover and runoff
in the Sapmi region for the period 2001-2020 and the factors affecting discharge extremes.
This period exhibits high variability in the timing of the onset, longevity, and end of the
snow season. Since snow deposits are the water reservoirs for nival rivers in winter, our
main focus is on analyzing the annual snow cover: remote sensing methods are suitable
for this task [16]. Statistical analysis of upland catchment data shows that discharge is
most often correlated with temperature but not precipitation, even accounting for lags.
As a proxy for the water reservoir stored in the snowpack we use snow-covered area
estimates from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data.
The snow data derived from MODIS has a long history of studying the seasonal changes
in snow cover, and has applications in the Himalayas [17,18], in East Asia [19,20], Central
Asia [21-23], North America [24,25], North Africa [26,27], and in Europe [28-30]. However,
the use of optical data to determine snow cover requires methods for interpolation in the
case of cloud cover and—at higher latitudes—missing data due to the polar night. To solve
this problem, the DLR’s Global SnowPack processor was used in this study [31]. To study
the effects of the extraordinary snow conditions in northern Fenno-Scandia, rivers were
chosen that were not regulated by dams for flood protection or hydropower generation. In
northern Sweden, the rivers Tornedlven, Kalixdlven, Pitedlven, and Vindeldlven (a tributary
of the Umedlven) were chosen. As national rivers, they are not influenced by hydropower
exploitation. In Finnish Lapland, the Kemijoki is the largest river alongside the unregulated
border river with Sweden (the Muoinoélven, which flows into the Torneélven). Most of the
Kemijoki river is heavily regulated, so only the Ounasjoki tributary (which flows into the
Kemijoki in Rovaniemi) and the Kemihaara (upper reaches of the Kemijoki watershed in
the northwestern catchment) area are selected.

In this study, we will examine the dynamic of snow cover and the associated effects
on runoff over the last 20 years for the selected catchments. The variability of the satellite-
derived snow cover duration (SCD) will be analyzed and compared to the runoff data
with a special focus on hydrological events (floods and droughts) for each catchment. The
first goal is therefore to analyze whether these events can be explained by the variability
of the snow cover alone. In addition, freely available meteorological data from several
weather stations on air temperature and precipitation are included in the study. From these
datasets, various robust time measures [1,32,33] were extracted and their relationships
to one another were examined using correlation analysis. Furthermore, we investigated
their temporal development using trend analysis in the observation period between the
hydrological years 2001 and 2020. The second goal is to find out which interdependencies
exist between the examined parameters and whether an increase or decrease in extreme
hydrological events is to be expected (in particular the maximum discharge of the spring
flood and its timing). In addition to the snow cover and topographical information derived
from a digital elevation model, the meteorological information is included in the simple
Snowmelt Runoff Model (SRM) [34]. The third aim of the study is to find out whether the
occurrence of extreme hydrological events can be determined using this simple model.

The first research question is as follows: Is satellite-derived snow cover area alone
already suitable to describe the occurrence of hydrological events? The second research
question is as follows: Are there trends in the occurrence of hydrological extreme events
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within the period under consideration and can these be traced back to extraordinary mete-
orological events? The third research question is as follows: Can the hydrological events be
adequately mapped using the simple SRM? We address these questions throughout the
paper within the following sections. In Section 2 the material and methods are presented
including a description of the studied catchments. Section 3 contains the results of the
snow cover and runoff development, the meteorological factors as well as their trends
and interdependencies. Section 4 serves to synthesize the results and define various snow
conditions that lead to floods. In Section 5, a conclusion is drawn and an outlook on
subsequent challenges is given.

2. Materials and Methods
2.1. Snow Cover

Snow coverage in this study is derived from the MODerate resolution Imaging Spec-
trometer (MODIS). The daily snow cover product MOD10A1 (Terra) and MYD10A1
(Aqua) from the version 6 [35] are derived from the normalized difference snow in-
dex (NDSI) and made available free of charge by the National Snow & Ice Data Center
(https:/ /nsidc.org/data/MOD10A1, https:/ /nsidc.org/data/MYD10A1, (accessed on 10
October 2020). Since operational data from MODIS Terra are available since 2000-02-24
and from MODIS Aqua since 2002-07-04, we examined the last 20 hydrological years (2001
to 2020). We define the hydrological year in the northern hemisphere beginning with 1
September of the previous year and ending on 31 August of the current year. This results
in a total of 7305 MODIS Terra scenes and 6634 MODIS Aqua scenes. Each of the square
MOD10A1/MYD10AL1 tiles has a side length of 1200 km (this corresponds to approx. 10°)
and is in the equal-area sinusoidal projection [35]. Our investigation area is covered by the
tiles h18v02 and h19v02. The adverse effects of clouds and the polar night in these high
latitudes make effective interpolation of the data essential (Figure 1).
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Figure 1. Number of days that are either influenced by clouds and polar night (arithmetic mean of
the hydrological years 2001 to 2020).

The DLR’s Global SnowPack (GSP) processor [31] was used to achieve cloud-free
scenes. In the course of the interpolation, all “no-data” pixels are treated as “clouds” for
the sake of simplicity. Missing information, e.g., due to polar night, is treated in the same
way as persistent cloud cover.

First there is a binary decision between “snow” and “non-snow” from the layer
“NDSI_snow_cover” of the HDF-file. Since version 6 of the daily MODIS snow product
now provides “raw” NDSI values, a threshold needs to be defined to classify pixels into
“snow” and “no snow” [36]. Each pixel that may contain snow has an NDSI value between
0 and 100. Since freshly fallen snow has a much higher reflection than old snow, the
threshold value for detection must also be adjusted over the course of the year [37]. We
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also differentiate between “snow in forests” (NDSI;;s), which has a lower NDSI due to
the parts of the plants shown, and “snow in non-forests” (NDSI;, 7). The thresholds are
calculated using Equations (1) and (2):

NDSl;; = 12.673 x cos [;67; x (190 — DOHY)} +39.471 )

2
NDSls = 12.780 x cos {3,67; x (226 — DOHY)} +51.635 @)

where DOHY is the day of the hydrological year. These thresholds have been empirically
defined by using the MODIS tiles h18v04, h18v03 and h18v04 during the hydrological
years 2010 to 2014. The snow-covered area has been validated against Landsat derived
snow coverage in order to determine the best fitting threshold without underestimating or
overestimating the actual snow coverage.

In a first step, the daily observations of Terra and Aqua are combined to already
eliminate cloudy pixels. However, due to a malfunction of the 1.6 um band, the MODIS
sensor on Aqua has a less precise cloud mask [38], so that the data from MODIS Terra is
given priority and serves as a basis. All pixels classified as clouds are now checked in the
Aqua data to determine whether they are not covered by clouds and, in this case, adopted.
After that the remaining cloudy pixels are interpolated considering the previous day and
the following day. If the degree of cloud cover is below a specified threshold value (in our
case 30%), a topographical interpolation is then carried out. For this purpose, we use a
digital elevation model (DEM), specifically the Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010, available on Earth Explorer: https:/ /earthexplorer.usgs.gov/,
accessed on 30 January 2020) [39] that was interpolated and projected to the MODIS tiles.
The maximum elevation of “snow-free” pixels as well as the minimum elevation of “snow-
covered” pixels is determined. If the elevation of a cloud pixel lies below the minimum
height of “snow-covered” pixels, this pixel is determined to be “snow-free”; conversely,
cloud pixels that lie above the maximum elevation of “snow-free” pixels are classified as
“snow-covered”. As a last step, the remaining pixels are interpolated by iterating over the
entire data stack with increasing temporal distance until there are no more cloud pixels left.

From the resulting cloud-free daily snow cover maps, information for selected basins
was derived by clipping the raster using a shapefile outlining the basin area. From these
extracted raster, the snow cover duration (SCD) was calculated with Equation (3) [29]:

SCD = i(si) 3)
i=1

where 7 is the day of the hydrological year, and s; is the daily cloud-free snow raster (pixels
were recoded to 1 for “snow” and 0 for “snow free”). Since we are especially interested
in the distribution between early season SCD (SCDfs), and late season SCD (SCDy) the
snow cover duration was divided into these two parts using Equations (4) and (5):

SCDgs = Fd — SCDypy @)

SCDys = Fd + SCD, 4 ®)

where Fd is a fixed date (we select 15 January due to maximum snow coverage), SCDypy
and SCD,f, is the snow cover duration before and after this fixed date. To eliminate the
lakes in the snow map, a water mask was created for each year and all pixels were masked
that were recognized as water areas in at least 5% (18 days) of the cases.

Although the MODIS 8-day snow product (M*D10A2) is of excellent quality and is
used in many studies, we use the daily product (M*D10A1) due to two reasons: The 8-day
product only contains a cloud mask for the entire eight days (which is always cloud-covered
within the period), for the individual days the snow mask is only available in binary form
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as “snow/non-snow”, information on why pixels are classified as “non-snow” does not
exist for the individual days. This is unfavorable for our purpose, which aims for daily
snow covet, as it is not known which pixels are actually clouds and should be interpolated.
Another reason is the binary classification that has already taken place, which means that
our NDSI threshold-based determination (temporal variable and including land cover
types) can no longer be carried out.

2.2. Hydrology

Hydrological information (i.e., discharge data) has been obtained for the selected river
systems shown in Figure 2. For the four river systems that are (largely) on Swedish territory,
discharge data were obtained from the Swedish Meteorological and Hydrological Institute
(SMHI) (https:/ /vattenwebb.smhi.se/station/, accessed on 5 October 2020). Information
from the finish river system was obtained from the Finnish Environment Institute (SYKE,
https:/ /www.syke.fi, accessed on 3 October 2020).

66°N

|:| catchments
D border

Elevation [m asl]

High : 2000
2k s Low: 0 z
& MODIS Sinusoidal Proj.
25°E

Figure 2. Main study area of Sdpmi showing the location of the eight selected catchments.

In total there are discharge measurements from 36 stations available. However, since
we only consider the largest of the overlapping catchment areas and have defined a
minimum size of 1000 km? (due to the spatial resolution of MODIS), eight catchment areas
were selected for further analysis. An overview about the catchment properties is given in
Table 1. The shapefiles of these sub basins are used to extract spatial statistics from snow
coverage elevation.
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Table 1. Catchment properties of the eight selected sub basins. The Basin ID is the official number of
the catchment area according to SMHI (Sweden) and SYKE (Finland).

River Basin ID Country [i:;eza] . Elevation lm MSLI
Min Max Mean
Kalixilven 0017 SE 23,102.9 41 1962 406.1
Pitedlven 1387 SE 6930.9 129 1634 593.8
Varjisédn 1706 SE 1908.4 78 679 396.0
Tornedlven 2012 SE 11,038.1 154 1828 536.4
Vindeldlven 2237 SE 11,846.4 162 1531 515.0
Muonioilven 2395 SE/FI 14,4771 140 1471 412.6
Kemihaara 6501700 FI 8464.2 157 617 270.8
Ounasjoki 6503600 FI 11,660.0 102 746 270.7

Figure 3 shows the elevation distributions (hypsometric curves) of all selected basins.
While the rivers Ounasjoki, Kemihaara, and Varjisan are almost exclusively below 500 m,
the catchment areas of the others have a pronounced topographical gradient.

2000
—— Kalixalven
1720 1 l—— Pitedlven
1500 F —— Varjisan
—— Torneédlven
12507 vindelilven

1000 - —— Muonioalven

Kemihaara
Ounasjoki

Elevation [m]

750

500

250

|
.0 0.2 0.4 0.6 0.8 1.0
Cumulative Frequency

Figure 3. Hypsometric curves of the eight selected catchments.

In terms of runoff data, we are particularly interested in the spring runoff (start and
end of snowmelt). To detect timing changes in the runoff behavior [32], we extract the
maximum discharge (both intensity and time) for each hydrological year. The use of
fixed runoff quantiles during spring runoff has been proven as a suitable tool to detect
changes [33,40]. For our application we use the period between 1 April to 30 June, as
snowmelt can occur as early as April. We calculate a selection of cumulative runoff
intervals: Q5% as the point in time at which 5% of the cumulative runoff of the observed
period occurred [1]. The times Q10%, Q50%, Q90%, and Q95% are calculated similarly.
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2.3. Meteorology

Daily data on air temperature (in the following always the air temperature measured
at a height of 2 m) and precipitation were downloaded for Finland from the Finnish Meteo-
rological Institute (FMI; https://en.ilmatieteenlaitos.fi/download-observations, accessed
on 11 October 2020) and for Sweden from the Swedish Meteorological and Hydrological
Institute (SMHI http:/ /www.smhi.se/data/meteorologi/, accessed on 9 October 2020).
The station data had to contain both air temperature and precipitation data and should
also be as complete as possible for the investigated period. A total of 44 stations met these
criteria. Four meteorological stations should be available for each sub basin. To ensure this,
the closest stations were searched for with a buffer of up to 50 km around the respective
catchment areas. This resulted in 27 stations that were used for further analyses. The mean
values for air temperature and precipitation of the individual stations for each day were
calculated for each selected sub basin from the station data. The air temperatures were
previously converted to the mean terrain height of the basin before this was included in
the calculation. The used vertical temperature decrease of 0.65 K per 100 m corresponds
to the tropospheric temperature gradient of the international standard atmosphere (ISA)
established by the ICAO (International Civil Aviation Organization).

To determine the beginning and the end of the snow cover, the air temperatures were
summed over the hydrological year. The maximum of the resulting curve within the
autumn and winter months (September—February) was selected as the snow cover start
(5CS), and the minimum of the remaining months (March—August) as the snow cover
melt (SCM).

Wind has also a decisive influence on the redistribution and melting of snow and,
depending on the exposure and relief, large differences can occur on a small scale. However,
since the meteorological data in this study are mainly used as input parameters for the
snowmelt runoff model, which does not take the wind into account, it is accordingly neglected.

2.4. Statistical Analysis

As mentioned in the introduction, with regard to the temporal development of the
snow and the associated runoff, the relationships and dependencies of the parameters are of
interest to one another and the temporal development of the parameters in the observation
period in order to be able to derive trends if necessary. To identify relationships and
controlling factors of the 14 timing measures (Table 2) used within this study, we calculated
the Pearson’s correlation coefficient for each pair of hydroclimatic variables [1]. A trend
analysis for each measure (and for each basin) was performed using the non-parametric
Mann-Kendall (MK) trend test [41,42]. This test has been proven as a valuable tool to detect
changes in snow determined changes of runoff [1,18,33,43,44].

Table 2. Measures for spring flood timing and intensity.

Abbreviation Unit Description Source
Year Year Hydrological Year -
SCDgs Days Early Season Snow Cover Duration Global SnowPack
SCDy g Days Late Season Snow Cover Duration Global SnowPack
SCs DOHY ! Snow cover start derived from daily mean air temperature Meteorology
SCM DOHY Snow cover melt derived from daily mean air temperature Meteorology
Snow_Prec mm Cum. sum of (solid) precipitation between SCS and SCM Meteorology
Spring_Rain mm Cum. sum of precipitation between SCM and 30 June Meteorology
Qmax m3/s Peak discharge Hydrology
DOHY_Qmax DOHY Time of peak discharge Hydrology
Q5% DOHY Time where 5% of the cum. discharge occur Hydrology
Q10% DOHY Time where 10% of the cum. discharge occur Hydrology
Q50% DOHY Time where 50% of the cum. discharge occur Hydrology
Q90% DOHY Time where 90% of the cum. discharge occur Hydrology
Q95% DOHY Time where 95% of the cum. discharge occur Hydrology

1 Abbreviation for “day of hydrological year”.
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2.5. Snowmelt Runoff Model

The Snowmelt Runoff Model (SRM) was developed in 1975 by Martinec [45] and can
be used to model daily discharge in mountainous areas. It has been successfully applied to
basins ranging from 0.76 to 917,444 km? in size, and with elevation ranges of up to 8840 m.
The daily discharge is calculated using Equation (6) [34]:

Qny1 = [CSnan(Tn + ATn)Sn + CRnPn]%(l - kn+1) + ann+lr (6)
where Q is the daily discharge (m3/s), cs and cg are the runoff coefficients expressing
the ratio of loss between runoff and precipitation for snow and rain. a is the degree-day
factor (s¢.q)—the snowmelt depth from one degree-day. T is the number of degree-days
(°C-d). AT is the air temperature correction, calculated with the height difference between
measurement height and mean hypsometric basin height, using an air temperature lapse
rate Tj;pse of 0.65 K/100m. Sy is the percentage of snow cover in the basin area. P is the
measured precipitation in cm. The model expects a critical air temperature Te,jp: If T < Ty,
the precipitation will be stored as snow and melts when melting conditions occur. A is the
basin area in km?. k is the recession coefficient, governing the discharge in periods without
rainfall or snow melt. For basins with elevation ranges exceeding 500 m, the basin will be
subdivided into zones of 500 m each. In that case, the discharge is calculated separately for
each zone and summed, before multiplying with 1 — k;, 1. To evaluate the model output,
we use the Nash-Sutcliffe efficiency coefficient E [46], calculated by Equation (7):

E_q. Tm(Qi- Q)
" (Qi— Qu)?

where Q; is the measured discharge, Q; is the simulated discharge and Q,, the average
discharge for the simulation period. The recession parameter k can be derived from historic
discharge data with k = Q;,1+1/Qm with Qy, being the discharge during a true recession
flow period without rainfall or snowmelt. Since the Parameters cg, cs and a must have a
value greater than 0 and less than 1, they were evaluated in the range from 0.05 to 0.99
(using steps of 0.02) to find the combination with the highest Nash-Sutcliffe efficiency as
described in [47].

/ @)

3. Results
3.1. Snow Cover

Figure 4 shows the mean snow cover duration (SCD) for the hydrological years 2001
to 2020. Snow cover is most persistent in the Scandinavian Mountains, Sapmi, and the Kola
Peninsula. The lakes are also easily recognizable due to their relatively small number of
snow-covered days. This is due to the fact that they still have an open water surface next
to snow-covered land, or they are covered with lake ice (without snow cover), which forms
a separate class in the MODIS data.

Figure 5 shows the deviation of the hydrological year 2020 compared to the long-term
mean (2001-2019). In most parts of the region, SCD was up to 50 days longer compared to
the mean duration. A closer look at the Early Season SCD the (SCDgg) and Late Season
(SCDys) revealed that snow coverage both started earlier and lasted longer this year. The
pattern is particularly marked in the densely forested lower Umeilven and Pitedlven
catchments and other heavily forested locations in northern Fenno-Scandia.
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Figure 4. Arithmetic mean of the yearly snow cover duration for the hydrological years 2001 to 2020 for the tiles h18v02

and h19v02.
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Figure 5. Deviation of snow cover duration for the hydrological year 2020 compared to the mean SCD calculated from the
hydrologic year 2001 to 2019.

Figure 6 shows the individual snow coverages (weekly mean) for each catchment
area. Additionally, SCDgs (solid line) and SCDy g (dashed line), both calculated according
to Equations (4) and (5), are shown. What is initially noticeable is the long range between
November and January in which values stagnate—this is caused by the polar night (hashed
areas in Figure 6). This is the time when the greatest uncertainties regarding snow cover
prevail, as the data are interpolated over very long periods of time. Since there is still
no snow cover, especially in early winter, this underestimation will be continued until
data are available after the polar night. The year 2012 shows very little snow cover in all
catchment areas until the end of the polar night, the snow accumulation started extremely
late this year. Also, years with very long snow cover are recognizable: The hydrological
year 2020 shows an extraordinarily long snow cover in all catchment areas. The year 2010
was a little less pronounced, but still exceptionally snowy. However, the floods of 2018
did not show any extremes in terms of snow cover, the causes here are probably due to
hydrometeorological factors.
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Figure 6. Weekly mean of snow coverage for the hydrologic years 2001 to 2020 for (a) Kalixdlven, (b) Piteédlven, (c) Varjisan,
(d) Tornedlven, (e) Vindeldlven, (f) Muoniodlven, (g) Kemihaara and (h) Ounasjoki. The hatched area shows the polar night
(depending on the catchment area between weeks 10 and 22), the solid line shows the calculated SCDgg, the dashed line the
time of the SCDyg.
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3.2. Hydrology

The discharge data for the hydrological years 2001 to 2020 showed a very hetero-
geneous picture for the relatively narrow geographic area. However, all rivers have a
pronounced nival runoff regime with an annual runoff peak in spring. We identified four
years with an extremely high runoff: the years 2005, 2010, 2018 and 2020. The following
Figures 7-9 show the discharge behavior as a color-coded grid (x-axis: day of hydrological
year; y-axis: hydrological year) for these flood years. The absolute discharge maxima are
each marked with a “A”-sign, the minimum peak discharge with a “V”-sign.
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Figure 7. Discharge plots of (a) Muonioélven and (b) Ounasjoki. The upward pointing triangle indicates the maximum
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Figure 8. Discharge plots of (a) Pitedlven and (b) Varjisdn. The upward pointing triangle indicates the maximum spring
flood, the downward pointing the minimum.

The Swedish-Finnish border river Muonioilven (Figure 7a) carried 1610 m?/s on
28 May 2005, which corresponds to about nine times the mean discharge (178 m3/s) over
the period under consideration. In the same year, the neighboring Finnish river Ounasjoki
(Figure 7b) reached its peak on 30 May 2005 with a discharge of 1486 m3/s (average
142 m3/s).

In 2010, the Swedish rivers Pitedlven (Figure 8a) reached 610 m?/s on 28 May 2010
(mean: 127 m3/s) and its northern tributary Varjisan (Figure 8b) with 297 m3/s on 19 May
2010 (mean: 24 m3/s) their highest values. This year was also an important flood year
for other rivers: the Vindeldlven reached its second highest discharge, Kalixdlven and
Kemijoki their third highest.
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Figure 9. Discharge plots of (a) Kalixédlven, (b) Tornedlven, (c) Vindelédlven, and (d) Kemihaara. The upward pointing

triangle indicates the maximum spring flood, the downward pointing the minimum.

The year 2018 was the most pronounced flood year in the period under consideration:
the rivers Kalixdlven (2090 m3/son 14 May 2018; mean 314 m3/s; (Figure 9a), Torneédlven
(1120 m3/s on 16 May 2018; mean 148 m3/s; (Figure 9b) and Vindeldlven (1530 m3/s
on 20 May 2018; mean 186 m>/s; (Figure 9c) reached their highest discharge. The rivers
Pitedlven and Varjisan reached their second highest discharge, the rivers Muonioélven and
Ounasjoki their third highest. In 2020, only the Kemijoki (Figure 9d) reached its highest
discharge with 1196 m3/s on 31 May 2020 (mean 120 m3/ s). For the Kemijoki, however,
the high base runoff in winter 2020 is exceptional.

The hydrological data for the start of the hydrological year also show interesting
patterns. In all catchments except Kemihaara 2012 exhibits elevated runoff in September
and October. The start of the hydrological year also shows higher than average discharge in
2005 in all catchments, especially in the Kalixidlven and Torneélven. Early season discharge
is found to be more common in the Piteédlven and Kalixalven.

3.3. Meteorology

Figures 10 and 11 show the weekly mean air temperatures and the summed weekly
precipitation totals for the hydrological years 2001 to 2020. The solid vertical lines show
the SCS and SCM derived from air temperature, the dashed lines SCDgg and SCDy g from
GSP, respectively. At Kalixdlven (Figure 10a), for example, the lowest runoff peak in 2003
was due to the exceptionally low snow precipitation. In 2016, there was an extraordinary
amount of snow precipitation, but the air temperature development in spring was more
moderate, so that no record floods occurred. For Pitedlven (Figure 10b) and Varjisan
(Figure 10c), the highest runoff occurred in 2010, where the air temperatures were relatively
low during winter enabling a large accumulation of snow. The years 2003 and 2006 were
the years with the lowest snow precipitation and consequently little runoff. For Torneédlven
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(Figure 10d) the lowest runoff peak occurred in 2001, the precipitation was average this
year, snow accumulation started late and ended early. The year 2018 (The largest spring
runoff of the Torneédlven) was not exceptional in terms of precipitation; however, there was
a sharp rise in weekly mean temperature at the end of the snow season.
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Figure 10. Weekly mean air temperature and weekly sum of precipitation for (a) Kalixédlven, (b) Torneélven, (c) Vindelédlven,
and (d) Kemihaara. The earlier lines show the snow cover start, the later the beginning of snowmelt. Solid lines are derived
from the satellite product; dashed are derived from the air temperature.

At the Vindeldlven (Figure 11a), the lowest discharge peak occurred in 2006 where the
winter precipitation was low. The record runoff in 2018 is again not exceptional in terms of
precipitation amount. However, the temperature throughout the winter was low so that
snow could accumulate well. At the end of the snow cover season, the average temperature
rose sharply. At Mouniodlven (Figure 11b), the minimal discharge peak was in 2011, where
the amount of winter precipitation was low. In 2005 (the highest peak) the amount of winter
precipitation was high. The Kemihaara (Figure 11c) received a large amount of winter
precipitation in 2020 (highest peak) and the snow cover extended well into spring. In 2011
(lowest peak), the amount of winter precipitation was low. For Ounasjoki (Figure 11d), this
was also the case in 2011 (lowest peak). The highest discharge occurred in 2005, where a
large amount of snow was received in late winter.
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Figure 11. Weekly mean air temperature and weekly sum of precipitation for (a) Vindeldlven, (b) Mounioédlven, (c) Kemi-
haara, and (d) Ounasjoki. The earlier lines show the snow cover start, the later the beginning of snowmelt. Solid lines are
derived from the satellite product; dashed are derived from the air temperature.

The early season meteorological data show high variability in precipitation but less in
air temperature. The years 2015 and 2016 appear to have experienced elevated precipitation
in September and October in several of the studied catchments. The years 2002 and 2012,
years in which September and October discharge was higher than normal, are unremarkable
in terms of air temperature but show increased precipitation. However, 2012 received also
widespread early snowfall. This event, while less than 10 cm deep, was relatively short
lived for large parts of the study area suggesting a snowmelt flood-event occurred despite
mild air temperatures. This event can be recognized by the clear differences in the timing
measures for the beginning of the snow in Figures 10 and 11. While the snow accumulation
begins according to the air temperature threshold (“SCS”), it does not take place until some
time later, according to the satellite-derived product (“SCDgg”). This suggests that the
snow cover only existed for a short time and thawed again.

3.4. Statistics

The following Figures 12 and 13 shows the correlation matrices for each catchment
area. A correlation coefficient of 1 means a perfect linear relationship, the sign indicates
whether this is positive or negative. If the value is above 0.8 there is a strong relationship,
if it is above 0.6 the relationship is moderate, values above 0.4 are regarded as weak
relationships. For all rivers there is a more or less strong connection between “SCDgg”
and “SCS”, since both parameters should indicate the same point in time. For snow cover
melt (“SCDys” and “SCM”) this should be the same. However, the relationship is less
pronounced. In addition, there is almost always a strong correlation between “Q5%” and
“Q10%” as well as “Q90%” and “Q95%”.
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Figure 12. Correlation matrices for the timing measures of (a) Kalixdlven, (b) Pitedlven, (c) Varjisan, and (d) Tornealven.

The following conclusions can be drawn from Figure 12 for the first four rivers: the
parameter “Year” does not show any clear correlation with other parameters. The two
parameters for snow cover start (“SCDgs” and “SCS”) also have little influence on the
spring runoff. Only in the small river Varjisan there is a strong connection between “SCDgs”
and the time of the peak discharge. There is also a weak relationship between “SCS” and
“DOHY_Qmax” at Tornedlven. In addition, there are mostly moderate or weak correlations
between winter precipitation (“Snow_Prec”) and “SCDys” as well as spring precipitation
(“Spring_Rain”) and “SCM”. The most relevant parameter for flood risk, “Qmax”, mostly
shows only weak or moderate connections to “SCD;g” and “Prec_Snow”.

The correlation matrices of the remaining four rivers in Figure 13 show similar rela-
tionships to those that have already been mentioned. However, there are a few noticeable
features. With the exception of the Vindeldlven, there is a strong correlation between
“SCD1s” and “Q50%” in the other three rivers. In addition, in the Ounasjoki there is a
strong connection between the time of the discharge peak (“DOHY_Qmax”) and “SCD;g”.
The Mounioélven shows at least a weak relationship between these parameters.
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Figure 13. Correlation matrices for the timing measures of (a) Vindeldlven, (b) Mouniodlven, (¢) Kemihaara, and

(d) Ounasjoki.

Table 3 shows the results of the Mann-Kendall tests for the trends of the timing
measures in the last 20 years. As was to be expected from the low correlation coefficients
between the parameter “year” and the times presented, we observed no trends at the
significance level of p < 0.05. After increasing the threshold value to p < 0.1 (marked with
** in Table 3), we were able to detect trends in three rivers: At the Pitedlven, “Qmax”
increases by 0.22 m®/s per year. At the Mounioélven, “SCDys” increases by 0.52 days per
year, “DOHY_Qmax” increases bay 0.84 days der year and “Q50%” increases by 0.5 days
per year. At Ounasjoki, “DOHY_Qmax” shifts by 0.71 days per year. At a significance
level of p < 0.3 (marked with * in the table), we see especially a trend of “Q50%” for all
catchments (between 0.25 and 0.5 days per year).
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Table 3. Trends resulting from MK tests.

Parameter Unit Kalixdlven Pitedlven Varjisan Tornedlven Vindelilven = Mounioilven  Kemihaara Ounasjoki
SCDgs days/year 0 0.29 0.18 0.2 0 0.21 0.24 0.16
SCDys days/year 0.56 * 0.24 045 * 0.63* 0.03 0.52 % 05* 0.56 *

SCS days/year —0.29 0 0.11 —0.17 0 —0.1 0 —0.11
SCM days/year 0 0.25 05* 0.46 0 0.41 0.03 0.16
Snow_Prec mm/year 1.88* 2 2.59 2.21* 1.58 -0.6 0.81 0.33
Spring_Rain mm/year 1.25 —0.87 -1.17 —0.06 —0.85 1.67 % 0.36 1.94%
Qmax (m?/s)/year 0.09 0.22% —0.08 0.06 * 0.07 * 0.1* 0.11% 0.06
DOHY_Qmax  days/year 021 0.15 052* 0.81* 033 0.84 % 0.61* 0.71 %
Q5% days/year —0.07 0.08 —-0.11 0 -0.13 0 0 —0.25%
Q10% days/year 0.14 0 0 0.13 —0.03 0 —0.16 —0.1
Q50% days/year 031* 031* 0.25* 043 * 047 * 0.5 ** 0.26* 05*
Q90% days/year 0 0 —0.08 0.12% 0.07 0.13 0.17* 0.07
Q95% days/year 0 0 0 0~ 0 0.09 * 0.09 0.12%
** = p-value < 0.1; * = p-value < 0.3; no * = p-value > 0.3.
3.5. Snowmelt Runoff Model
Information on the daily snow cover (divided into 500 m altitude levels), the mean
daily air temperatures and the daily precipitation were incorporated into the snowmelt
runoff model. The runoff was calculated for each river for each hydrological year. For the
sake of clarity; however, only the years with the maximum (red lines) and minimum (green
lines) absolute discharge peaks are shown in the following Figures 14-16.
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Figure 14. SRM results for the maximum and minimum peak discharge of (a) Muoniodlven and (b) Ounasjoki.
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Figure 15. SRM results for the maximum and minimum peak discharge of (a) Pitedlven and (b) Varjisan.

Varjisan

300

250

200

150 4

Q [m¥/s]

100

2011 measured

—— 2011 modelled (R*=0.529)

2010 measured

—— 2010 modelled (R?=0.969)

T T
May Jul

Sep



Geosciences 2021, 11, 130

18 of 24

Kalixilven Torneélven
2000 2003 measured 2001 measured
—— 2003 modelled (R2=0.457) 10004 —— 2001 modelled (R2=0.688)
2018 measured 2018 measured
1500 9 —— 2018 modelled (R2=0.817) 8004 —— 2018 modelled (R>=0.804)
)
E 600
o
400
" _KD&—\ }
T T T T T 07 ——
T T T T T
Sep Nov Jan Mar May Jul Sep Sep Nov Jan Mar May Jul Sep
(a) (b)
1600 Vindelalven Kemihaara
0C
2006 measured 1200 1 2011 measured
14009 2006 modelled (R2=0.766) Jooo] 2011 modelled (R=0.152)
1200 - 2018 measured 2020 measured
1000 4 —— 2018 modelled (R2=0.873) soo4 2020 modelled (R>=0.265)
= =
& 8001 B 600
© 600 o
400 +
400 A
200 1 0]
0+ 04
T T T T T T T T T T
Sep Nov Jan Mar May Jul Sep Sep Nov Jan Mar May Jul Sep

(c) (d)

Figure 16. SRM results for the maximum and minimum peak discharge of (a) Kalixdlven, (b) Torneédlven, (c) Vindeldlven
and (d) Kemihaara.

The duration of the spring runoff for 2005 was well determined for both the Mounioal-
ven (Figure 14a) and the Ounasjoki (Figure 14b). The discharge peak was a bit underes-
timated for both as was the smaller earlier autumn discharge peak. For the minimum
discharge in 2011, the spring peak flow itself was better modeled for Ounasjoki, although
the coefficient of determination (R?) was very low.

The modeling results of the spring flood of Pitedlven (Figure 15a) and its tributary
Varjisan (Figure 15b) for the maximum peak flow in 2010 showed overall a good agree-
ment between modeled and measured runoff. The absolute peak runoff was again a bit
underestimated and the time of the peak was estimated a few days too early for Piteédlven.
For Piteédlven and Torneédlven discharge for the first ~90 days was underestimated. The
minimum discharge peaks in 2009 (Pitedlven) and 2011 (Varjisan) could be depicted with
sufficient accuracy.

For the major flood year of 2018, the model performed well for the rivers Torneélven
(Figure 16b) and Vindelédlven (Figure 16c). For Kalixdlven (Figure 16a) and Kemihaara
(Figure 16d), the model result could be improved. The peak flow of Kalixdlven was
underestimated by ca. 500 m3/s and its onset was estimated too early. For Kemihaara, the
location of the spring runoff peak was correctly estimated, but the model could not handle
the large amount of base runoff in winter.

4. Discussion

Since in this study we defined a fixed point in time for the differentiation between
Early (SCDgs) and Later Season Snow Cover Duration (S5CDyg) for each catchment area,
certain abstractions [48] had to be made. The catchment areas are therefore viewed as a
whole, regardless of the topography. This is particularly critical for high relief energies such
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as the catchment area of Kalixdlven, in which Kebnekaise, Sweden’s highest mountain,
lies. Both SCDgg and SCDy g will differ over a large range within the different elevations.
The abstractions can be seen when we compare the timing of SCDgg or SCDyg derived
from GSP and SCS or SCM from the air temperature developments. Regarding the satellite-
derived snow cover duration using GSP, it turned out to be useful to divide the snow
cover duration into an “early” and a “late” part, separated by the date of maximum snow
coverage [29]. The SCDgg is mostly affected by the polar night; hence this information is
less accurate. The values from GSP are mostly several days behind SCS and SCM derived
from air temperature. An explanation would be that the snow accumulation (ablation) first
needs negative (positive) air temperatures to occur and the time until full coverage (melt)
depends on the precipitation amount (snow pack). A major issue in these northern regions
is the long period of time over which interpolation has to be carried out (due to cloud cover
or polar night). The further away the days are to a snow-free pixel, the less its reliability
becomes. In the latest version of Global SnowPack, an accuracy layer is therefore created
that is based on these “days to cloud-free” and based on the topography.

The meteorological parameter solid precipitation (“Snow_Prec”) correlates much
better with the SCDgg derived from GSP, since it is directly linked to the disappearance
of the snow cover. We also noticed that the runoff measures “Q90%"” and “Q95%" have
no relationship with snow melt, which has also been proven by [1]. Our most important
measure; however, were “Qmax” and its timing “DOHY_Qmax" [49]. The main idea of the
study was to determine whether extreme events can only be detected with the snow cover
alone. Since we mostly found only weak relationships (correlation coefficient between
0.4 and 0.6) between “Qmax” and GSP-derived SCDyg, further information is required.

The reasons for hydrological extremes (exceptionally high and low runoff) can there-
fore be found in the combined consideration of the hydrometeorology and the satellite-
derived snow situation [50,51]. Within the period under consideration we want to look at
the causes of the lowest and highest spring floods. Blahusiakova et al. [43] identified in
Central Europe two reasons for snow drought: 1) average snow precipitation and unusu-
ally high air temperatures leads to below-average snow accumulation or 2) low or normal
air temperature and low winter precipitation. The latter was the reason for all minimal
outflows of the rivers considered in this study. With regard to the occurrence of the highest
discharge values in the period under review, we could distinguish between four types
associated with the four flood years (Table 4).

Table 4. Development of measures for different flood types during record floods.

Type Year Rivers SCDgs/SCS SCDys/SCM Precsi;;’t;"ﬁon Remarks
1 2005 Muonioélven, Normal 2 weeks later 35% higher -
Ounasjoki
2 2010 Plte?.l ven 3 weeks earlier Normal 20% higher -
Varjisan
Kalixdlven, Normal (up to A drastic increase in air
3 2018 Torneédlven, 1 week earlier Normal P temperature led to very
. u 10% higher) . .
Vindelédlven rapid melting
4 2020 Kemihaara 2 weeks earlier 3 weeks later 60% higher -

As also observed by Shi et al. [1], air temperatures fluctuations (especially in spring)
are the major causes for severe flood events (like in 2018), since they define the onset
and end of snow accumulation and hence also snow storage. This leads us to the risk of
rain-on-snow (ROS) events [25,49,52], which can occur more frequently if the snow cover
lasts well into spring. These events can also have drastic effects on e.g., reindeers, as solid
ice layers form at the bottom of the snow cover, so-called “basal ice”, and prevent them
from grazing [53]. The occurrence of basal ice has also a significant impact on hydrological
modeling since melt water cannot infiltrate. In the examples presented, a ROS event could
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have taken place at Kalixdlven in 2018. The maximum runoff here was 40% higher than
modeled and the duration of the flood runoff was greatly reduced. The assessment of
these events requires extensive fieldwork, which was not possible within the scope of
this investigation. Accordingly, further investigations in this area are recognized as a
knowledge gap [54].

The Trend analysis revealed an increase of “Qmax” for Pitedlven, an increase of
“DOHY_Qmax” for Muonioédlven and Ounasjoki, and an increase of “SCDyg” and “Q50%”
for Muoniodlven. The shift of runoff peaks had been observed by Dankers and Chris-
tensen [55], who were investigating the Tana River (adjacent basin north of the Kemihaara).
However, they and Trenberth [56] also recognized a general shortening of the snow season,
where the opposite was the case in our study period. Although the trends for winter precip-
itation were not significant, all point to an increase in winter precipitation of up to 2mm per
year, which corresponds to the general precipitation trend in Northern Europe [56]. Several
studies examined the relationship between snow cover, hydrometeorology and runoff
using Mann-Kendall tests [18,43,44]. In high and moderate latitudes of the northern [43]
and southern [44] hemisphere, it was found that (winter) precipitation increases as does the
air temperature and thus also the runoff. In the Western Himalayas; however, Atif et al. [18]
the opposite observed, which in turn is due to local climatic conditions.

The rather simple snowmelt runoff model from Martinec at al. [34] was generally well
suited to depict the measured runoff values using only snow cover information from Global
SnowPack [31] and hydro-meteorological station data. Most important was the correct
representation of the spring floods (peak, volume, and duration). When simulating the
snow-free runoff there are certainly better models that incorporate surface properties and
soil information [57]. The SRM is widely used e.g., in the Himalaya [58,59], in India [60]
and in Morocco [47]. The coefficients of determination were in general higher for the
maxima of the peak values and lower for the minima. Only for the river Kemihaara we
achieved poor results for both. The extraordinarily high basic runoff before snow melt
turned out to be a measurement error (according to SYKE). After snow melt onset, the
discharge measurements are correct again. Regarding the general underestimation of the
maximum discharge, Dankers and Christensen [55] indicates that the contribution of spring
precipitation is underestimated in these models. This would be an explanation for the poor
model results of the minimum peak discharge of Ounasjoki in 2011, where only 59% of the
mean snow precipitation fell, but the spring precipitation was 42% above the average.

5. Conclusions

In this study, we presented how satellite-derived snow cover information can be
linked to the occurrence of hydrological extreme events. The study was carried out on
eight unregulated river catchments in northern Fenno-Scandia (Sapmi), which received
a large amount of snow in the winter of 2019/2020. There is a high variability of spring
snow cover in the eight catchments studied, with a greater variability in the Finnish
catchments (Figure 6). However, the discharge data show greater variability in the timing
and longevity of the spring flood in the Swedish catchments draining the mountains (with
the notable exception of the small Vajisan catchment) and Muonioédlven in Finland: the
most mountainous and westerly of the Finnish catchments. Statistical analysis of the
data showed that remote sensing-based measures of snow cover and snow melt were
reasonably well correlated with discharge measures, especially those at the onset of spring
flood discharge. Peak discharge (“QMAX”) was often best correlated with the amount of
snowfall in the season (“Snow_Prec”). The relationship between “Spring_Rain” and the
timing of “Q95%” discharge indicates rain-on-snow events are import later in the season.
This can also explain why the discharge modeling worked well, but sometimes could not
resolve extreme events or discharge spikes.

Our results show that remote sensing data are important complements to meteoro-
logical observations and can help in the explanation of discharge time series in Arctic and
sub-Arctic catchments. We have shown that meteorological data alone cannot explain
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spatio-temporal patterns in discharge data nor can modeling using meteorological data
explain extreme events. This argues for combined approaches that include geospatial data
on snowpack coverage or snow depth for any comprehensive investigation of discharge
during the spring flood. Particularly in the early snow season, there are great uncertainties
due to the interpolation of the polar night. In the future, in addition to the optical satellite
data, coarse-resolution data from microwave sensors will also be used for snow detection.

The trend analysis only showed a significant increase in the spring flood peak at the
river Pitedlven and a general delay in the spring flood for the river Mounioélven. A better
result can only be achieved with a longer time series. The snow cover could be obtained
from the time series of AVHRR data, which is currently being reprocessed for whole Europe
within the TIMELINE project at DLR [61] and will be made available to the public.

With the simple Snowmelt Runoff Model, good results were achieved, especially when
depicting floods. This model shows that the use of publicly freely available data sets enables
relatively accurate modeling of extreme snow-related water events. Since the occurrence
of Rain-on-Snow (ROS) events worsens the modeled results, further investigations are
planned here.
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