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Abstract: A sedimentary sequence of fluvial deposits preserved in the Corchia Cave (Alpi Apuane)
provides new chronological constraints for the evolution of the cave system and the timing and rate
of uplift of this sector of the Alpi Apuane since the late Pliocene. Supported by magnetostratigraphic
analysis performed on fine-grained fluvial deposits, and by radiometric dating of speleothems, we
suggest that the deposition of fluvial sediments occurred between ~1.6–1.2 Ma. This implies that the
host volume of rock was already located close to the local base level, adding key information about
the recent tectonic evolution of the Alpi Apuane. A few before ~1 Ma, an erosive phase occurred
due to the base-level lowering, followed by continuous speleothem deposition since at least 0.97 Ma.
From that time, Monte Corchia uplifted at a maximum rate of ~0.5 mm/year, which is consistent
with isostatic uplift mainly driven by erosional unloading. The petrographical study of the fluvial
deposits highlights the presence of material derived from the erosion of rocks that today are absent
in the cave’s catchment area, suggesting a different surface morphology during the Early Pleistocene.
This study highlights the potential of cave sediments as archives for reconstructing the uplift history
of mountain ranges.

Keywords: geochronology; karst; magnetostratigraphy; Corchia Cave; Alpi Apuane

1. Introduction

The Alpi Apuane (northwestern Italy) is a key area for understanding the morpho-
logical and tectonic evolution of the inner northern Apennines. A number of studies
investigated the complex tectonic evolution of the region (e.g., [1–3] and reference therein),
including the exhumation history and its relationship with the orogenesis of this sector
of the Apennine chain, mainly through thermochronology methods (e.g., [4–8]). Ther-
mochronology is the quantitative study of the thermal history of rocks using temperature-
sensitive radiometric dating [9]. It is widely used to reconstruct rock exhumation rates and
the tectonic evolution of mountain belts.
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Other chronological constraints on paleotectonic evolution of mountain ranges can
be provided by alluvial deposits preserved in river terraces located at different altitudes,
but their formation is often strongly affected by climate variations, and so they are not
directly related to tectonically induced base-level changes and their chronology is, however,
difficult to be defined in detail. Conversely, cave systems are less climate dependent than
river systems because their evolution is usually slower and less controlled by surface
processes [10]. Therefore, caves can provide additional quantitative constraints on the
vertical displacement of a subterranean hydrologic system relative to its base level [11–14].
The erosional forms of cave passages, as well as the occurrence and nature of infill deposits,
provide valuable information about the processes of their formation [15,16]. Moreover, since
caves are one of the most stable continental environments, they can preserve depositional
records for long periods.

Horizontal/sub-horizontal levels of passages not controlled by litho-structural hori-
zons are considered the product of a stationary paleo-water table, while vertical sections
are commonly formed as a consequence of a base-level fall [10,17,18]. The ages of these
developmental stages can be inferred by dating the hypogean deposits using, for ex-
ample, uranium-series geochronology or paleomagnetism, from which rock valley inci-
sion rates and regional paleogeographic evolution can be inferred ([19–21] and reference
therein, [13–22]).

The Alpi Apuane are a prominent massif that reaches elevations of almost 2000 m
a.s.l., only a few kilometres inland from the coastline, creating a barrier to the humid
westerly air masses of North Atlantic provenance and generating precipitation exceeding
2500 mm/year [23]. These characteristics, along with the presence of extensive carbonate
rock outcrops, support intense karst processes, allowing the formation of hundreds of
caves [24]. The Corchia Cave karst system is the longest and most complex cave in the
Alpi Apuane [25], and it developed in several sub-horizontal levels connected by pits or
deep canyon-like passages, revealing at least three phases of base-level stillstand [25,26].
We describe here fluvial deposits preserved within the Galleria delle Stalattiti (GdS), which
belongs to one of the major horizontal passage systems of the Corchia Cave complex.
U-Pb ages and paleomagnetic data acquired on samples of these deposits provide further
constraints for the recent morphotectonic history of this sector of the Alpi Apuane.

2. Geological Setting
2.1. The Alpi Apuane and the Monte Corchia

The Apennine chain is a fold-and-thrust belt formed by thrusting from west to east
of part of the Ligurian–Piedmont Ocean (Ligurian and Sub-Ligurian domain) over the
Adria continental margin plate (Tuscan domain) during the Tertiary [27,28]. The deep-
est part of the Northern Apennine chain is exposed in the tectonic window of the Alpi
Apuane ([1,29,30] and reference therein) (Figure 1), where two main tectono-metamorphic
units, the Massa and the Apuane, outcrop. The former, exposed in the western part, experi-
enced a higher degree of metamorphism and includes a Variscan basement and an upper
Permian–Upper Triassic cover [3]. The latter, metamorphosed to greenschist facies, consists
of a Paleozoic basement and metavolcanics of the early Permian age [31,32], unconformably
covered by a Triassic-to-Oligocene sequence. The metasedimentary succession begins with
Triassic continental to shallow-water deposits (Verrucano) followed by an Upper Triassic–
Lower Jurassic carbonate sequence consisting of metadolostone (Grezzoni), metabreccia
(Brecce di Seravezza), dolomitic marble, and marble. The sequence continues upward with
Lower Jurassic—Lower Cretaceous cherty metalimestones, cherts, and calcschists. During
the Lower Cretaceous–lower Oligocene, a progressive drowning of the carbonate platform
allowed the sedimentation of phyllites and calcschists with marble interbeds. The sequence
ends in the Oligocene–early Miocene with the deposition of turbiditic metasandstone
(Pseudomacigno) ([33] and reference therein).

The Alpi Apuane are surrounded and structurally overlain by the Tuscan Unit, a Late
Triassic–early Miocene carbonate and graywacke sequence, which experienced anchizonal
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metamorphism [3,34], and tectonically overlain by the non-metamorphic Ligurian Units
composed of Jurassic ophiolites and Jurassic–Paleogene sedimentary rocks. The structure of
the Alpi Apuane is commonly interpreted as being due to two main tectono-metamorphic
regional events: the D1 event, leading to a large-scale northeast-facing isoclinal fold
stacking at the metamorphic peak conditions [1,35], and the following D2, which was
responsible for the progressive uplift and exhumation of the dome-like structure and the
development of low-angle detachments [1–3]. The latest stages of D2 were associated with
high-angle brittle faults mainly localized at the boundary between the Alpi Apuane and the
surrounding Lunigiana/Versilia and Garfagnana tectonic depressions. Brittle deformation
within the metamorphic core is expressed by localized and low-displacement, high-angle
strike-slip to normal faults [3,36,37].

Monte Corchia is located in the southeast part of the Alpi Apuane Metamorphic
Complex. According to Carmignani and Giglia [38], the Mt. Corchia structure is the
result of a polyphase deformation during which an originally non-cylindrical eastward-
facing D1 overtuned syncline was refolded up to the present geometry, giving a locally
downward-younging direction.
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Figure 1. (a) Location and geology of the study area ([39] modified). Red and green stars and yellow 
circles represent the location of samples used for Apatite (U-Th)/He, apatite fission tracks, and Zircon 
(U-Th)/He thermochronology ages, respectively [8]. (b) Simplified tectonic sketch of the Garfagnana 
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Figure 1. (a) Location and geology of the study area ([39] modified). Red and green stars and yellow
circles represent the location of samples used for Apatite (U-Th)/He, apatite fission tracks, and Zircon
(U-Th)/He thermochronology ages, respectively [8]. (b) Simplified tectonic sketch of the Garfagnana
and Lunigiana valleys. (c) Galleria delle Stalattiti plan map ([40] modified). Circles and triangles
show the location of fluvial and calcite deposits, respectively. (d) Geological cross section between
A’ and A”. Dashed and continuous blue lines represent low-angle normal faults (LANFs) (former
thrusts reactivated as LANFs: see [3,41] for further tectonic information). The red dot represents the
Galleria delle Stalattiti (GdS) location.
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The most complete low-temperature thermochronologic study, based on apatite and
zircon fission tracks (AFT, ZFT) combined with apatite and zircon (U-Th)/He ages (AHE,
ZHe), derived exhumation rates and processes related to the Alpi Apuane tectonic his-
tory [8]. The study suggested that the earlier and late Miocene high exhumation rates (up to
>1.4 mm/year) can be interpreted as related to events of tectonic exhumation, whereas the
low exhumation rates (<0.6 mm/year) of the last 4 Ma may instead be due to predominantly
erosional exhumation.

2.2. The Corchia Cave System

The Corchia Cave system, more than 70 km long and about 1200 m deep, is mainly
carved in the Upper Triassic to Lower Jurassic carbonate core of the Mt. Corchia syncline,
confined by the phyllites and metavolcanics (Lower phyllites and Porphyroids, [42]) of
the Paleozoic basement. Structural surfaces have guided the cave development, so the
system is mainly elongated NW–SE and gently dipping to the SE, parallel to the syncline
axial surface [25] (Figure 1). The horizontal passages follow, therefore, the main syn-
metamorphic litho-structural surfaces of the metacarbonate core (Figure 1b), whereas most
of the vertical passages mainly developed along low-displacement high-angle faults and/or
fracture systems [26,43]. The Mt. Corchia groundwater network is drained mainly by a
spring located at 175 m a.s.l. that flows to the Ligurian Sea via the Vezza River [25,44]. The
cave system has 21 entrances at different elevations, the highest opening being close to the
top of the mountain (1678 m a.s.l.) at 1637 m a.s.l. Most of the horizontal or sub-horizontal
phreatic or epiphreatic cave passages are organized in different levels, the major ones
of which are at around 1400, 1100–1200, and 900 m a.s.l., and are connected by steep to
vertical passages [26]. This structure suggests different base-level stillstands, allowing the
development of three major sub-horizontal levels, interrupted by relatively faster lowering
of the base level. Local breakdown/collapse blocks and allochthonous fluvial sediments
are the prevalent clastic deposits in the cave.

Our study focuses on the sediments occurring in the GdS, a sub-horizontal passage
with floor elevation ranging between 860 and 870 m a.s.l. and vertically overlain by ~400 m
of rock (mainly phyllites of the Paleozoic basement). It is part of the lower of the three
abovementioned sub-horizontal major levels [26]. The gallery is partially filled by chemical
(speleothems) and clastic deposits both autochthonous (breakdown/collapse blocks) and
allogenic (due to stream transport). The latter are locally exposed along the sidewalls at
different heights with different extents and thickness.

3. Materials and Methods

To overcome the intrinsic variability of the hypogean environment, we studied the
GdS sedimentary section where stratigraphy is clear and continuous (~9 m thick and ~12 m
laterally extended). We collected six samples to study the thin-section grain composition
and to infer the possible source area of the allogenic recharge. The fluvial succession
was also sampled for paleomagnetism at eight different levels. We sampled the finer-
grain-size layers by collecting oriented samples for each stratum. At the laboratory, these
samples were further reduced to standard cylindric specimens. All the measurements
were performed at the Centro Interuniversitario di Magnetismo Naturale (CIMaN-ALP)
Laboratory (Peveragno, Cuneo). For each specimen, we measured the natural remanent
magnetization (NRM) using an AGICO JR6 spinner magnetometer. The specimens were
then step-by-step Alternating Field (AF)-demagnetized by an ASC D-2000 device up
to 100 mT. Isothermal remanent magnetization (IRM) acquisition and back field were
performed on one specimen for each layer.

4. Results
4.1. Clastic Sediment Stratigraphy

The studied sequence (Figure 2) is mostly composed of clastic material transported
and deposited by running water and lithified by calcite cementation. It directly lays on the
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carbonate bedrock and begins with a 1-cm-thick flowstone characterized by a very high
detrital content. This is overlain by 0.9 m of fluvial sediment consisting of alternations
of clast-supported conglomerate and medium- to fine-grained calcite-cemented arenite.
In several points, the conglomerate layers show clasts imbrication and erosional troughs.
The sequence continues with 5 m of centimetric to decimetric layers of arenite with calcite
cement, passing via erosive contact to a 1.5-m-thick, centimetric to decimetric well-rounded
heterometric conglomerate. An unconsolidated to partly consolidated 1.5 m layer of
breakdown breccia covers the conglomerate and closes the clastic sequence. It consists
of unsorted boulders and cobbles, with a prevalence of rock fall materials, ranging from
centimeter- to meter-size clasts and overlain by a few decimeters of unconsolidated carbon-
ate sand draping the irregular surface. A thin calcite flowstone, with several stalagmites
grown on it, overlays the succession paraconformibly.
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At thin-section scale, the conglomerate has a fine carbonate matrix and sub-rounded
clasts consisting of mineral grains (calcite, quartz, mica, feldspar, and epidote), sandstone,
and metamorphic rocks. Sandstone clasts vary from medium to very fine in size and
are well sorted and sub-rounded. They comprise minerals (calcite, quartz, mica, chlo-
rite, feldspar, and oxides) and metamorphic and siliciclastic lithic components. Modal
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analysis carried out on sandstone samples and plotted on a ternary diagram (Figure 3a)
following Dickinson [45] show a clustering of samples in the litharenite zone. To better
understand the provenance of the detrital grains in the analyzed samples, we plotted them
in a Metamorphic-Volcanic-Sedimentary ternary diagram (Figure 3b). Most of the lithics
have metamorphic origin, but the presence of lithics of sedimentary origin is not negligible.
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4.2. Paleomagnetic Analysis

Examples of the results of the demagnetization behavior of the specimens are shown
in Figure 4a. The isothermal experiments confirm the occurrence of a low-coercivity phase
in each layer, saturated by applying 0.3 to 0.5 T fields. The coercivity is mostly around
20 mT. This indicates that the main remanence carrier is magnetite. The intensity of the
magnetization is rather low, ranging from 1 × 10−4 to 1 × 10−2 Am−1, but mostly of
ca 3 × 10−3 Am−1 (Figure 4b). Zijderveld diagrams [46] reveal the occurrence of two
magnetization components, one of low stability, removable by applying a field of 10 to
15 mT and interpreted as a viscous component, and a high-stability component of both
normal and reverse polarity, pointing to the origin of the diagram and interpreted as
the Characteristic Remanent Magnetization (ChRM) (Figure 4c). The ChRM quality is
expressed by the maximum angular deviation (MAD), which mostly ranges from 4.5 to
16. In the layers with low magnetization intensity (of the order of 10−4 Am−1), MADs
show higher values of around 20 to 25. Although these values are large, they have been
considered acceptable because in the Zijderveld diagrams it is still possible to recover
the magnetic polarity [47]. The mean magnetic polarity was computed using Fisher’s
Statistics [48]. The normal magnetic polarity is D = 357.2◦, I = −43.4, alpha95 = 28.2◦, Virtual
Geomagnetic Pole (VGP) Lat N 71◦, Long E 198◦; its confidence limit is very high due to
both the small number of normal polarity observations (n = 10) and the large dispersion of
declinations. The mean reverse polarity is D = 186.6, I = −41.7, alpha95 = 11.6◦, VPG Lat S
69◦, Long E 173◦ (Figure 5).
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Figure 4. Examples of the magnetization behavior of reversed (first two rows) and normally polarized (last two rows) speci-
mens during Alternating Field (AF) cleaning. For each specimen: (a) the decay of the normalized magnetization intensity
versus the applied field; (b) the Zijderveld diagrams (black/white dots are declination/apparent inclination, respectively);
and (c) equal-area projection of magnetic direction (black/white dots are positive/negative inclination, respectively).
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5. Discussion
5.1. Speleothem Ages

The Corchia Cave and, in particular, the GdS have been the object of wide-ranging
paleoclimate research for the past 20 years [49–60]. Tens of speleothems have been dated,
with more than 400 very precise radiometric ages [54,61]. The calcite of speleothems from
the GdS has two important qualities: it is exceptionally free from detrital components,
and it is rich in uranium content. In its deepest part, the GdS is overlain by about 400 m
of rock, so the seepage water responsible for speleothem formation has lost most of its
detrital load, leading to the precipitation of exceptionally pure calcite. The Brecce di
Seravezza formation probably is the main source of the relatively high uranium content
that allows very precise radiometric dating using both conventional U-series and the more
novel U-Pb techniques [62,63]. Among the hundreds of ages obtained until now, the oldest
comes from CC16, one of the stalagmites topping the described succession. The bottom
of the stalagmite has been dated by Woodhead et al. [63] at 1.054 Ma (2σ = 0.024) using
a methodology that allows producing U-Pb ages of high quality. Moreover, in the lower
section of this gallery, a small and shallow lake, with walls covered by calcite flowstones,
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is present. On the floor, the CaCO3 deposition has formed a subaqueous drapery with
a cave-cloud shape, with lily-pad structures created where calcite crystals grow radially
from projecting substrata. U-Pb dating shows that the basal age of the subaqueous calcite
deposit reaches 0.967 + 0.018/−0.006 Ma [59].

5.2. The Galleria Delle Stalattiti (GdS) Evolution

Reconstructing the evolution of the GdS requires considering some uncertainties.
A chronological interpretation of cave sedimentation is often complex. Waterways can be
continuously obstructed and reopened, the sedimentation rate can be extremely variable,
and deposits can be diachronous.

According to our stratigraphic and chronological reconstruction, the GdS was firstly
formed as a phreatic tube, whose original morphology is preserved in the ceiling shape.
Successively, the tube was affected by downcutting in epiphreatic to vadose conditions.
Deposition is probably related to the transition from phreatic to vadose conditions and
to a phase with high-solid-load transport. The grain sizes of the fluvial deposits and the
occurrence of erosional surfaces testify to changes in water energy that could have also a
climatic meaning. Otherwise, the fluvial deposits facies testify to a transition from low-
to high-energy sediments (sand to pebble and gravel) progressively filling the passages.
An increase of energy in the stream regime is also marked by the upper erosional surface of
carbonate arenite, followed by coarse conglomerate deposition. A subsequent depositional
phase, which was concurrent with widespread roof breakdown, was followed by an ero-
sional phase cutting the entire sequence. A phase of calcite precipitation topped the detrital
succession with a thin flowstone and stalagmites at least since 1.05 ± 0.2 Ma [63]. After
the erosive phase ended, a small lake formed at the bottom of the gallery, where subaque-
ous speleothems have been growing directly on the rock substratum since ~0.97 Ma [59],
indicating the definitive interruption of vadose flow.

The age of the carbonate arenite in the GdS can be constrained by coupling paleomag-
netic data from fluvial deposits and radiometric ages from speleothems. At the base of
the deposits, the magnetic zones (Figures 2 and 5) start with a reversed polarity record
(older deposition phase: layer 9) followed by a normal polarity record (layers 8 to 5) and
then by a reverse polarity record at the top (younger deposition phase: layers 4 to 1).
Stalagmite CC16 caps the stratigraphic succession, providing an age of 1.05 Ma [63]. This
means that the fluvial deposition reasonably started within the Matuyama Chron before the
Jaramillo subchron (1071–991 ka), [64]. During the Matuyama, several short geomagnetic
reversal events have been documented (see [64] and reference therein for details). Many
of these are still controversial because defining the occurrence of a short reversal requires
a high-precision reconstruction of a paleomagnetic field, which is dependent upon the
temporal resolution of the archives and the geological constraints. Besides, not all the
reported reversals have been recorded at all studied sites (see [65] for details). For these
reasons, we have considered only the events reported by Simon et al. [64]. These have been
detected by the relative paleo-intensity (geomagnetic dipole moment low) and Be-ratio
records, and are commonly reported in the literature [65,66]. We identified three different
events/subchrons that could match the normal polarity record from layers 8 to 5 in the
cave sediment, namely the Cobb Mountains (1176/1204 ± 5 ka), the Gandar (1459 ± 9 ka),
and the Gilsa (1587 ± 8 ka). This means that the fluvial deposition started at least before
the normal Cobb Mountains subchron zone in the Matuyama reverse epoch, dated at
about 1.2 Ma [64]. A local base-level fall may have occurred during the following reverse
subchron prior to 1.05 Ma, causing the incision phase that cut the sediments underlying
the CC16 stalagmite; this erosion phase had already expired at ~0.97 Ma when the lake had
formed, and the calcite deposition took place. Since ~1 Ma, the scenario probably remained
unchanged, as testified by the continuous and undisturbed deposition of the subaqueous
speleothem [59]. The time lapse occurred between the end of the clastic deposition and the
beginning of CC16 formation is unknown: the most conservative hypothesis is to consider
this interval negligible.



Geosciences 2021, 11, 65 10 of 18

The clastic deposition within the GdS probably occurred when this horizontal passage
was close to the local base level. Furthermore, the erosion of coarse fluvial deposits requires
a hydraulic gradient, therefore implying that the GdS was above local, and even more above
the global base level, before speleothem formation, but its past real elevation is unknown.
Presently, the base level of this karst system is at 175 m a.s.l., in the Vezza River valley, close
to the contact between the Paleozoic basement and dolostone, that is, ~700 m below the
present GdS elevation. The presence in the Corchia Cave system of relict phreatic passages
at ~1600 m a.s.l. [67], that is, ~700 m above the GdS, implies that during GdS formation,
there were at least 700-m-thick previously exhumed rocks. In summary, radiometric and
paleomagnetic data indicate that at least by the Early Pleistocene (1.6–1.2 Ma), fluvial
sediments were deposited in the GdS, indicating that this portion of Mt. Corchia was
necessarily above the sea level at that time.

5.3. Exhumation/Uplift History from Thermochronological Dating for the Alpi Apuane

Since the first application of thermochronologic methods in the Alpi Apuane [68],
various authors have tried to derive exhumation and rock-uplift rates from them [4–8].
Most of these authors agree on an exhumation rate ranging from 1.3 to 1.8 mm/year
between about 6 and 4 Ma (late Miocene–early Pliocene), followed by a lower rate ranging
from 0.6 to 0.9 mm/year, since early Pliocene to the present (Table 1).

Table 1. Summary of the Alpi Apuane exhumation rate estimated in previous studies.

Ages Exhumation Rate mm/Year Method Reference

6–4 Ma 1.4 [8]
4–0 Ma 0.6 AFT, ZFT, AHe, ZHe [8]
6–4 Ma 1.3–1.8 AFT [7]
4–0 Ma 0.6–0.9 AFT [7]

middle Pliocene 0.8 AFT, AHe, ZHe [6]
6–2 Ma 0.8–1.7 AFT, ZFT [5]

AFT: Apatite Fission Tracks; ZFT: Zircon Fission Tracks; AHE: Apatite (U-Th)/He; ZHe: Zircon (U-Th)/He.
The ages represent the time periods relevant to the exhumation rate estimates.

Fellin et al. [8] suggested a high exhumation rate (>1.4 mm/year) during the late
Miocene, followed by a decrease to ≤0.6 mm/year in the Pliocene. The only inconsistency
with this interpretation, as noted by the authors, is related to some samples of a small
region in the easternmost Alpi Apuane (i.e., Fornovolasco area, 7 km east of our studied
site; see Figure 1) where AFT ages as young as 1.9 Ma were obtained [5]. Close to Mt.
Corchia, AFT ages of around 3.8 Ma are reported [8]. The difference in age between the data
at Fornovolasco and the data west of Mt. Corchia could either indicate a real differential
exhumation or it could relate to overscatter of the data. As clearly shown in Figure 1a,d
(see also [2,31,69,70]), no first-order high-angle faults with a high displacement throw
(hundreds to thousands of meters) occurs just east of Mt. Corchia, justifying a significant
differential uplift. No splitting of the metamorphic core in two sub-domains—Mt. Corchia
in the west and Fornovolasco in the east—is also feasible, and therefore a differential
exhumation history between them may be ruled out.

Notably, the highest of the three horizontal/sub-horizontal levels of the Corchia Cave
system, about 500 m above the GdS, hosted the CC17-f2 stalagmite dated by Engel et al. [71]
about 1.9 Ma. This age testifies a Corchia karst system well developed, at least in its
higher part, with galleries already formed and speleothems growing. This scenario is
inconsistent with AFT ages of about 1.9 Ma, indicating a depth of at least 3000 m just a
few kilometers far. On this basis, we exclude the AFT ages from Fornovolasco and we
consider only the AFT ages derived from the nearby Paleozoic rocks [5,8], west of the
Corchia Cave, as representative of the whole Mt. Corchia area and of the eastern side of
the Alpi Apuane core.
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5.4. Rock Uplift Rates from Cave Evolution and Hypogean Deposits

Rock uplift rates can be inferred from exhumation rates, assuming that uplift triggers
a similar denudation rate at regional scale. Otherwise, cave system evolution can furnish
a reliable indication of the lowering rate of the local base level, which is usually strictly
dependent on river incision. So, also in this different approach, we must presume that
river incision acts as a quick-response process to tectonic uplift. These assumptions are
quite acceptable in mountain regions, where surface processes are very active and the
erosion rate is usually higher than uplift rate. Despite this intrinsic uncertainness of the two
approaches, a rough estimate of uplift rates can provide useful information to reconstruct
the tectonic dynamics of a mountain range.

We use the new chronological data for the GdS combined with the available ther-
mochronology data to provide revised estimates of the uplift rates of this sector of the
Alpi Apuane since the late Pliocene. The approximations previously discussed imply that
the rates we are going to propose could underestimate the true uplift rate. For all these
reasons, hereafter, we refer to the uplift rate computed between the closure of the apatite
geothermal system and the deposition of CC16 as a minimum uplift rate. We take as major
local constraints (i) the U-Pb speleothems ages; (ii) the magnetostratigraphic chronologies
considering the three possible normal subchrons older than 1 Ma (Cobb Mountain, Gardar,
Gilsa; Table 2); and (iii) the gallery morphology and the reconstruction of the cave infill
phases (see Table 2).

Table 2. Ages used to estimate the uplift rates.

Sample Present Elevation (m a.s.l.) Age (Ma) 2σ Dating Method Lithology Formation Unit Reference

CD3 870 0.97 0.010 U-Pb Subaqueous flowstone [59]
CC16 875 1.05 0.024 U-Pb Stalagmite [63]

CO5-8 865–874 1.176/1.204 0.005 Paleomagnetic chronology
Cobb Mountain Hypogean deposit This work (using [64])

CO5-8 865–874 1.459 0.009 Paleomagnetic chronology
Gardar Hypogean deposit This work (using [64])

CO5-8 865–874 1.587 0.005 Paleomagnetic chronology
Gilsa Hypogean deposit This work (using [64])

CP1 675 3.93 0.36 AFT Phyllite Paleozoic basement [5]
CP3(4) 650 3.64 0.71 AFT Phyllite Paleozoic basement [5]

Considering the ages of the GdS deposits, the minimum local base level allowing
gallery formation and fluvial sediment infilling, and the AFT closure depths (i.e., the depth
of the 110 ◦C isotherm), a minimum rock uplift rate can be inferred from late Pliocene to
Early Pleistocene.

To obtain a more reliable estimate, we must consider that at the time of GdS filling
deposition, the rock where samples for AFT analysis are located were still buried below
a thickness of rock successively eroded (Figure 6). In the simplest hypothesis that valley
slopes have maintained a constant profile, this thickness should be of the same order of
the valley incision and so of the base-level lowering, that is, ~700 m. Considering that
the most elevated sections of the Alpi Apuane ridge consists of carbonate formations, we
can suppose a slower denudation rate for summit areas and consequently a progressive
increasing of slope gradient due to river incision. In this more realistic framework, the
residual burial over AFT-dated rock samples at GdS deposition time would be around
500 m (see Figure 6). In other words, exhumation/uplift rates from the time of AFT closure
to GDS sediment formation must be calculated on a thickness that is roughly 500 m lower
than that calculated based only on geothermal gradients.
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Figure 6. Schematic representation of the geomorphic evolution of Mt. Corchia in the last 1.2–1.6 Ma, considering the
hypothesis that valleys were affected by an erosion rate higher than carbonate ridges.

We have estimated the exhumation/uplift rates considering two different geothermal
gradients, 25 ◦C/km and 30 ◦C/km, and three hypothetical ages for basal GdS sediments,
~1.2, ~1.5, and ~1.6 Ma, obtaining rates ranging from ~1.6 to ~1.1 mm/year (Table 3).

Table 3. Rock uplift rates of Mt. Corchia constrained by AFTs (from [5]) and the magnetostratigraphic dating.

Minimum Rock Uplift Rate from Closure AFT to GdS Clastic Deposition Maximum Rock Uplift Rate from GdS
Clastic Deposition to Present

Geothermal Gradient 25 ◦C/km Geothermal Gradient 30 ◦C/km
Subchrone Age (Ma) (mm/year) (mm/year) Subchrone (mm/year)

Cobb Mountain 1.2 1.3 1.1 COBB MNT 0.6
Gardar 1.5 1.5 1.2 GARDAR 0.5
Gilsa 1.6 1.6 1.3 GILSA 0.4

The phase of clastic deposition in the GdS was followed by a relative lowering of the
local base level, which was responsible for an erosive phase cutting throughout the entire
fluvial deposits until the carbonate bedrock. The migration of the cave stream toward lower
passages allowed the formation of the Laghetto basso, a small pool mostly fed by dripping,
where subaqueous speleothems have been continuously growing during about the last
million years. This suggests that during this time, the uplift of the area was uniform, with
no significant changes that could have disturbed or interrupted the seepage patterns and
the lake feeding.

Moreover, assuming that a minimum hydraulic gradient was present during cave
filling and considering the modern elevation of the sampling site at ca. 870 m a.s.l.,
the maximum uplift rate in the last 1.2–1.6 Ma in the Corchia area is estimated around
0.4/0.6 mm/year (Table 3). These values agree with the Middle–Late Pleistocene incision
rates estimated by Piccini et al. [20] in the nearby Frigido River basin and with the vertical
component of motion derived for the area by Bennett et al. [72] using the Common-mode
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Signal Reduced time series of GPS networks and consistent with an uplift mainly driven
by erosion.

5.5. Sediment Sources

Petrographic analysis and lithic components of the sampled fluvial deposits furnish
information about the sediment sources. The presence of Paleozoic basement and marble
clasts, as well as of other minerals typical of the Corchia area, indicates that at least a part
of the source rocks would have been in a catchment area very close to the deposition site.
Notably, non-metamorphic sandstones are also present as lithic components (Figure 3a,b),
despite the absence of such rocks in the areas surrounding Mt. Corchia at the present
time (Figure 1a,d). Alluvial infilling with pebbles of non-metamorphic rocks was already
described by Piccini [26,67,73] in the higher levels of the Corchia system and dubitatively
attributed to remnants of Ligurian Units in the catchment area during their deposition.
Looking at the regional geology, non-metamorphic sandstones are present in the Tuscan
Unit and the Ligurian Units or as secondary sediments in Neogene deposits. Presently,
the closest outcrops of these units are several kilometers far from the Corchia Cave and
at lower elevations than the upper entrances of the karst system. Consequently, the
source of the studied deposits had to be completely removed (see Figure 1a,d) during the
erosion-mediated exhumation of the metamorphic units activated by high-angle normal
faulting that started in the region 4–5 Ma (e.g., [8,37]). We can so suppose that the allogenic
components of sediment deposed in the GdS derive from the erosion of these materials
deposed in the higher levels of the karst system during a previous deposition phase.

A schematic reconstruction of the Corchia Cave system and its catchment area devel-
opment, from 2.5 Ma to the present, is proposed in Figure 7. AFT constrain the Apuane
Metamorphic Complex, as covered by the Tuscan and Ligurian Units already juxtaposed
by low-angle normal faults (LANFs) [3,41] still at a depth of 3.5–2.8 km (with a 25 ◦C or
30 ◦C geothermal gradient, respectively) at about 3.8 Ma. The Apuane metamorphic core,
including the zone hosting the Corchia Cave system, rose from depth to surface with at least
three significant stillstand phases, as testified by the three major horizontal/sub-horizontal
levels of galleries at around 1400, 1200–1100, and 900 m above the present sea level [26], the
higher of which was carved, and partially filled by alluvial sediments of non-metamorphic
carbonate sandstone [26], before 1.9 Ma [71]. This testifies that before that time, surface
waters were drained through the Corchia system coming from a catchment area partially
formed by the Tuscan and Ligurian Units overlaying the metamorphic ones. This presently
eroded shallow crustal section fed the cave fluvial deposits. The lowest of the main levels,
where the GdS is found, was carved at least before ~1.6–1.2 Ma, when the deposition of
the alluvial sediments occurred. Afterward, the base-level lowering led to stream erosion
of the hypogean infill until the basal bedrock. The development of the small lake with
submerged speleothems growing continuously since ~1.0 Ma testifies to the stability of this
cave sector and possibly a continuous, uniform uplift in the area.
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Figure 7. Schematic model showing the proposed chronology of the Corchia Cave system evolution and Alpi Apuane
uplift over the last 2.5 Ma based on hypogean radiometric and paleomagnetic analyses and AFT thermochronology from
the literature (Figure 1 and Table 2). 2.5 Ma: the highest of the sub-horizontal passages of the Corchia Cave system were
already carved, while epigean streams sank and fed the sedimentary deposits with material eroded from metamorphic and
non-metamorphic units. The AFT data locations are still buried at about 1.5 km depth. 1.2–1.6 Ma: the two higher karst
levels of the Corchia Cave were completely developed, the lowest one was already carved near the base level, and the clastic
infilling was occurring in the GdS. Present: the GdS is at about 870 m a.s.l., and a new phreatic level is forming around the
modern base level.

6. Conclusions

Using robust dating from independent hypogean deposits in the Corchia Cave, we pro-
vide new information about the tectonic uplift of the Alpi Apuane since the lower Pliocene
to the present. In particular, the evolution of the GdS is reconstructed by combining
morphology observations, radiometric ages from speleothems, and magnetostratigraphic
records from fluvial hypogean deposits (Figure 7). The ages suggest the GdS was carved
as a phreatic tube and successively filled by fluvial deposits before the beginning of one
of the normal subchrons comprised within the Matuyana reverse epoch, that is, about
~1.6/1.2 Ma ago. Between 1.6/1.2 and 1.0 Ma, a strong erosive fluvial phase testified for a
local base-level lowering. This phase ended before 1.0 Ma, when the continuous and undis-
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turbed deposition of subaqueous speleothems began. Based on these data, we estimate a
minimum rock uplift rate of the Alpi Apuane since the late Pliocene to Early Pleistocene
(1.6/1.2 Ma) of ~1.6/1.3 and 1.3/1.1 mm/year (for 25 and 30 ◦C/km geothermal gradient
values, respectively). This phase was followed by a decrease to ~0.4/0.6 mm/year, in good
agreement with the modern vertical velocity estimated by Bennett et al. [72] from continu-
ous GPS station analysis (0.5 mm/year) and congruent with rock uplift driven mainly by
erosion. The overall tectonic implications of these new estimated exhumation rates and
rock uplift are outside the scope of this paper. Nevertheless, we would like to highlight the
relevance of tectonics and of a high exhumation rate until the Early Pleistocene (not the
Pliocene, as previously assumed) with a decreasing rate since at least 1 Ma. Further works,
considering in a regional perspective thermochronologic ages and other constrains as
hypogean deposits or stable oxygen isotope paleoaltimetry (e.g., [73]), will allow a better
understanding of the vertical movements that affected the Apennine chain.

The petrographic study of the fluvial sediments highlights the presence of lithic
components sourced from rocks no longer present in the modern Corchia catchment
area. This implies an inversion of relief probably occurred during the Early Pleistocene,
suggesting that the Corchia allogenic catchment area was a valley floor draining material
from a cover since eroded. During an erosion-mediated exhumation history, probably
activated by high-angle normal faulting, the carbonate valley floor became a ridge, as is
the case in the present landscape. Further investigations in the higher cave levels could
improve time constraints, allowing a more detailed reconstruction of tectonic uplift versus
stillstand phases during the Pliocene–Early Pleistocene. Our results thus highlight the
importance of several independent proxies for estimating exhumation or rock uplift rates
in orogenic settings, because this process, even over time spans of less than 5 Myr, is not
steady state. A comprehensive study of hypogean sediments in old karst terrains, coupled
with dating, could therefore provide helpful tools to better understand and constrain the
exhumation history of recent and active mountain belts.
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