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Abstract: A rotation of the anisotropic soil fabric pattern is commonly observed in natural slopes
with a tilted stratification. This study investigates the rotated anisotropy effects on slope reliability
considering spatially varied soils. Karhunen-Loéve expansion is used to generate the random fields
of the soil shear strength properties (i.e., cohesion and friction angle). The presented probabilistic
analyses are based on a meta-model combining Sparse Polynomial Chaos Expansion (SPCE) and
Global Sensitivity Analysis (GSA). This method allows the number of involved random variables
to be reduced and then the computational efficiency to be improved. Two kinds of deterministic
models, namely a discretization kinematic approach and a finite element limit analysis, are consid-
ered. A variety of valuable results (i.e., failure probability, probability density function, statistical
moments of model response, and sensitivity indices of input variables) can be effectively provided.
Moreover, the influences of the rotated anisotropy, autocorrelation length, coefficient of variation
and cross-correlation between the cohesion and friction angle on the probabilistic analysis results
are discussed. The rotation of the anisotropic soil stratification has a significant effect on the slope
stability, particularly for the cases with large values of autocorrelation length, coefficient of variation,
and cross-correlation coefficient.

Keywords: slope stability; rotated anisotropy; random field; limit analysis; sparse polynomial chaos
expansion; global sensitivity analysis

1. Introduction

Inherent spatial variability of soil properties plays a significant role in probabilistic
analyses. Random field theory has been widely used to model this feature to discuss the
soil spatial variability effects on slope reliability [1-5]. However, these studies mainly
focused on isotropic soils or soils with a horizontal stratification (Figure 1a). In practice,
due to the complex deposition process, soil rotated anisotropy, as shown in Figure 1b, can
also be found [6]. The stratification is inclined with the horizontal direction by a rotation
angle 3. Effects of the rotated anisotropy on slope stability have been investigated in the
literature. Griffiths et al. [7] demonstrated that the rotated anisotropy has a very significant
effect on slope failure probability and found that the failure probability is higher when
the soil stratification is parallel to the slope surface. Zhu et al. [6] considered a real slope
case with different fabric rotation angles and found that the stratification orientation can
influence the failure mechanism. Huang et al. [8] investigated the rotated anisotropy effect
on slope stability considering conditional random fields and found that different sampling
patterns may lead to significantly different failure probabilities. These works provide
interesting insights into the slope reliability analysis with consideration of the rotated
anisotropy. However, some limitations can be identified.
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(b)

Figure 1. Soil deposition with spatial anisotropy. (a) Horizontal anisotropy; (b) Rotated anisotropy.

Firstly, concerning the deterministic analysis, numerical analysis methods or the Limit
Equilibrium Method (LEM) were performed to calculate the results. Numerical analysis
methods are popular because of their accuracy and detailed visualizations. However, these
methods suffer from a heavy computational burden in the procedures of numerical model
construction and calculation, particularly for probabilistic analyses, which require a large
number of simulations. Therefore, using analytical methods, at least in the preliminary
design stage, is preferable due to the fact that it can reduce the computational burden
for most cases, guaranteeing accuracy of the results. LEM [6,8] is widely used for slope
stability analyses due to its simple theory and calculation procedure. However, this method
considers the failure surface as a circle and makes assumptions for the inter-slice forces,
which may provide biased results [9]. Limit Analysis (LA) is another commonly adopted
analytical method. This method considers the plasticity theory and can lead to more
rigorous results than LEM. The upper bound limit analysis (i.e., the kinematic approach),
can give a rigorous upper bound solution. It is widely used compared to the lower bound
limit analysis, since it is based on the kinematically admissible velocity field, which is
convenient to be obtained. LA was improved by discretizing the traditional failure surface
(log-spiral) into a variety of segments [10-12] to consider the spatial variation of soil prop-
erties. It could solve the inevitably introduced complex and tedious integral calculations of
the traditional log-spiral mechanism when non-homogeneous cases are considered. This
method has been used for tunnels [11], foundations [12], and slopes [10]. It is implemented
in this study to effectively consider the spatial variability of soil parameters.

Moreover, in the framework of probabilistic analyses, Monte Carlo Simulations (MCSs)
have been commonly employed in the existing studies to calculate the failure probabil-
ity (Pp) [13,14]. This method is widespread due to its simple calculation and robustness.
However, it may lead to a heavy computational burden, especially for the cases with
small failure probabilities. In order to overcome this inconvenience, meta-modelling
techniques were developed and aim to build fast-to-evaluate metamodels to replace
the original expensive deterministic computational models [15]. These metamodels in-
clude kriging [16,17], polynomial-chaos expansions (PCEs) [18,19], and support vector
machines [20,21]. Jiang et al. [2] proposed a non-intrusive stochastic finite element method
for the slope reliability considering the spatially variable shear strength parameters based
on the PCE method, which improves the slope probabilistic analyses. However, the number
of polynomials within the PCE metamodel increases drastically with the increase of the
input variables number and the PCE order. In order to further improve the calculation
efficiency, the extension of polynomial-chaos expansion, namely Sparse Polynomial Chaos
Expansion (SPCE), was used in the probabilistic analyses.
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On the other hand, many variables (e.g., more than 100) are introduced for the random
field discretization and are considered as input variables in the probabilistic analyses.
This feature makes a metamodel-based probabilistic analysis difficult and takes a long time
to create. In order to overcome this problem, the combination of SPCE and Global Sensitiv-
ity Analysis (GSA) is introduced in this paper for the reliability analyses. It presents a high
efficiency since dimension reduction is implemented by the GSA based on a low-order
SPCE model. This means that the significant input variables are selected firstly according
to Sobol indices obtained by a low-order SPCE-based GSA to form the input space [22]. It is
followed by a high-order SPCE construction using an active learning algorithm with a new
proposed stopping condition. After that, the MCS and GSA can be employed to provide a
variety of valuable results, which include failure probabilities, probability density function
(PDE), statistical moments of the model response, and sensitivity indices of input variables.

This study aims to perform a probabilistic stability analysis of slopes with consid-
eration of the soil rotated anisotropy by using the DSG-MG procedure, which includes
the deterministic method discretization kinematic approach (DKA) and the probabilistic
methods SPCE/GSA and MCS. After the introduction of the random field generation, the
deterministic and probabilistic methods are presented in detail. Comparisons with the
existing studies and some discussions based on the proposed DSG-MG procedure are then
provided. The improvements and contributions of this study compared to existing studies
about the slope probabilistic stability are as follows: (1) the analytical DKA can consider
the soil spatial variability due to the employed discretized mechanism, which shows a
good efficiency compared to numerical models; (2) the proposed DSG-MG procedure
can solve effectively the high dimensional stochastic problems. It allows the computa-
tional burden of probabilistic analyses to be reduced and provides a variety of valuable
results with guaranteed accuracy; (3) the influences of rotated anisotropy, autocorrelation
lengths, coefficient of variation and cross-correlation of the slope stability are discussed.
Some recommendations are then proposed based on the probabilistic results.

2. Random Field Generation

A random field can describe the spatial correlation of a soil property in different
locations and represent nonhomogeneous characteristics. Several methods were developed
for the discretization of random fields: among others, the spatial average method, the
midpoint method, and the series expansion methods. Compared to the first two methods,
which are sensitive to the finite element mesh size and require a large number of random
variables to achieve a good field approximation, the series expansion methods (such as
Karhunen-Loéve (K-L) expansion and the optimal linear estimation expansion methods)
are more efficient. The series expansion methods result in a Gaussian field represented
by a series of random variables and deterministic spatial functions. The accuracy of
the field depends on the number of terms used in the series expansion and the adopted
expansion method. K-L expansion is used in this study since it requires the fewest random
variables for a given accuracy and is independent of the finite element discretization [23].
This method is popular in geotechnical engineering, such as for dams [22] and tunnels [18].

2.1. Spatial Correlation

Autocorrelation length and function are used to characterize the soil properties with
correlation. For a given autocorrelation function, a large autocorrelation length value
implies that the soil property is highly correlated over a large spatial extent, resulting in a
smooth variation within the soil profile.

A Gaussian random field can be described by its mean y(x), variance o(x), and an
autocorrelation function p. In this study, an exponential autocorrelation function that
involves the rotation angle of soil anisotropy is used and reads as follows:

|Axcos B+ Aysinp|  [—Axsinp + Ay cos B
Iy Ly

p— expl- ) )
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where Ij, and [, are, respectively, the autocorrelation distances in the horizontal and vertical
directions; f is the rotation angle; and Ax and Ay are the distances between two arbitrary
points in the horizontal and vertical directions, respectively.

2.2. K-L Expansion

Karhunen-Loéve expansion is based on the spectral decomposition of its autocovari-
ance function (i.e., the product of the autocorrelation function p and the random field
variance). The realization of the random field, denoted H(x, ), can be defined by [23,24]

00 S
H(x,§) = p40Y_ V/Aibi(x)8 = p+ ) /Ai0i(x)E 2)
i=1 i

where y and ¢ are, respectively, the mean value and standard deviation of the random
field; A; and 6; are the eigenvalues and eigenfunctions, respectively, of the autocovariance
function; ¢; is a set of uncorrelated random variables; and S is the size of the truncated
series expansion. It should be noted that S depends on the target accuracy, autocorrelation
length, and random field dimension. The value of S is determined using a criterion based
on the error of the truncated series expansion, which can be obtained by

1 S
e = 6./0 [1 — ;Aieﬁ(x)] dQ ®3)

where () represents the validity domain of the random field.

2.3. Cross-Correlated Log-Normal Random Fields

A log-normal random field based on the K-L expansion can be expressed as [22]

H(x,¢) = exp

s
Hin + 0in YV /\iei(x)gi] = exp[pn + oinG(x, §)] 4)
i=1

where G(x, ¢) is a standard normally distributed random field with S terms; i, is the mean
value of the log-normal random field; and oy, is the corresponding standard deviation,
which can be defined by

Oin = 1/In(1 + COV?) (5)
Hin = lnﬂ - 0'501n2 (6)

where COV is the coefficient of variation.

In practice, two or even more soil properties are involved in the spatial modelling of a
geotechnical analysis, and there might be correlations between these parameters. The de-
pendency (cross-correlation) between the cohesion and friction angle must be considered.
In this case, each soil parameter field is expanded by using a set of independent random
variables. These sets are then correlated with respect to the cross-correlation matrix [23],
and two cross-correlated log-normal random fields (V1 and V) with a cross-correlation
(rv,,v,) can be expressed as

Hy1(x, &) = exp [Miny ; + Oiny, Gva(x,8)] ()

Hys(x,¢) = eXP{Mlnvz + 0iny ,[Gv1 (%, &), v, + Gra(x,€)4/1 - (V%},VZ)Z]} ®)

where r%,“lrvz is the cross-correlation coefficient between In(V;) and In(V,), which can be
defined by
In[(1 + py;,1,COV(V1)COV(V,)]

\/1n[1 +COV2(14)]In[1 + COV2(V3)]

In _
v, =

)
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COV (V1) and COV(V,) are, respectively, the coefficients of variation for the variables
Vi and V5.

3. Methodology

This section presents the deterministic and probabilistic methods used in this study.
Additionally, an efficient probabilistic analysis procedure is proposed to analyze the
slope stability.

3.1. Deterministic Methods

Once the random field is generated, it can be mapped into the deterministic stability
model to perform the deterministic stability analysis. Two deterministic models are estab-
lished. The first one is the DKA mentioned in the introduction; the other one is a finite
element limit analysis method [25], which is used for comparison and validation.

3.1.1. Analytical Model: DKA

An analytical model based on the discretization kinematic approach was created.
Figure 2 presents a kinematically admissible velocity field based on the discretization
technique. Its generation lies in the normality condition of upper bound limit analysis, i.e.,
the velocity vector v; inclines the soil friction angle ¢; with the tangential slope failure line
P;Pi11. A “point-to-point” technique is implemented to determine the points along the
slip surface, which means that each point is obtained based on the previous one, so that
the spatially varying properties within the random field can be considered in the failure
surface generation. The generation process is ended by adjusting the last point, being on
the ground surface. Symbol notation presented in Figure 2 can be found in Abbreviations.

Figure 2. Principle of the discretized failure mechanism of DKA.

The work rate balance equation is performed to determine the slope stability condition.
Herein, the external work rate is provided by the weight of the rotational collapse block
ACDB, and the energy dissipation is produced along the slip surface AC. The strength
reduction method and bisection approach are employed to find the critical safety factor
(FS) and failure surface. For more details about the mechanism generation and stability
analysis, one can refer to Hou et al. [10] and Sun et al. [26].
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3.1.2. Numerical Model: FELA

Finite Element Limit Analysis (FELA), performed by Optum G2 2021, was also in-
volved herein to analyze the slope stability and validate the analytical method DKA.
A plane-strain model was used, and the numerical model is presented in Figure 3. The dis-
placements are blocked in the horizontal direction on the model lateral edges, while both
the horizontal and vertical displacements are fixed on the model base.

Figure 3. FELA model with adaptive mesh refinement.

Optum G2 has the capacity to refine automatically the adaptive mesh based on
the distribution of shear or total dissipation, strain, or plastic multiplier. The adaptive
mesh can guarantee the accuracy of results with a moderate elements number. Shear
dissipation adaptive control was used in this study since it performs better in the limit
analysis compared to others [25]. Figure 3 depicts the numerical model with adaptive mesh.
It is observed that the meshes around the failure region are finer compared with others.
More details can be found in Zhang et al. [27] and Krabbenhoft et al. [25].

3.2. Probabilistic Methods

The probabilistic methods are presented in this section, which starts with the intro-
duction of SPCE and GSA. After that, the combination of the two methods is clarified.

3.2.1. Sparse Polynomial Chaos Expansion

SPCE is an extension of the PCE by approximating an original model on a suitable
sparse basis [28]. It permits one to reduce the polynomial number, since the insignificant
PCE coefficients are ignored. Several methods can be used to build an SPCE metamodel,
which include the Least Angle Regression method (LAR), least absolute shrinkage, and
forward stage-wise regression. LAR was performed in this study. An SPCE meta-model is
expressed as

Y~ MX) =) ka®u(X) (10)

a€A

where X is a vector of independent random variables, @, (X) is the multivariate polyno-
mials, k, represents the corresponding coefficients, and « is a multidimensional index.
The multivariate polynomial ®,(X) is obtained by a tensor product of univariate orthonor-
mal polynomials. Several families for the univariate orthonormal polynomials are given,
and the Hermite polynomials, which correspond to the standard normal random variables,
were used in this study.
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Equation (10) must be truncated to a finite number of terms in practical application.
This study adopted the hyperbolic truncation scheme, which can be defined as

1
M q
AN = { € AMP:laf, = (L) < P} "
i=1

High-order interaction terms are not involved in the calculation when g < 1. Then, the
unknown coefficients can be estimated by using the least-regression method.

3.2.2. Global Sensitivity Analysis

Sensitivity analysis aims at evaluating how the input variables influence the model
response. Sobol-based global sensitivity analysis is widely used since it considers the entire
space of all input variables [29]. The first order Sobol index S; for the related variable
x; (i=1,...,n)is defined by

B Var[E(Ty,)]
" Var(T)

where T is the system response, Var(T') is the system response variance, and Var[E(Ty,)]
is the partial variance related to variable x;. Sudret [30] proposed an analytical method
to compute the Sobol index using the SPCE coefficients, and the first order Sobol index is
obtained by

(12)

' Tuea,, () E[(90)]
" LaealkE[(@0)]

where k; represents the SPCE coefficients, A is the truncation set, Ay, is a subset of A

(13)

in which the multivariate polynomials only contain the variable x;, and E [(@,)?] is the
expectation of (@y)>.

3.2.3. Combination of SPCE and GSA

A combination of SPCE and GSA was introduced to reduce the dimension of the input
space. An SPCE model with p = 2 is supposed sufficient to provide rational sensitivity
indices for each random variable [22,30]. The significant variables are then identified.
For the selection of important random variables, two methods were proposed in former
studies. One considers the threshold for an individual input variable, which means that
only those input variables with Sobol indices larger than the threshold are kept, whereas
the smaller ones are discarded [18]. However, a higher threshold can lead to fewer selected
random variables, and the accuracy cannot be guaranteed. Conversely, a lower threshold
can introduce more variables, and then reduction of the input dimension is not achieved.
In order to address this problem, Guo et al. [22] used the threshold for the Sobol indices
sum to select the important variables. The detailed procedure consists of the following: (1)
according to the Sobol indeXx, sort the random variables in descending order; (2) select the
first Ngsa variables to satisfy the Ngsa Sobol indices sum being larger than a threshold
(0.98 is considered), which means at least 98% of the total input variance is considered in
the reduced input space; (3) create more accurate metamodels with a higher-order SPCE
(p > 5). MCS and GSA are then performed based on the metamodel. The failure probability
is estimated by dividing the number of samples in the failure region by the total number of
samples, which is defined by

1 Nucs

P I (14)

Nwyics (=
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where the indicator function I} is equal to 1 when the failure occurs (assuming the FS value
is smaller than 1); otherwise, the value of I is set to 0. Njscs is the total number of samples
and should be large enough to satisfy the accuracy requirement presented by

covy, — | 12T 15

where COVp; is the coefficient of variation of Py. With the increase of the sample number
Npcs, more precise results can be obtained. However, it may lead to a heavy computational
burden, especially for cases with low failure probabilities.

4. Proposed Procedure and Studied Slope

This section presents the application of DSG-MG and FSG-MG (FELA-SPCE/GSA-
MCS) to the stability assessment of a slope. Firstly, a procedure is detailed via a flowchart.
Then, a reference slope case is investigated within the proposed procedure.

4.1. Procedure of the Current Study

In this study, soil profiles were simulated with rotated random fields firstly and then
mapped into the deterministic models (DKA and FELA) to carry out stability analysis.
Following this step, a metamodel-based probabilistic framework (SPCE/GSA-MCS) was
then employed to estimate the failure probability, statistical moments of model response,
probability density function, and sensitivity indices of input variables. Figure 4 depicts the
procedure for the probabilistic analysis and the main steps included.

‘ Prescribe statistics of input variables & Build deterministic models

}

Generate random fields

Map random fields into the deterministic models
& Perform stability analysis to obtain FS and failure surface

} Construct metamodel based on the SPCE/GSA ‘

Yes
Stopping criterion 1 Stopping criterion 2

Choose the informative candidates and add them to the ED of
the metamodel

Perform MCS and GSA beased on the SPCE metamodel

End
Figure 4. Flowchart of the analysis procedure D(F)SG-MG.

Step 1: Determine the input parameters related to the random field generation, which
include mean, standard deviation, cross-correlation coefficient, autocorrelation length, and
rotation angle of the fabric orientation. Moreover, build the deterministic (DKA /FELA) models.

Step 2: Generate N realizations of the random fields within MATLAB 2015 code using
the Karhunen-Loeve expansion method, as presented in Section 2 [22]. It should be noted
that a smaller value of error estimation for the truncated series expansion obtained by
Equation (3) can lead to more precise results, but the series expansion S increases at the
same time. The critical error estimation is considered to be 10% in this study, which seems
a good compromise between result accuracy and computational burden [22].
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Step 3: Map the random fields into the deterministic models. The largest element size
of the deterministic mesh in horizontal or vertical directions does not exceed 0.5 times of
the corresponding autocorrelation lengths [22]. Perform stability analysis N times to obtain
the safety factors and the corresponding critical slip surfaces according to Section 3.1.

Step 4: Construct a metamodel based on the N input—output sets and the principle of
SPCE/GSA, as shown in Section 3.2.

Step 5: Improve the metamodel accuracy until satisfying the stopping criteria.
Two stopping criteria are carried out herein. The first one corresponds to the leave-one-out
error estimation, which can be defined as

2

1N
/Var(Y) (16)

YO — Meper (200
Errioo = 1 spce(x')

1— A

i=1

where A; is the ith diagonal term of the matrix. The generalization capacity of the meta-
model is better when the value of Err;pp approaches 0. However, it may lead to a heavy
computational burden. A threshold value is introduced to overcome the inconvenience,
and when Errppoo < Errpoo_tg, this process can enter the next step. Otherwise, the
Experimental Design (ED) should be enlarged to improve the current metamodel. The sam-
ples with the highest probability of being misjudged for failure or safe will be selected
by minimizing

U(x) = ()| 17)

The second stopping criterion is the Ps value convergence, which is related to the
maximum value of the relative errors from the last Ni; estimations of Py. It is expressed as

P(i) — Pp(i — 1)
Pr(i— 1)

ETTpf(i) = max{ ;i€ [N—Nig+1, N]} (18)

where Py (i — 1) is the (i-1)th failure probability and Pf (i) is the ith one, and N is the number
of enrichment samples. The metamodel accuracy can be controlled by the error estimation
threshold value Errp,_to. Errroo_tg, Nig, and Errpf_tg are, respectively, considered to be
0.01, 10, and 0.05 in this study [18,31].

Step 6: Perform the probabilistic methods (MCS and GSA) based on the metamodel to
provide valuable results (MCS: Pf, PDE, statistical moments for the system response; GSA:
sensitivity indices).

SPCE, GSA, and MCS were employed within the uncertainty quantification toolbox
UQLab [15]. The calculations were carried out on a computer equipped with an Intel(R)
Core(TM) i7-8700K 3.70GHz CPU.

4.2. Reference Case and Conducted Results

A layered c—¢ slope, as depicted in Figure 5, was analyzed [23,32]. The slope height
and slope angle were 10 m and 45°, respectively. The friction angle and cohesion of slope
soils were modeled as random fields, while the unit weight was deterministic. Table 1
summarizes the statistical properties of soil parameters from Cho [23].
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ym) 4
20 —
15 —
10 —
5 —
0 —
| | | | R
0 10 20 30 x(m)
Figure 5. Geological profile of the reference case.
Table 1. Statistical properties of soil parameters for the reference case [23].
Statistics of Parameters
Cross-
Parameters Notation picpap oo proan cov Correlation Autocorrelation
Coeffi- Length (m)
cient
Cohesion ¢ (kPa) Lognormal 10 0.3 R = lhl: 1(1):‘;0
- —-0.7-0.5 g
Friction o Iy: 10-40
angle o (°) Lognormal 30 0.2 ly: 1-3
Unit 0%

weight  (KN/m?3)

The realizations of cohesion and friction angle while considering the rotation of
deposition orientations as 0°, 45°, 90°, and 135° were presented firstly, as shown in
Figure 6. It should be noted that the rotation was counterclockwise. The horizontal
and vertical autocorrelation lengths were respectively considered as 40 m and 3 m. The co-
hesion and friction angles were negatively correlated, and the cross-correlation coefficient
was set to be —0.5. It can be observed from Figure 6 that a low value of cohesion was

associated with a high value of ¢ and vice versa.
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(b)

(o) (d)

Figure 6. Realizations of random fields of cohesion and friction angle with r = —=0.5; [, =40 m, I, =3 m. (a) § = 0°;
(b) p =457 (c) B =90 (d) B =135°.

The probabilistic analysis with B = 45° was detailed. Two methods, DSG-MG and
FSG-MG, were analyzed herein. The main results are summarized in Figures 7 and 8.
Ten thousand samples were set for the MCS calculation after the construction of the
metamodel, and Py was found to be 0.053 and 0.056 for DSG-MG and FSG-MG with COVp¢
being 4.2% and 4.1%, respectively.
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—— DSG-MG
3+ ———- FSG-MG

o
Ln
T

FS

Figure 7. PDFs of the obtained safety factor based on two methods.

—

s 08 mDSG BFSG
=
g
= 06
Z
=]
2 0.4
]
wn
0.2
0 I .
@ 5

Figure 8. Sensitivity analysis results.

Figure 7 depicts the PDF for the safety factor estimates using two methods. The curves
were almost overlapping with each other. Moreover, the safety factor was almost dis-
tributed asymmetrically, and the FS values were mainly in the range of (0.5, 2).

Figure 8 presents the Sobol indices of the two input variables. It is seen that the
Sobol index of friction angle was far larger than the cohesion one, which means that the
friction angle could have more significant influences on the model response compared
to the cohesion. This can be clarified by the fact that the generation of a slip surface is
strongly related to the friction angle for the limit analysis. Moreover, the friction angle is
also involved in the work rates calculation. This finding is consistent with the works of
Zhang et al. [29], in which they also reported a dominant effect of ¢ for the FS variation.

5. Validation and Efficiency Investigation of the Proposed Procedure

The introduction of the proposed procedure aimed to reduce the computational
burden within the guarantee of the desired accuracy. A comparison with the existing
study is firstly presented. The efficiency and accuracy of the analytical and probabilis-
tic methods application on the slope with rotated random field consideration are then
respectively detailed.
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5.1. Comparison with a Previous Study

In order to validate the presented methods, a comparison with Cho [23] in the de-
terministic and probabilistic frameworks was performed. The results are summarized in
Table 2. The deterministic results were calculated by the mean values of soil parameters.
For probabilistic analyses, the statistical properties of friction angle and cohesion were
considered as random fields, as shown in Table 1. The autocorrelation lengths in the
horizontal and vertical directions were, respectively, 20 m and 2 m. The cross-correlation
coefficient was set equal to —0.5. The rotation of the random field was not considered in
the comparison in order to be consistent with Cho [23].

Table 2. Comparisons of the deterministic and probabilistic analyses results.

Deterministic Results Probabilistic Results
FS Pf Number of Evaluations
Cho [21] 1.204 0.0138 50000
DSG-MG 1.201 0.0136 4200
FSG-MG 1.202 0.0130 4200

Good agreement in terms of safety factor and failure probability between this study
and Cho [23] was observed. In addition, the discretization kinematic approach generated a
similar failure surface with the numerical model, as presented in Figure 5. The comparison
could validate the effectiveness of the proposed methods in the deterministic and prob-
abilistic frameworks. Moreover, this study needed around 4200 simulations to meet the
requirements of the accuracy, which is far less than the 50,000 calculations considered in
Cho [23]. The efficiency of the presented methods is further discussed in detail in Section 5.

5.2. DKA Accuracy Considering Spatially Varying Soils and Rotated Anisotropy

DKA is a versatile analytical method, since the failure surface based on this method is
generated according to the spatially varied properties within the random field generation.
Figure 9 depicts a comparison of FS and corresponding failure surfaces between two
deterministic methods (DKA and FELA) for four random fields with different rotation
angles of soil anisotropy (0°, 45°, 90°, 135°). It is seen that the FS values obtained by the
two methods were always similar, with the error being no more than 1.2%. Concerning
the critical failure surface, the analytical method DKA has the capacity to give consistent
results with the FELA.

Moreover, as shown in Figure 7, the PDF curves obtained by the analytical model
almost overlapped with those of the numerical model, which allows again the analytical
method effectiveness to be validated and shows its accuracy in the probabilistic analyses.

It should be noted that the introduced deterministic approach DKA can alleviate the
computation burden compared to the numerical method. This is very significant for the
probabilistic analyses, which need numerous deterministic realizations. The FELA took
around 60 s to perform one deterministic realization, whereas the computation time could
be reduced to 5 s for the DKA, which could demonstrate the high efficiency of the analytical
model DKA, which is used for the following discussions.
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Figure 9. Comparison of deterministic models with different values of random field rotation angle. (a) 8 = 0°; (b) = 45°;

(c) B=90° (d) B = 135°.

5.3. Comparison of SPCE/GSA and Direct MCS

A direct MCS analysis was performed to validate the probabilistic analysis results
based on the metamodel SPCE/GSA. The comparison is summarized in Table 3 and
Figure 10. It was found that DSG-MG gave similar probabilistic results compared to the
MCS. The PDF curve, as shown in Figure 10, was also close to the MCS, which indicates that
the meta-model can provide rational information compared with the original computational
model in the probabilistic analyses. However, it was seen that 4000 calls to the deterministic
model were required for the DSG-MG, which is smaller compared to the direct MCS with
10,000 model evaluations.

Table 3. Probabilistic results obtained by DSG-MG and MCS.

Number of
Pf Mean Std Evaluations
MCS 0.056 1.192 0.130 10,000

DSG-MG 0.053 1.190 0.124 4000
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Figure 10. PDFs of the FS obtained by DSG-MG and MCS.

Moreover, the introduction of GSA can significantly reduce the number of random
variables. Taking I/, =40 m and /, = 3 m as an example, at least 168 variables are necessary
for a variance error less than 10%, which means that 168 standard normal variables are
considered to be input variables for the probabilistic analyses. Two random fields (friction
angle and cohesion) were considered herein so that the dimension of the input space was
336. This is a high-dimensional stochastic problem, and it is cumbersome to carry out the
probabilistic analyses. The metamodel SPCE/GSA can reduce the dimension of the input
space from 336 to 41, which can improve significantly the calculation efficiency.

The above analyses demonstrate that the analytical method can capture accurately the
spatially varied parameters within the random field and decrease the time of deterministic
realizations. The SPCE/GSA can reduce the input variables dimension and permit one to
construct a fast-to-evaluate metamodel based on the deterministic input-out sets. Therefore,
the proposed DSG-MG procedure is efficient and can provide accurate estimations for the
probabilistic analysis, which is used for the following parametric analyses.

6. Effects of Rotated Anisotropy Considering Different Influential Factors

Three parametric studies based on the proposed procedure DSG-MG are discussed,
which include (1) the importance of rotated anisotropy consideration; (2) autocorrelation
length influence; (3) the effects of cross-correlation between cohesion and the friction angle;
and (4) coefficient of variation effects.

6.1. Effect of the Rotation Angle

The rotation angle of anisotropy varied in the range 0° < 8 < 180°. Figure 11 shows
the results of the failure probability under different values of § with an interval of 15°.
It could be observed that the failure probability varied significantly with the anisotropy
rotation angles. The value of Py increased considerably, and when the  approached the
slope inclinations (f = 45°), the failure probability reached the peak. After that, the Py value
decreased drastically until the rotation angle was approximately equal to 90°. This was
followed by a slight fluctuation, and it reached its lower value when the anisotropic fabric
was approximately perpendicular to the slope (B = 135°). The value of Py increased until
the random field was horizontal (8 = 180°).
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Figure 11. Failure probability with different random field rotation angles.

This finding is similar to previous works [6,7], which indicated that when the fabric
orientation is parallel to the slope, a higher failure probability can be found. Conversely, a
lower failure probability occurs when the fabric orientation is perpendicular to the slope.
This is because the critical failure surface is dependent on the location of the weak soil
patterns. When the anisotropy stratification is parallel to the surface, it is easier for the
failure surface to pass through a single weak soil layer, as shown in Figure 12a, which leads
to smaller safety factor and a high failure probability. Conversely, the failure surface is
gentle, as presented in Figure 12b, when the soil stratification is perpendicular to the slope,
and it leads to larger safety factors and a lower probability of failure. As seen in Figure 13,
a tall and narrow PDF curve was observed when 3 = 135°, whereas a shorter and wider
one was observed for the case of § = 45°, which means the variability of the acquired safety
factor increased. Therefore, the rotational feature of the random field should be considered
in practical engineering, particularly for cases where the stratification is approximately
parallel to the slope inclination.

20 20

FS DKA=1.242 FS_DKA=1.261

(a) (b)

Figure 12. Comparison of the slip surface with different random field rotation angles. (a) B = 45°;
(b) B =135°.
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Figure 13. PDFs for different random field rotation angles.

Table 4 presents the probabilistic analysis results, which include the failure probability,
statistical moments of FS, and Sobol indices of shear strength parameters, with 8 being
0°,45°,90°, 135°. It is noted that the mean safety factors were similar, while the standard
deviation reached the highest for the case with 8 being 45°. Moreover, the rotation angle
of anisotropy stratification had a slight influence on the Sobol indices. The Sobol index of
the friction angle (around 0.98) was larger compared to the cohesion angle (around 0.02),
which indicates that the friction angle affected sensitively the FS variability more than the
cohesion for all the anisotropy stratification conditions.

Table 4. Probabilistic results comparison with different values of random field rotation angle.

B () Py Mean Std Sc Se
0 0.028 1.201 0.106 0.034 0.966
45 0.053 1.190 0.124 0.020 0.980
90 0.013 1.210 0.095 0.028 0.972
135 0.011 1.208 0.089 0.022 0.978

6.2. Effect of the Autocorrelation Length

Figure 14 plots the variations of the failure probability under different autocorrelation
lengths and rotation angles of anisotropy stratification. The results were obtained for [,
values of 2 m and 3 m and an [;, value of 40 m.
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Figure 14. Failure probability with different autocorrelation lengths and random field rotation angles.

It was found that the failure probability was decreased with a decrease in autocorre-
lation length. This is because a higher autocorrelation length indicates that the soil shear
strength is more strongly correlated, which can result in a relatively low variation. There-
fore, the global average of the strength parameter changes a lot for different realizations,
which results in higher variability of the obtained safety factors. Conversely, a small auto-
correlation length can lead to more non-homogeneous zones, and smaller system response
variation. It can also be interpreted by Figure 15 that the PDF of [, = 2 m was narrower than
in the case of I, = 3 m, which showed a smaller variability. With increasing /,, the PDF curve
approached the PDF obtained using the random variables (infinite autocorrelation length),
which had the most significant variation, and the failure probability was up to 0.103.

PDF
(o]

— [, =2m
= ==[=3m
I,=40m .
----------- [,=100m
----------- Random
variable
2 2.5

Figure 15. PDFs for different autocorrelation lengths.

Moreover, the rotation angle made a more significant influence as the autocorrela-
tion length increased. For example, the failure probability differences were, respectively,
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0.042 and 0.025 for the case with [, being 3 m and 2 m. Moreover, the autocorrelation
length affected the failure probability more considerably when the stratification rotation
angle was approximately equal to the slope inclination. Therefore, the autocorrelation
length determination should be examined carefully, particularly for the case with rotated
soil stratification.

Table 5 presents the probabilistic analysis results with different autocorrelation lengths.
The failure probability and standard deviation of safety factors increased with the in-
crease of the autocorrelation length, which is consistent with the results presented in
Figures 14 and 15. Moreover, the autocorrelation length effect on the Sobol index was slight,
and the value of S, was far larger than that of S, indicating again the important role of
friction angle.

Table 5. Probabilistic results comparison with different values of autocorrelation length.

1,(m) Pf Mean Std S Sy
2 0.026 1.204 0.104 0.017 0.983
3 0.053 1.190 0.124 0.020 0.980
40 0.073 1.204 0.146 0.030 0.970
100 0.077 1.208 0.149 0.031 0.969
Random 0.103 1.204 0.171 0.037 0.963
variables

6.3. Effect of the Cross-Correlation

Figure 16 shows the failure probability versus the cross-correlation coefficients with
four random field rotation angles (0°, 45°, 90°, 135°). It was found that the cross-correlation
coefficients influenced significantly the slope failure probability. With increases in the
cross-correlation coefficient, the failure probability increased. This was because compared
to a positively correlated correlation, a negative correlation means that lower cohesion
values correspond to higher friction angle values, which can make the shear strength less
uncertain. Figure 17 depicts the PDFs for different cross-correlation coefficients (—0.7, O,
0.5); a taller and narrower PDF curve is presented with the decrease of the cross-correlation
coefficient. This means that the safety factor variability decreased, and then the failure
probability decreased. This finding is consistent with the results of Figure 16.

0.20 T T T T T T T T T T 7 T

0.15

0.05 F

0.00 | s

L 1 L | L 1 L | L 1 N 1 L
08 06 04 0.2 0.0 02 04 0.6
»

Figure 16. Failure probability with different cross-correlation coefficients and random field rotation angles.
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Figure 17. PDFs for different cross-correlation coefficients.

Moreover, the cross-correlation effects were more significant when the rotation angle of
anisotropy stratification was equal to the slope inclination (45°). For example, the failure probability
varied from 0.023 to 0.162 when f3 = 45°, while for the case with B = 135°, the values varied from
0.001 to 0.091. Similarly, the rotation angle influenced the failure probability more significantly for
the cases with larger values of cross-correlation coefficient.

Table 6 summarizes the probabilistic analysis results under different values of cross-
correlation coefficient with 5 being 45°. It is noted that the mean safety factors were similar
while the standard deviation was increasing with the increase of the cross-correlation
coefficient, which is consistent with the results of Figure 16. Moreover, it is noted that the
Sobol index of cohesion was increasing with the increase of the cross-correlation coefficient,
while that of friction angle presented an opposite trend. The value of Sc was even greater
than that of S, when the cross-correlation coefficient was equal to 0.5. Therefore, in the
rotated random field cases, the cross-correlation coefficient makes a considerable effect on
the failure probability and sensitivity indices, which should be determined with caution
in practice. The quantification of the cross-correlation was considered in the existing
research [33-35], which is not further discussed in this study.

Table 6. Probabilistic results comparison with different values of cross-correlation coefficient.

r Py Mean Std Sc Sy
—-0.7 0.023 1.208 0.094 0.014 0.986
—0.5 0.053 1.190 0.124 0.020 0.980

—0.25 0.085 1.204 0.142 0.137 0.863

0 0.111 1.201 0.157 0.255 0.745

0.25 0.143 1.204 0.178 0.449 0.551
0.5 0.162 1.199 0.193 0.629 0.371

6.4. Effect of the Coefficient of Variation

Figure 18 depicts the effects of the two shear strength parameters (cohesion and
friction angle) COV (COV. and COV,) on the failure probability with four random field
rotation angles (0°, 45°, 90°, 135°). The COV values of the friction angle and cohesion are
respectively in the range of [0.1,0.2] and [0.1,0.5] [22].



Geosciences 2021, 11, 465 21 of 24
0.06 T T T 0.10 T T
| —=—pB=0 d
—e—p=45° 0.08
—A— =90°
0.04 - £=135° E
0.06
a s
0.04
0.02 E
0.02
0.00 /'/ 0.00 L— L .
0.10 0.15 0.20 0.1 0.3 0.5
COV{p cor,
(a) (b)

Figure 18. Failure probability with different coefficients of variation and random field rotation angles.
(a) coefficient of variation for friction angle; (b) coefficient of variation for cohesion.

It can be noted that COV had a significant influence on the failure probability, and
the value of Py increased with the increase of COV. This is because a larger value of COV
led to more varied shear strength, which increased further the variability of safety factors.
Taking the COV, as an example, it can be observed from Figure 19 that the PDF curve
was wider with the increase of the COV(P. Similar to the cross-correlation discussion, the
rotation angle has a more important effect on the failure probability with the increase of
the coefficient of variation.

cov,=0.1 .
- = =CoV,=0.15,
cov,=02 .

PDF

[}
[}
in

Figure 19. PDFs for different coefficients of variation.

Table 7 provides the probabilistic analysis results with different values of coefficient of
variation for the B = 45° case. It was found that the Sobol indices were strongly influenced
by the COV values. Moreover, as presented in Figure 18 and Table 7, the value of COV , had
more significant effects on the probabilistic results compared to the COV. For example,
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the Sobol index of friction angle increased from 0.583 to 0.980 with COV , varying from 0.1
to 0.2, whereas the difference was smaller with the variation of COV..

Table 7. Probabilistic results comparison with different values of coefficient of variation.

cov Py Mean Std Sc Sy
COV:=03

COV,=0.1 0.006 1.204 0.079 0.417 0.583

0.15 0.017 1.206 0.098 0.136 0.864

0.2 0.053 1.190 0.124 0.020 0.980
COV, =02

COV:=0.1 0.039 1216 0.120 0.011 0.989

0.3 0.053 1.190 0.124 0.020 0.980

0.5 0.087 1.196 0.134 0.225 0.775

7. Conclusions

This paper presents a probabilistic analysis of slopes considering the rotated anisotropy
within a random field framework. The proposed procedure DSG-MG, coupling the dis-
cretization kinematic approach (DKA), Sparse Polynomial Chaos Expansion (SPCE), Global
Sensitivity Analysis (GSA), and Monte Carlo Simulation (MCS), is efficient and can pro-
vide accurate estimations for the probabilistic analysis. The analysis results are validated
and some discussions are carried out. The conclusions drawn from this study are listed
as follows:

(1) The proposed procedure DSG-MG provides a good insight for the probabilistic sta-
bility analyses of slopes by the fact that the analytical method DKA can capture
accurately the spatially varied parameters within the random field generation and can
give rational results efficiently compared to the FELA ones (5 s and 60 s, respectively,
for one deterministic calculation with the two methods); the metamodel constructed
using SPCE/GSA can reduce the problem dimension and also the number of deter-
ministic simulations by comparing with the direct MCS; several interesting results
(the failure probability, probability density function, statistical moments of the model
response, and sensitivity index of each variable) can also be obtained effectively.

(2) The rotation of the anisotropic soil fabric pattern has a significant effect on slope
stability. The failure probability is increased drastically when the rotation angle
approaches the slope inclination. Using the traditional horizontal random field
will then overestimate greatly the slope reliability, particularly for the cases with
larger values of autocorrelation length, cross-correlation, and coefficient of variation.
Conversely, the slope is safer when the rotated stratification is perpendicular to the
slope inclination.

(3) The failure probability is increased with the increase of autocorrelation lengths, coeffi-
cient of variation, and cross-correlation coefficient, and the effects of these parameters
are more significant when the soil stratification rotation angle is close to the slope
inclination, which should be determined with caution.

(4) The rotation of soil stratification and autocorrelation length have almost no influence
on the sensitivity index of the cohesion and friction angle, and the influence of the
friction angle on the model response variance is higher than the cohesion angle.
Conversely, the cross-correlation coefficient and coefficient of variation influence
significantly the sensitivity indices, and the Sobol index of cohesion is increased
with the cross-correlation coefficient r and coefficient of variation of cohesion COV/
increase. The friction angle case presents an opposite trend.
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Abbreviations
The main symbols used in this study are presented as follows:
FS safety factor
GSA  Global Sensitivity Analysis
H slope height (Figure 2)
I, I, autocorrelation distances in the horizontal and vertical directions
m horizontal distance of CD (Figure 2)
Py failure probability
70 distance from point O to point C (Figure 2)
r cross-correlation coefficient
SPCE Sparse Polynomial Chaos Expansion
v; velocity vector at point P; (Figure 2)
w angular velocity (Figure 2)
Qi friction angle at point P; (Figure 2)
60 angle between OP; and OP; , 1 (Figure 2)
0o angle between the x axis direction and line OC (Figure 2)
0; angle between the x axis direction and line OP; (Figure 2)
Oy angle between the x axis direction and line OP;, (Figure 2)
B rotation angle of anisotropy stratification
U mean value
Hin mean value of the log-normal random field
o standard deviation
Ol standard deviation of the log-normal random field
0 autocorrelation function
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