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Abstract: The exploitation of gravity fields in order to retrieve information about subsurface geologi-
cal structures is sometimes considered a second rank method, in favour of other geophysical methods,
such as seismic, able to provide a high resolution detailed picture of the main geological horizons.
Within the current work we prove, through a realistic synthetic case study, that the gravity field,
thanks to the availability of freely of charge high resolution global models and to the improvements
in the gravity inversion methods, can represent a valid and cheap tool to complete and enhance
geophysical modelling of the Earth’s crust. Three tests were carried out: In the first one a simple
two-layer problem was considered, while in tests two and three we considered two more realistic
scenarios in which the availability on the study area of constraints derived from 3D or 2D seismic
surveys were simulated. In all the considered test cases, in which we try to simulate real-life scenarios,
the gravity field, inverted by means of an advanced Bayesian technique, was able to obtain a final
solution closer to the (simulated) real model than the assumed a priori information, typically halving
the uncertainties in the geometries of the main geological horizons with respect to the initial model.

Keywords: inverse gravimetric problem; 3D inversion; crustal structure; Moho; depth to basement

1. Introduction

The study of the Earth’s crust by means of indirect geophysical methods, the so
called potential field methods, is crucial for a great variety of scientific and industrial
activities. In particular, focusing on the gravity field, nowadays there is a broad availability
of worldwide datasets and models thanks to the observations of several dedicated satellite
missions, to the exploitation of satellite altimetry (offshore) and to the advancements in
airborne and shipborne gravimetry. These datasets and models can be profitably used to
determine the Earth crust major characteristics from a global to a very local scale (see, for
instance, [1–3]). The recently developed and freely available Global Gravity field Models
(GGMs), such as the XGM2019e model [4] with a spatial resolution of about 3600 m and
an accuracy of the order of 3 mGal (for the sake of readability, within the current work
we choose to express gravity related quantities in mGal instead of in m/s2, i.e., in the
International System of Units, recalling that 1 mGal = 1−5 m/s2), are paving the way to
geophysical applications based on the processing and interpretation of gravity field data
both for scientific as well as industrial purposes without the need of further gravity surveys.
As for the industrial applications, which are mainly related to natural resources exploration
and in particular hydrocarbons, the gravitational field is usually exploited in two scenario:
It can be used in the preliminary stage of the exploration activities or in complex areas
where seismic surveys fail. In the former, gravity is exploited to perform a first study at
large scale (e.g., about 5 · 105 m × 5 · 105 m or even more) in order to optimise and further
focus other, and usually more expensive, geophysical surveys. In the latter scenario, where
the presence of peculiar geological formations (e.g., salt diapirism) lead the seismic survey
to fail, gravity can be profitably used to map the deepest layers. The main characteristics of
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both these scenarios are summarised in the following:
Scenario 1, advanced modelling of deepest layers:

• a local (smaller than 1 · 105 m × 1 · 105 m) area to be investigated;
• a good geological knowledge of the area available from previous studies;
• several seismic profiles or even 3D seismic available, properly constraining the shal-

lowest geological structures and units;
• well logs to constrain density distribution in the shallowest layers;
• Moho and basement depths known with poor spatial resolution and accuracy.

Scenario 2, exploration in frontier areas:

• a large (greater than 1 · 105 m × 1 · 105 m) area to be investigated;
• a general geological knowledge of the area available from literature;
• few seismic profiles available, giving sparse information on the shallowest geological

structures and units;
• few, or even no, constraints for the density distribution;
• Moho and basement depths known only from global models (such as the CRUST1.0

model [5]) but with poor spatial resolution and accuracy.

In this context, the latest GGMs eventually combined with more detailed gravity data
collected at a ground level, can be exploited to improve the geophysical modelling of the
study area without the need for further dedicated gravity surveys. This is especially true
in offshore regions where the contribution of satellite altimetry has significantly improved
GGMs and since accurate gravity is usually collected together with seismic acquisitions.
In this respect, the bottleneck for both the above scenarios is now represented by the
development of ad-hoc techniques to fully exploit the gravity observations together with
the available a priori knowledge. It is in fact well known that gravity inversion, in order to
be effective, should rely on a set of external constraints (such as well logs or information
from seismic profiles) to face the inherent problem related to the non-uniqueness of its
solution (see e.g., [6]). In the current work, after recalling the main idea behind the Bayesian
inversion algorithm presented in [2,7,8], we will assess the accuracy and reliability of the
inversion on a realistic synthetic case study similar to those usually faced in industrial
resource exploration activities trying to simulate the above Scenarios 1 and 2. In doing
this, we are also motivated by the dual objective of generating a complete realistic case
study that can be in general used to assess gravity inversion solutions and of finalising
a methodology to improve geophysical modelling based on seismic data by means of
gravity inversion.

In the next section (Section 2), the main ideas behind the Bayesian inversion algorithm
used in the current study are recalled, while in Section 3 the developed synthetic realistic
case study is described. The different tests performed are reported in Section 4, and finally,
in Section 5, some conclusions are drawn.

2. Methods

The inversion of the gravitational field to retrieve 3D density variations within the
Earth’s crust used in this work is based on the Bayesian algorithm presented in [2,7,8]. We
just recall here its main concept and characteristics, leaving the interested reader to the
above references and in particular to [8] for a detailed description of the theory behind
the inversion. The most important feature of the algorithm, which differentiates it from
the majority of other classical inversion schemes, is that it allows to invert at the same
time for the 3D density distribution and for the geometry of the main geological units in
a harmonised way. This is obtained by discretizing the study volume V in a set of small
volumetric elements (made by right rectangular prisms), and introducing as unknowns
for each element Vi, an ancillary categorical variable defining the geological unit (here
called label, Li) and a continuous variable ρi, describing the density of each element Vi. In
other words, given a volumetric element i, the label Li defines whether it is made by water,
Plio-Quaternary sediments, Messinian salt, etc. In order to reduce as much as possible the
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space of the possible solutions the proposed inversion algorithm relies on the definition
of a probabilistic a priori model. This a priori model is based on a set of maps of the
depth of the main geological horizons with the corresponding predicted accuracy (used
to define the a priori model in terms of label) and on information (expressed in terms
of average value and range of variability) of the density within each layer. Given these
data, the algorithm builds a complete 3D model of the considered volume equipped with
a posterior probability distribution P(ρ, L|∆go) able to evaluate any perturbation of the
initial model. Here ∆go is the vector of the observed gravity anomalies, ρ is the vector of
the densities ρi and L is the vector of the labels Li. In particular, the posterior probability
distribution is P(ρ, L|∆go) ∝ e−φ with φ given by:

φ =

{
1
2
(∆go −Aρ)TC−1

∆g (∆go −Aρ) +
1
2
(ρ− ρ`)

TC−1
` (ρ− ρ`) +

1
2
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N

∑
i=1

s2(Li)+

+
1
2

λ
N

∑
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∑
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q2(Li, Lj
)} N

∏
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χ[ρ` |3σ2
` ]
(ρi) (1)

where A is the forward operator, ρ` is the vector composed by the set of ρ` = ρ(Li), i.e., the
average density of a given label `, C` is a diagonal matrix containing the set of σ2

` = σ2(Li),
i.e., the variance of the density of a given label `, s2(Li) is a weight measuring the distance
of the given model from the a priori one in terms of label, q2(Li, Lj

)
is a weight measuring

the clustering of two neighbours elements i, j and χ[ρ` |3σ2
` ]
(ρi) is the characteristic function,

truncating the distribution between ρ` − 3σ` and ρ` + 3σ`.
This function is highly non-linear, non-convex and contains a huge number of un-

knowns, so it is particularly difficult to be sampled or even plotted. For these reasons,
the chosen solution is to find the set of parameters ρi and Li that maximises the posterior
probability. Wishing to estimate a maximum a posteriori of our posterior distribution, we
face an optimization problem with the part of the variables that are discrete. The solution
resorts to an application of a Gibbs sampler combined with a simulated annealing [9], as
can be found in a large part of the literature; here the application of the method to the
image analysis, with the seminal paper by [10], is worth mentioning. Basically, the final
solution is computed as the perturbation of the initial model which maximises the a priori
probability and which fits the gravity observations. Note that the algorithm will search the
solution only in the range of the admissible models given the accuracy defined by a priori
information. Here γ and λ are empirically set trying to equalise the order of magnitude of
the different terms of Equation (1).

This Bayesian inversion scheme is particularly suitable for the two scenarios identified
in Section 1 since it would allow for a proper modelling of the reliability and accuracy
of different available information: Seismic profiles can locally constrain the geometries
along a given line, 3D seismic can fix the model on a specific area and well logs data can
locally reduce the uncertainty in the density distribution of each geological unit. Moreover,
the main geological horizons’ depth together with the predicted accuracy, required to build
the a priori model, can be easily computed, e.g., by means of a kriging procedure [11] or
by an analogous Least Squares Collocation [12], directly applied to the interpreted seismic
profiles. Both these interpolation algorithms will give similar results predicting maps
coherent with the interpreted seismic lines and with accuracy worsening when moving
away from seismic. As for the deepest layers, as mentioned before, in the absence of
better information, we can suppose to use global crustal models (or even flat surfaces) but
assigning them a very high uncertainty.

3. The Synthetic Case Study

In order to evaluate the quality of a gravity inversion algorithm the easiest way is to
make use of synthetic models which, however, should be complex enough to simulate real-
world problems. This is in fact the only possibility to quantitatively evaluate the closeness
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of the retrieved solution to the true model. For this reason, we have simulated, starting
from a real set of interpreted seismic profiles in the Mediterranean Sea, a realistic synthetic
model made of nine geological layers, namely bathymetry, Plio-Quaternary sediments,
Messinian salt, Tortonian, Oligocene, Creataceous and Jurassic sediments, continental crust
and mantle. In order to build a synthetic model, we start from analysing the available
interpreted seismic profiles as follows:

1. we compute a thickness of each geological unit;
2. we estimate an empirical covariance of the thickness of each layer and interpolate it

by means of Gaussian theoretical covariance function;
3. for each layer, we compute a new random thickness with the same stochastic charac-

teristics of the original dataset by classical triangular decomposition of the covariance
matrix [13];

4. we apply the same procedure to the first layer, namely the bathymetry;
5. finally, starting from the new bathymetry and thicknesses, we build a set of simulated

seismic profiles with the same stochastic characteristics as the initial one.

The main features of each layer in terms of mean, standard deviation (STD) and
correlation length are reported in Table 1.

Table 1. Statistics of the simulated geological horizons.

Layer Average Depth [m] Depth STD [m] Correlation Length [m]

Bathymetry 2010 730 24,000
Base Plio-Quaternary 2220 710 23,000

Base Mess. Salt 3550 970 26,000
Base Tortonian 4210 1460 29,000
Base Oligocene 4990 1550 26,000

Base Creataceous 5800 1480 28,000
Base Jurassic 6920 1680 26,000

Basement 11,610 2960 46,000
Moho 28,360 1730 31,000

The modelled layers up to the base of the Jurassic sediments are characterised by a
general increase of the STD with depth and by correlation lengths of the order of 25,000 m;
the deepest layers, namely the basement and the Moho, instead show larger correlation
lengths and STD. The synthetic seismic profiles have been interpolated by means of kriging
procedure [11] on a set of regular grids with spatial resolution of 1500 m, also obtaining
maps of the accuracy for each layer. Considering the densities, we assumed a constant
density distribution for each layer, apart from the pre-Jurassic sediments and continental
crust, where a linear trend with depth was added in the model. Densities of the model,
together with their gradient in the z direction, are reported in Table 2.

Note that the constant density hypothesis is probably the largest approximation made
to create the synthetic model. However, this simplification is not exploited in the inversion
where an unknown density for each volumetric element has been considered. Starting
from the horizons and densities, we have been able to build the 3D volume of our synthetic
model up to a depth of 35,000 m and with a spatial resolution of 1500 m in the x and y
directions and of 100 m in the z direction. As an example, we show the depth-to-basement
and depth-to-Moho maps and two profiles of the 3D synthetic model (Figure 1).

The figure shows the complexity of the model which simulates a real-world scenario;
in particular, black lines represent the discontinuities between the different geological units.
The linear gradients added to the last sedimentary layer and to the continental crust are
also recognisable from the figure. In the rest of the paper, we will refer to this model as
the “true model” to distinguish it from the “a priori model”, which is the one used as
input to the Bayesian inversion, and the “a posteriori model”, which is the result of the
inversion itself.
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Table 2. Density values used to generate the synthetic model.

Layer Average Density [kg/m3] Density Gradient [kg/m4]

Water 1030 0
Plio-Quaternary 2220 0

Mess. Salt 2160 0
Tortonian 2260 0
Oligocene 2400 0

Creataceous 2480 0
Jurassic 2550 0

Pre-Jurassic 2620 0.005
Continental Crust 2670 0.012

Mantle 3300 0

Figure 1. Depth to basement and Moho depth of the synthetic model (upper images). Example of two profiles (AA’ and BB’) on the
synthetic 3D model. Solid black lines represent discontinuity between different geological units, colours represent density in kg/m3. W
stands for oceanic water, P Plio-Quaternary sediments, M Messinian salt, T Tortonian sediments, O Oligocene sediments, C Cretaceous
sediments, J Jurassic sediemnts, PJ Pre-Jurassic sediments.

To complete the synthetic dataset gravity observations at zero level have been simu-
lated by applying a forward operator [14] to the modelled volume and adding a 3 mGal
coloured noise with a correlation length of 4000 m (both the gravitational effect of the 3D
volume and the observation error are shown in Figure 2).
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Figure 2. Gravitational effect of the synthetic model (left), and simulated observation error (right).

In order to remove border effects in computing the forward model a border of 3 · 106 m
was added around the volume. The border was created by extending in a constant way the
limits of the volume according to what is described in [15]. This simulated dataset will be
used as observation during the different inversions performed.

4. Results

We will present now, the results obtained by applying the inversion algorithm, briefly
summarised in Section 2, to a set of tests derived by exploiting the synthetic model pre-
sented in Section 3. In particular, apart from an initial extremely simplified case that mimics
a classical two-layer problem [16] (i.e., the Moho depth estimate supposing all the other
information perfectly known), the two scenarios identified in Section 1 are treated. These
last two cases show how the proposed gravity inversion can be profitably used to improve
the modelling of a given volume also in the presence of seismic observations. In all the tests
presented (except for the first one), we used the same densities as in the a priori models,
obtained by adding a constant (random) value to the true density of each layer of the true
model. The obtained average values (i.e., the elements of the vector ρ` in Equation (1)) are
reported in Table 3 together with the density accuracy in terms of STD used in the inversion
(i.e., the square root of elements of the C` matrix in Equation (1)).

Table 3. Density values and accuracy of the a priori models for Scenario 1 and 2 inversions
(Sections 4.2 and 4.3).

Layer Average Density [kg/m3] Density STD [kg/m3]

Water 1030 0
Plio-Quaternary 2206 10

Mess. Salt 2172 10
Tortonian 2251 10
Oligocene 2411 10

Creataceous 2473 10
Jurassic 2549 10

Pre-Jurassic 2614 22
Continental Crust 2680 31

Mantle 3321 31

4.1. Test 1: The Two-Layer Problem (Moho Estimate)

In the first investigated case study, we consider a simple situation in which everything
is perfectly known apart from the Moho depth. Even if this is a not realistic scenario, it is
useful to test the algorithm performance in a case in which the uniqueness of the solution is
theoretically guaranteed, see, for instance, [6]. Moreover, this hypothesis, which is the basis
of the two-layer model, is usually assumed in many scientific works [17,18]. In the absence
of better information to build the a priori model, required by the inversion algorithm, we
used a flat Moho at a depth of 28,000 m (i.e., the actual average depth of the Moho in the
area). As for its uncertainty, we suppose a range of ±3000 m. The a priori model for the
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two same profiles of Figure 1 is reported in Figure 3, where the dashed lines represent the
accuracy of the a priori Moho.

Figure 3. Example of two profiles (AA’ and BB’ in Figure 1) for the two-layer problem inversion. Solid black lines represent
discontinuity between different geological units, dashed lines represent uncertainty, colours represent density in kg/m3.

The gravitational effect of the difference between the true and the a priori model is
shown in Figure 4 on the left, together with the residual field after the inversion on the right,
while in Figure 5 on the left the final estimated Moho is reported.

Figure 4. Two-layer problem inversion: Residuals between the gravitational effect of the true and a priori model (left) and
of the true and the a posteriori model (right).

Figure 5. Two-layer problem inversion: Moho estimated by the Bayesian inversion (left) and from classical Parker–
Oldenburg inversion (right).

It can be seen that the algorithm has been able to almost recover the complete signal of
the Moho, with differences between the true and the estimated depths of only 300 m (STD).
For the sake of comparison, we also reported the Moho obtained by applying a classical
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Parker–Oldenburg inversion [16]. It can be seen how the Bayesian inversion is able to
recover in a better way the true shape of the Moho. This is mainly due to approximations
used in the forward and inverse operators of the Parker–Oldenburg inversion, which cut the
high frequencies of the signal and by the fact that the Parker–Oldenburg inversion requires
a constant density contrast, which is not the case for the considered model. The crustal
density is in fact about 2900 kg/m3 at a depth of 24,000 m (the minimum Moho depth)
and more than 3000 kg/m3 at a depth of 35,000 m (the maximum Moho depth) with a
corresponding reduction in density contrast of about 25%. Looking to the gravity residuals
of Figure 4, we can see that the Bayesian inversion over-fits the signal, showing a final
residual of only 0.2 mGal (STD). This is possible because the algorithm is allowed to change
the 3D density distribution inside each layer: The final model shows a difference in terms of
density of about 4 kg/m3 (STD). Note that the resultant density model of this first Bayesian
inversion test is similar to the true one even if, in the a priori model, a not perfectly correct
density is used. We have in fact performed a set of tests in which the a priori crustal density
has been increased up to 30 kg/m3 and the inversion is still able to recover the correct 3D
density distribution (error STD smaller than 8 kg/m3) and the proper Moho depth (with
differences with respect to the true model of 500 m in terms of STD).

4.2. Scenario 1: Advanced Modelling of Deepest Layers (Basement and Moho Estimate)

In a second case study, a more realistic scenario has been tested in which only the
geometries of the shallowest part of the model, i.e., up to the crystalline basement, are
considered perfectly known, while densities and the deepest layers, namely the Moho and
the basement, are unknown. This case has an important counterpart in real-life problems
and can be considered as an example of Scenario 1 mentioned in Section 1, in which the
shallowest layers are constrained by a 3D seismic survey and only the lower part of the
volume is unknown. Again in the a priori model, we use as starting points for Moho and
basement flat surfaces at a depth equal to the average value of the considered layers. As for
their accuracy, we keep 3000 m for the Moho and we suppose 2000 m for the basement.
Since the algorithm allows to move each layer in the range defined by the a priori accuracy,
where the distance between the true surface and the a priori one is larger than the accuracy,
the accuracy was increased up to the real surface, thus allowing the inversion to obtain
the correct result. The new a priori model with the accuracy of each layer is shown in
Figure 6 while the differences, in terms of gravity, between the true and the a priori models,
and between the true and the a posteriori models, are shown in Figure 7.

Figure 6. Example of two profiles (AA’ and BB’ in Figure 1) for Scenario 1 inversion:. Solid black lines represent discontinuity
between different geological units, dashed lines represent uncertainty, colours represent density in kg/m3.
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Figure 7. Scenario 1 inversion: Difference between the gravitational effect of the true and a priori model (left) and of the
true and the a posteriori model (right).

As can be seen comparing Figure 7 with Figure 4, the most important gravimetric
effect is still the one due to the Moho variations which dominates the two maps at the
low-frequencies with an STD of about 11 mGal, while the effect due to the basement acts
mainly at medium frequencies and is smaller (STD of about 7 mGal). Looking at the
gravity residuals after the inversion, it can be seen that they are higher and more spatially
correlated than in the previous scenario. This is basically due to the fact that in the current
test the system has a greater degree of freedom and the most probable solution is found on
the basis of the gravity residuals but also of the constraints imposed on the inversion, such
as the closeness to the a priori model (third term in Equation (1)). Considering the retrieved
layers, we can see from Figure 8 that the inversion has been able to qualitatively retrieve all
the major elements of both the Moho and the basements. The retrieved Moho in particular
is more regularised than the solution found in the previous scenario but still shows a good
accuracy with differences with respect to the true model of only 900 m (STD). As for the
basement the result shows, on the one hand an over-regularised low frequency and, on the
other hand, the presence of a small high frequency signal, used mainly to compensate
the observation error. In any case, also for the basement, the result contains all the main
features and shows a difference with respect to the true model of 1400 m (STD).

Figure 8. Scenario 1 inversion: Estimated depth to basement (left) and Moho depth (right).

We can conclude from this simulation that the Bayesian inversion algorithm is able
to deal with the problem of estimating the deepest layers once the shallowest are fixed
(e.g., by accurate 3D seismic surveys), qualitatively retrieving all the main features of the
simulated basement and Moho and quantitatively reducing the model error from about
3000 m and 1700 m of the a priori model, to 1400 m and 900 m for the basement and
Moho, respectively.

4.3. Scenario 2: Exploration in Frontier Areas (Shallowest Layers Fixed in Few Points)

In the last case study, we simulate an example of Scenario 2 of Section 1, in which the
shallowest layers are constrained by a set of seismic profiles (here we have simulated a
profile approximately every 30,000 m). In order to simulate this scenario, we computed a set
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of new geological horizons by perturbing the discontinuity surfaces used to build the true
model. In particular, we applied a deformation to each surface with the same correlation
length of the surface itself and with an amplitude varying point-wise and depending on
the distance to the simulated seismic profile (the procedure used to simulate deformations
is reported in Appendix A). The first layer, namely the bathymetry, is supposed known and
fixed and the last layer, namely the Moho, is supposed not to be observed by the seismic
profiles. In this way we are able to build a new model to be used as the a priori model in
the inversion, which is equal to the true one only along the simulated seismic lines. As
an example, we report in Figure 9 the deformation applied to the base of the Messinian
salt layer and Moho, while in Figure 10 two sections of the a priori model together with
the estimated uncertainty are shown. As can be observed, the resulting a priori model is
coherent with the simulated seismic profiles but different from the true model. In Figure 11,
the difference in terms of gravity between the true and the a priori models together with
the residuals after the inversion are reported. It can be seen that, similarly to the other tests,
the signal is dominated by the low frequencies coming from the deepest layers; however,
in contrast to the other scenarios, the differences with respect to the true model also show
medium and high frequencies. Two profiles of the estimated model are shown in Figure 12
together with the geological horizons of the true model (cyan lines) and of the a priori
model (dashed lines). The inversion tends to move the layers of the a priori model toward
the true ones. This is particularly evident for the Moho and basement but it is in general
true also for the shallowest layers. This improvement is confirmed by Figure 13 where,
as an example, the depth of the base of the Messinian salt for the true, a priori and a
posteriori model is reported. It can be observed that the inversion is able to properly reduce
the depth of the layer outside the domain covered by seismic profiles, whereas close to the
profiles only minor corrections are introduced to the model. The improvement is confirmed
as well by the statistics reported in Table 4, where the mean and the STD of the differences
for each layer between the true and the a priori model is compared with the difference
between the true and the a posteriori one. Here, we can see how the inversion is able to
catch the main shape of each layer (decreasing the STD of the differences for all the layers).
As for the average difference the situation is more complex and the inversion seems to be
able to improve only the shallowest layers.

Figure 9. Differences between true and a priori model of Scenario 2 inversion for the base of the Messinian layer (left) and
for the Moho (right). Black lines represent the simulated seismic profiles.
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Figure 10. Example of two profiles (AA’ and BB’ in Figure 1) for Scenario 2 inversion. Solid black lines represent discontinuity
between different geological units, dashed lines represent uncertainty, colours represent density in kg/m3.

Figure 11. Scenario 2 inversion: Difference between the gravitational effect of the true and a priori model (left) and of the
true and the a posteriori model (right).

Figure 12. Example of two profiles (AA’ and BB’ in Figure 1) of the estimated model for Scenario 2 inversion. Cyan lines
represent the geological horizons of the true model, black lines represent the horizons estimated by the inversion, dashed
black lines represent the horizons of the a priori model and colours represent density in kg/m3.
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Figure 13. Base of the Messinian salt from the true (a), a priori (b) and a posteriori model (c).

Table 4. Scenario 2 inversion: Statistics of the differences between true, a priori and a posteriori models.

Layer A-PRIORI vs. True Model A-POSTERIORI vs. True Model
Mean [m] STD [m] Mean [m] STD [m]

Water 0 0 0 0
Base Plio-Quaternary 0 100 0 85

Base Mess. Salt 150 659 47 378
Base Tortonian 323 742 94 393
Base Oligocene 316 883 168 409
Base Cretaceous 370 861 309 418

Base Jurassic 250 930 707 517
Basement 80 1718 267 818

Moho 361 1736 837 825

In any case, also for this scenario, we can conclude that the algorithm is able to improve,
away from the seismic profiles, the geophysical modelling by halving the distances from
the true model. It can also be observed that the smallest relative improvement is found
for the base of the Plio-Quaternary sediments, i.e., the shallowest layer (we recall the fact
that the bathymetry is considered known and fixed). This is due to the fact that this layer
is used by the inversion algorithm to compensate the observation error. Looking at the
gravity residuals, we see that the model overfits the data, with a final residual of only
0.6 mGal (STD), which is much lower than the observation error. Finally, for the sake
of completeness, we report in Figure 14 a horizontal section of the density distribution
at a depth of 5000 m of the true, a priori and a posteriori models. It can be seen that,
as expected, the main density variations are due to the presence of the different layers.
However, in the a posteriori model, density variations inside each horizon can also be
found. For instance, looking to Cretaceous sediments, which is one of the most important
layers of the considered section, densities between 2470 kg/m3 and 2484 kg/m3 (coherent
with the a priori assumption in Table 3) are found.
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Figure 14. Density distribution at a depth of 5000 m from the true (a), a priori (b) and a posteriori models (c).

5. Conclusions

Within the presented work, we developed a realistic synthetic case study, which can be
in general exploited in order to test gravity inversion algorithms. In detail, the developed
dataset simulates a 3D volume in the Mediterranean area over a region of 3 · 105 m × 2 · 105 m
up to a depth of 35,000 m and with a spatial resolution of 1500 m in the x and y directions.
The model has been used to assess the accuracy of a Bayesian inversion algorithm on a
set of typical scenarios ranging from the classical two-layer, used in general for scientific
investigations, where the only unknown is the discontinuity between two units of known
density, to a complex case study where all the layers and densities are considered unknown
and only partially constrained by the presence of simulated seismic profiles. Actually,
the simulated case study proved that, when the simple two-layer problem is tackled,
with the aim of estimating the Moho, the proposed inversion is able to retrieve almost
perfect results, with differences between the simulated and resulting models of only 300 m
(STD), also in the presence of an important observation error and when the density contrast
between the two layers is not perfectly known. We also assess the quality of the Bayesian
inversion on two more realistic scenarios: In the former, the shallowest layers’ geometries
are known and only the deepest layers should be retrieved, while in the latter also the
shallowest layers are known only concerning a few profiles. The results obtained show
that in both these situations, the Bayesian inversion improves the 3D modelling of the
considered volume. For the first scenario, the algorithm was able to catch all the main
features of the basement and Moho, retrieving the surfaces with an accuracy of 1400 m
and 900 m, respectively. Similar results are obtained for the last simulated scenario with a
general improvement of geometries of the initial 3D model. Here, the accuracy of the final
solution ranges, in terms of geometry, between 400 m and 800 m. In terms of gravity field, it
is observed that the Bayesian inversion tends to overfit the gravity data with residuals after
the inversion always smaller than 1 mGal. This is due to a large value degree of freedom of
the performed inversion. We can conclude that the proposed algorithm can safely be used
also in a complex scenario to improve 3D modelling of the subsurface even when seismic
profiles or even 3D seismic data are available.
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Appendix A. Simulation of Non-Stationary Random Fields

In order to simulate the starting point for the case study investigated in Section 4.3,
we have to compute, starting from the maps of depth to the geological horizons of the true
model, a set of alternative maps, which respect the available information, namely which
are equal to the true model along the simulated seismic lines and are coherent from the
stochastic point of view, with the initial maps. The problem can be ultimately brought
back to the simulation of non-stationary random fields. In this work, we will apply the
following scheme:

1 we compute the empirical variogram, using the available interpreted seismic profiles
data as observations;

2 we fit the empirical variogram by means of a proper theoretic variogram function;
3 knowing the theoretical variogram, we can estimate a map of the depth of the consid-

ered geological unit and its predicted accuracy by means of a kriging solution;
4 we randomly select on the obtained map a set of points;
5 we extract a random value on each of the points obtained at step 4 from a Gaussian

probability function with a STD equal to the one predicted by the kriging map on that
specific location;

6 we spatially correlate the extracted sample by applying a kriging procedure on the
random points with the same variogram function estimated at step 2.

We report here, for the sake of clarity an example of the application of the above
scheme applied to the first layer (namely the bathymetry) of the synthetic data presented
in this work.

The starting point is a set of interpreted seismic profiles, observing the depth of the
considered layer (Figure A1a).

From these observations the empirical variogram is computed and fitted by means
of a stable variogram model (Figure A1b). At this point, by means of an ordinary kriging,
we compute the depth of the considered layer on a regular grid over the whole study
area together with its predicted accuracy (see Figure A1c,d). Note that the available
profiles only partially covered the area of interest, as is often the case with this kind
of problem. Now, we randomly select n points with n = ∆x∆y

d0
, where ∆x and ∆y are

the total size of the considered area in the x and y directions, respectively, while d0 is
the correlation length as obtained by the variogram itself. At these selected points, we
generate a white noise with STD accordingly to the accuracy predicted by the kriging
interpolation. The variogram function, used to interpolate seismic profiles, is than used to
correlate the noise thus obtaining a possible perturbation of the initial considered model
(see Figure A1e). A new bathymetry model consistent with the seismic data (accordingly
to the point-wise predicted accuracy) is obtained by summing up the initial map with
the random perturbation (Figure A1f). As it can be observed from Figure A1 the specific
realisation is coherent with available information: it has in fact a correlation length similar
to the one of initial seismic information and a variance locally consistent with the accuracy
predicted by the kriging.
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Figure A1. Available seismic profiles observing the bathymetry over the considered area (a). Empiri-
cal and theoretical variograms (b). Estimated bathymetry from the seismic profiles (c) and predicted
accuracy in terms of STD (d). Random realisation of possible deformation (e). Possible realisation of
bathymetry coherent with seismic data (f).
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