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Abstract: Inorganic contaminants, including potentially toxic metals (PTMs), originating from un-
reclaimed abandoned mine areas may accumulate in soils and present significant distress to envi-
ronmental and public health. The ability to generate realistic spatial distribution models of such
contamination is important for risk assessment and remedial planning of sites where this has oc-
curred. This study evaluated the prediction accuracy of optimized ordinary kriging compared to
spatial regression-informed cokriging for PTMs (Zn, Mn, Cu, Pb, and Cd) in soils near abandoned
mines in Bumpus Cove, Tennessee, USA. Cokriging variables and neighborhood sizes were system-
atically selected from prior statistical analyses based on the association with PTM transport and
soil physico-chemical properties (soil texture, moisture content, bulk density, pH, cation exchange
capacity (CEC), and total organic carbon (TOC)). A log transform was applied to fit the frequency
histograms to a normal distribution. Superior models were chosen based on six diagnostics (ME,
RMS, MES, RMSS, ASE, and ASE-RMS), which produced mixed results. Cokriging models were
preferred for Mn, Zn, Cu, and Cd, whereas ordinary kriging yielded better model results for Pb.
This study determined that the preliminary process of developing spatial regression models, thus
enabling the selection of contributing soil properties, can improve the interpolation accuracy of PTMs
in abandoned mine sites.

Keywords: geostatistics; potentially toxic metals (PTMs); soils; mining; interpolation

1. Introduction

Mining industry contamination is a major environmental problem and may arise
in soils as a result of associated blasting, transportation, ore extraction, and materials
processing, and the adverse effects may be exacerbated by associated deforestation [1].
Perhaps most notably, mining activities discharge potentially toxic metals (PTMs) into the
environment. PTMs that commonly accumulate in soils include Cadmium (Cd), Chromium
(Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Manganese (Mn), and Zinc (Zn) [2].
Therefore, locating the source and distribution of PTMs in soil can provide a scientific basis
for environmental risk assessment and soil reclamation.

Natural manifestations of toxic metals in soils are significantly related to the intricate
transport of metalliferous parent bedrock and accumulate in soil by means of geochemical
weathering and/or pollutants from atmospheric deposition [3,4]. Unlike the majority of
pollutants from organic origin, metals do not biodegrade and may disrupt the environment
by accumulating in biological organisms and/or are biologically transformed into organic
complexes [5,6]. Such activity increases toxicity and potential for remobilization and may
directly endanger human health, agriculture, and ecotoxicology [6,7].

Mining of metalliferous ores enriches concentrations of PTMs in soils from the pres-
ence of unmanaged waste rock, mine tailings, and slag. Soils in the vicinity of mines and
tailings are often low in organic matter and macro- or micro-nutrients due to the presence
of high PTMs [8,9]. Therefore, accretion of PTMs in soils at un-restored mine sites may

Geosciences 2021, 11, 434. https://doi.org/10.3390/geosciences11110434 https://www.mdpi.com/journal/geosciences

https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0003-4878-5348
https://doi.org/10.3390/geosciences11110434
https://doi.org/10.3390/geosciences11110434
https://doi.org/10.3390/geosciences11110434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/geosciences11110434
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences11110434?type=check_update&version=3


Geosciences 2021, 11, 434 2 of 16

endanger the environmental ecosystem and public health. Except in highly acidic soils,
they occur primarily as insoluble compounds [10]. Insolubility affects PTM transport in
soils, with above 90% found in surficial soils (to 15 cm depth) [11]. Groundwater contami-
nation may arise due to slow metal transport through soil and saprolite [10]. A range of
factors may interfere with PTM pollution near abandoned mine sites, including current
and historic mineral resource inventory, extraction, and processing methods and chronol-
ogy, as well as the surrounding geomorphology and ecology [12]. PTM accumulation is
further complicated because some metals demonstrate environmental idiosyncrasies [12].
Bioavailability, movement, and spatial distribution of PTMs in soils is also affected by total
concentration [13,14], pH [15], organic matter [16], texture [17,18], cation exchange capacity
(CEC) [19], and redox reactions [5,20]. In this regard, researchers evaluated various soil
physico-chemical properties in relation to PTM spatial accumulation, determined their
influence on and correlation with the PTMs, and estimated the concentration of PTMs
based on the soil properties [21–23]. In particular, clay content, soil pH, and CEC were
known to be highly correlated with Co, Cu, Cr, Ni, Pb, and Zn concentrations in Spain’s
Northern Plateau [21], while physico-chemical soil properties contributed to the spatial
distribution of heavy metals in and surrounding an industrial plant in China [23]. In prior
research by authors of the current study, spatially weighted multivariate regression models
created for Zn, Pb, Cu, Mn, and Cd using soil physico-chemical properties yielded better
results over ordinary least squares regression models in an abandoned mine site in Bumpus
Cove, TN [22].

Another commonly used approach to model environmental data is spatial interpola-
tion, which may include such techniques as inverse distance weighting (IDW), artificial
neural networks (ANN), and kriging. These methods have been used to interpolate
groundwater geochemistry [24], depth to a geologic marker [25,26], and geologic reser-
voir parameters [27]. Similarly, interpolation can help predict the spatial distribution of
PTM pollution in unsampled areas that can aid to refine environmental site assessment.
Therefore, many researchers have interpolated the spatial distribution of PTMs and other el-
ements of concern [28–33]. Kriging offers statistical advantages and is favored to IDW when
variogram parameters are known [34], and ordinary kriging was shown to outperform
ANN in mapping depth to a geologic marker [25].

Kriging interpolation is a broadly used spatial interpolation technique that can provide
a linear optimized unbiased estimate at unsampled locations within a study area [35,36].
In particular, the ordinary kriging method, based on measured data and a semivariogram
model to predict unknown points, is frequently used to study the spatial distribution
characteristics of PTMs in soils [37–39]. It is important to obtain the most realistic prediction
model on the distribution of PTMs. For this purpose, researchers have found that compared
to univariate kriging method, multivariate cokriging methods that incorporate pertinent
soil physico-chemical variables such as soil organic matter, cation exchange capacity, and
presence of iron oxide as covariates can provide better interpolation accuracy [40–43].

There is a need to evaluate efficiency of different geospatial statistical methods such
as spatially weighted multivariate regression, kriging, and cokriging to predict the spatial
distribution of PTMs in soil. In this regard, the objective of this research is to compare the
results of ordinary kriging and spatial modeling informed cokriging, and to assess their
prediction accuracy.

2. Materials and Methods
2.1. Study Area

Bumpus Cove is located in the Unaka Range of the Blue Ridge physiographic province
in northeast Tennessee and spans both Washington and Unicoi Counties. The cove forms a
synclinal valley between northeast-southwest trending Embreeville Mountain (~885 m)
and Rich Mountain (~1035 m) [44]. The valley consists of well-jointed Cambrian aged
Shady Dolomite and the surrounding ridges are formed by an older Cambrian aged more
resistant formation, known as Chilhowee Group sandstones [44]. Due to its regional
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geology, Bumpus Cove is one of the richest mineralized areas in East Tennessee and
contains extensive iron, zinc, lead, and manganese deposits. Zinc, lead, and iron sulfides
are present within the Shady Dolomite geologic formation, and oxidized deposits of zinc,
lead, iron, and manganese develop as a result of in situ weathering within the residual
clay [44]. Bumpus Cove contains 47 abandoned mines which were operational from the
late 1700s to the early 1950s. The Peach Orchard Mine was an important supplier of zinc in
the United States during its operation from 1916 to 1926 and 1931–1943 [44].

The study area is 0.67 km2 and is located in Unicoi County within the southwest
corner of the ~19.5 km2 Bumpus Cove Creek Watershed, which drains northeastward
into the Nolichucky watershed (HUC 06010108) (Figure 1). The study area is forested
and surrounded by United States Forest Service land to the north, south, and west, and
bordered by residential properties of the Embreeville community to the east. The region
experiences a humid temperate climate (Köppen climate classification Cfa), typically with
wet summers and dry winters. The average annual temperature of Unicoi County is 14 ◦C
(57 ◦F) and the average annual precipitation is 104 cm (41 in) [45].
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Figure 1. Bumpus Cove study area (0.67 km2) in northeast TN, USA, showing topographic contours
and mine and sample locations.

The abandoned Peach Orchard Mine is situated in the middle of the study area at
the southwest end of the cove in the vicinity of Bumpus Cove Creek. Additionally, five
other abandoned Pb, Zn, and Mn mines are centralized in the study area and operated
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simultaneously during the same time (Figure 1). No additional mapped mines are located
upstream of the study area.

2.2. Sampling Procedure

The methods are outlined in Figure 2 and described in the following paragraphs.
Soil samples were collected from 10 November to 5 December 2016, using a semi-random
sampling strategy, from a 51-cell equal area grid (each cell measured ~130 × ~115 m). After
removal of the humus layer, at minimum one soil sample was collected from a random
location within each grid cell, from a depth of 0–15 cm (n = 52 samples). Samples were
transported to the East Tennessee State University (ETSU) Geosciences Soils Laboratory in a
cooler with ice. There, physical parameters (grain size distribution, moisture content, bulk
density, and porosity) were measured. Metals (Mn, Zn, Pb, Cu, and Cd) were measured
using flame atomic absorption spectrometry (FAAS) at the ETSU Environmental Health
Sciences Laboratory. A portion of each soil sample was sent to an external laboratory for
additional chemical analyses (total organic content (TOC), cation exchange capacity (CEC),
pH). Sampling and lab methods are described in detail in Magno et al., 2019 [22].
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Figure 2. Description of methods.

2.3. Data Analysis and Kriging

Magno et al. (2019) [22] describe statistical analyses and development of spatial regres-
sion models for the metals (Mn, Zn, Pb, Cu, and Cd) using physico-chemical characteristics
of the soil samples. This research builds upon that analysis using the findings to select
variables for cokriging interpolation models and to select an appropriate neighborhood
size. The findings of the prior research are summarized in Table 1 and list the explanatory
variables retained in spatial regression models and the neighborhood size of the spatial
weights matrix.
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Table 1. Summary of spatial regression model output used to inform choice of cokriging variables and settings [22].

Metal Covariates Neighborhood Size Number of Neighbors

Manganese (Mn) Moisture content, silt 300 m 16–24
Zinc (Zn) pH, cation exchange capacity 150 m 6–8
Lead (Pb) pH, cation exchange capacity 150 m 6–8

Copper (Cu) Sand, silt, bulk density 200 m 8–12
Cadmium (Cd) pH, sand, silt 150 m 6–8

For each metal, normality was assessed by examining histograms, and where appro-
priate, a log transform was applied. Two kriging interpolation models were produced in
ArcGIS Pro 2.7.0 [46] and compared: (1) ordinary kriging using the optimize utility; (2)
ordinary cokriging using the covariates retained in the spatial regression models in the
prior research [22]. The number of neighbors for each cokriging model was calculated by
overlaying a circle with radius equal to the optimal neighborhood size identified in the
prior study and counting the number of neighbors (nearby sampling points) falling within
the circle. The geometric interval classification scheme was selected for each kriging surface
and the same classification was used for the sampled data for easy visual comparison.

Five metrics were used to compare the two models for each metal: mean error (ME),
root mean square (RMS), mean error standardized (MES), root mean square standardized
(RMSS), and average standard error (ASE). MES is the mean of the prediction error divided
by the standard error, which should be near zero. RMSS is the standard deviation of
the residuals, divided by the standard error, which should be close to one. If RMSS > 1,
variability is underestimated and if RMSS < 1, variability is overestimated. ASE is the
average of the prediction standard errors. The difference between ASE and RMS was
calculated to assess whether variability was overestimated (ASE − RMS > 0) or underesti-
mated (ASE − RMS < 0) in each model. To select a best model, we relied more heavily on
the standardized MES and RMSS, and ASE-RMS. All metrics were calculated using cross
validation in ArcGIS Pro 2.7.0. Distribution of the predicted and measured concentrations
were compared for each model, as was a scatterplot of predicted versus measured con-
centrations. Maps were compared to assess how well each was able to capture the overall
pattern in metal concentration as well as outlier values. The best model selected for each
metal was superior in a majority of the metrics and plots, and appropriately captured the
spatial pattern of measured data, including outliers.

3. Results
3.1. Descriptive Statistics

Descriptive statistics for all variables were published previously and are included
here for context (Table 2) [22]. Soil moisture content fluctuated between 8 and 53%, and
generally increased near the east-central part of the study area. Soil bulk density ranged
from 1 to 2% and increased eastward. Soil pH ranged from very acidic (3.6) around the
northwest and southeast edges, to neutral (7.6) especially towards the middle valley area.
The neutral pH values run parallel to the fold axis of the Shady Dolomite formation. The
dolomite possibly increases the soil pH. CEC varied in the study area, but the majority
ranged from 2 to 8 meq/100 g and generally increased near the central valley. Most soil had
TOC ranging from only 3 to 18%, and gradually decreased from northwest to southeast.
Overall low CEC and TOC is expected at and around a disturbed, un-reclaimed mine site.

The overall soil texture was well-graded sands (94.5% sand, 0.04% silt, and 0.01%
clay) as described by the Unified Soil Classification System (USCS), where higher sand
concentration was found along the floodplains of the stream and lowest in the southwestern
ridge. Silt content showed the opposite spatial distribution to the sand texture, with silt
less predominant along stream floodplain areas and at a maximum in the southwest. Clay
showed a decreasing trend from the northeast to southwest.
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Table 2. Descriptive statistics of soil properties [22].

Variables Min Max Mean Standard Deviation Skewness Kurtosis

Soil Properties
moisture content (%) 8.29 75.21 24.59 13.2 1.4 3.1
bulk density (g/cm3) 0.79 1.79 1.25 0.2 0.2 −0.07

cation exchange capacity
(meq/100 g) 1.52 16.58 4.83 3.5 1.8 2.9

total organic carbon (%) 3.2 31.5 8.6 4.7 2.6 10.6
sand (%) 88 99 95 0.03 −0.5 −0.8
silt (%) 1 11 4 0.03 0.6 −0.8
clay (%) 0 3 1 0.01 0.3 −0.2

Metal Concentration
Mn (mg/kg) 6.29 2574.93 344.49 652.2 2.4 4.9
Zn (mg/kg) 11.80 1354.16 302.52 402.7 1.7 1.6
Pb (mg/kg) 33.43 2271.43 326.69 529.6 2.7 6.4
Cu (mg/kg) 1.14 64.67 13.96 13.2 2.3 5.9
Cd (mg/kg) 7.14 40.00 1186 5.1 3.6 17.8

The Zn, Mn, and Pb concentrations show two orders of magnitude differences between
samples (12–1354 mg/kg for Zn, 6–2574 mg/kg for Mn, and 33–2271 mg/kg for Pb). Cu
and Cd showed more steady distribution, with ranges of 1–65 and 7–40 mg/kg, respectively.
Among the PTMs, only Pb exceeded EPA acceptable limits of 420 mg/kg in soils [47].

3.2. Kriging and Cokriging Model Comparison

For all metals, model output diagnostics (Table 3) were compared to identify the supe-
rior model. Optimally, diagnostics for the superior model have ME and MES closest to zero,
RMSS closest to one, and the smallest values for RMS and ASE. Results were mixed such
that for all metals, some diagnostics suggested kriging was better, while other suggested
that the cokriging model was superior. By evaluating diagnostics, cross validation plots
of predicted versus measured values, distribution of predicted and measured values, and
map products (Figures 3–7), we determined that ordinary cokriging produced the better
model for Zn, Mn, Cu, and Cd and ordinary kriging produced the better model for Pb.

Table 3. Ordinary kriging (OK) and ordinary cokriging (OCK) diagnostics from interpolation models for five metals. The
better model is in bold font.

Mn Zn Pb Cu Cd

Model OK OCK OK OCK OK OCK OK OCK OK OCK
Cokriging
covariates - MC, silt - pH, CEC - pH, CEC - sand, silt,

BD - pH, sand,
silt

Neighbors 16–24 6–8 6–8 8–12 6–8

ME −29.315 −19.714 12.814 14.316 23.280 20.734 0.086 −0.193 0.237 0.0350
RMS 611.194 611.253 409.981 378.532 435.264 405.224 12.798 12.166 5.005 3.954
MES −0.0287 −0.0212 0.0292 0.0358 0.0366 0.0412 −0.0017 −0.109 0.0398 0.00857

RMSS 1.022 1.021 0.967 0.966 0.876 0.824 0.834 1.213 0.912 0.947
ASE 571.525 583.366 424.396 392.328 491.351 494.574 14.420 10.875 5.552 4.187

ASE−RMS 39.669 −27.887 14.417 13.797 56.086 89.350 1.621 −1.290 0.5465 0.2333

Covariates: MC = moisture content; CEC = cation exchange capacity, BD = bulk density. Diagnostics: ME = mean error; RMS = root mean
square; MES = mean error standardized; RMSS = root mean square standardized; ASE = average standard error.

3.2.1. Manganese

The cokriging model was determined to be superior for Mn, with ME and MES closer
to zero. RMS and ASE were slightly smaller for the kriging model, but RMSS was closer
to one for the cokriging model. For Mn, the kriging model over estimated variability
(ASE > RMS) while the cokriging model underestimated variability (ASE < RMS), but less
so (Table 3). The nugget for both variograms was near zero, indicating that the sampling
scale was appropriate for the scale of local spatial variability. After additionally reviewing
the cross-validation graph and interpolated maps, for Mn, the cokriging model was selected
as the better model (Figure 3).
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3.2.2. Zinc

The cokriging model was determined to be the better model for zinc because, even
though ME and MES were larger in the cokriging model indicating that the model overes-
timated Zinc concentration on average, the difference was slight (Table 3). Furthermore,
RMS and ASE were closer to zero and RMSS was closer to one in the cokriging model
(Figure 4). The difference between ASE and RMS was positive in both models, indicating
that both overestimated variability. The nugget for the variogram on the cokriging model
only was near zero. Examination of the two interpolated maps shows minimal differences
between the two interpolation models. The cokriging model was determined to be superior
to the kriging model due to the predicted versus measured cross validation plot, which
demonstrated a poorer model fit for the kriging model.
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3.2.3. Lead

The kriging model was selected as the superior model for lead because the two
standardized diagnostics, MES and RMSS were more favorable. While both models over-
estimated variability (ASE > RMS), the kriging model did so by a smaller amount. The
cross-validation plots show an overall underestimation of Pb concentrations, concurring
with the positive value for mean error. Only the variogram for the kriging model had
a nugget near zero although the nugget of the cokriging model semivariance appears
to have been overestimated by the optimization process. Given the mixed results, the
final determination of the superior model was decided by weighing the diagnostics with
qualitative evaluation of the interpolated maps.
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3.2.4. Copper

The cokriging model with log transformation was selected as the better model for
copper. The log transformation was used because Cu concentrations were log normally
distributed. Both models showed good results from the five cross validation metrics, with
the cokriging model having better values for RMS and ASE (Table 3). Further, ASE − RMS
was smaller for the cokriging model, indicating it better captured variability in the data.
Only the nugget on the variogram for the cokriging model was zero and the variogram for
the kriging model was flat, likely due to a high variability/short distance outlier visible in
both variograms. We further compared cross-validation scatterplots and distributions of
measured and predicted values, which confirmed that the cokriging model was superior
(Figure 6).
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3.2.5. Cadmium

The cokriging model was selected as the superior model for cadmium because all
model diagnostics agreed, with smaller ME, MES, RMS, and ASE, and RMSS closest to one
for the cokriging model. Notably, the variograms were very similar, but the nugget for the
cokriging model was smallest due to an outlier at short distance evident on the variogram
for the kriging model (Figure 7a). Further, the interpolated map produced by cokriging
appeared to better capture the influence of drainages in the valley bottom (Figure 7).
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4. Discussion

For the purpose of abandoned mine reclamation, it is essential to obtain the most
realistic spatial distributions of PTMs. In this regard, the present research used results
of spatial regression models published previously [22] to inform cokriging interpolation
models. The covariates retained in spatial regression models and the associated optimal
spatial neighborhood were used to select cokriging variables and neighborhood size. This
was necessary because spatial regression models cannot be used as predictive models due
to the auto-regressive spatial lag and spatial error variables in the model. Therefore, we
developed interpolation models to estimate metal concentrations at locations where sam-
ples were not collected. Indeed, for this research, the value of the spatial regression models
was to identify important explanatory variables under conditions of spatial autocorrelation.
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Once identified, in the present research we sought to improve upon optimized ordinary
kriging models by systematically selecting cokriging variables and settings from the prior
spatial regression models.

As presented in results, findings were mixed. For four metals (Mn, Zn, Cu, and
Cd), the cokriging models were superior to the kriging models, and it appears that the
development of spatial regression models was a worthwhile preliminary step. For Pb, this
was not the case. Further discussion of model diagnostics presented in Table 3 and the
maps and charts in Figures 3–7 follow.

We elected to consider six diagnostics (ME, RMS, MES, RMSS, ASE, and ASE − RMS),
recognizing that for comparison purposes, the standardized diagnostics (MES and RMSS)
and the composite diagnostic ASE-RMS were preferred. MES is preferred over ME [48]
with values near zero indicating small errors. MES assesses whether the model overpredicts
(MES < 0) or underpredicts (MES > 0) values, in this case metal concentrations. RMSS
assesses overall error, with larger errors contributing more to the diagnostic than smaller
errors. A small number near one indicates consistently small errors with few or no large
outlier errors. ASE-RMS provides information on how well the model captures variability
in the data, indicating whether it overestimates (ASE − RMS > 0) or underestimates
(ASE − RMS < 0) variability in values [49]. We had concerns regarding the nugget effect in
the variograms, because this suggests variability in metal concentrations at a geographic
scale larger than the sampling scale, or sampling error. After selection of the best model,
only the variogram for Cd had a nonzero nugget, although it was small. Unfortunately,
there is no way to predict the variogram a priori, and development of the field plan including
sampling grid size was made by emulating sample spacing in other soil studies reviewed
from the literature. In future studies, we recommend that soil sampling for heavy metals,
and Cd in particular, use a finer sampling resolution to capture local scale variability
suggested by the nugget effect.

4.1. Manganese

For Mn, MES and RMSS were very similar, with the cokriging model having a slight
edge. The cokriging model was selected because, while the ASE − RMS value of −27.887
indicated that the model underestimated variability, the underestimation was less severe
than the overestimation of variability present in the kriging model (ASE − RMS = 39.669).
Further, the cokriging model reasonably captured outliers without the obvious bulls-eye
effect present in the kriging map (Figure 3a).

The best Mn prediction model used the highest distance threshold of 300 m, i.e.,
16–24 neighbors, to estimate meaningful spatial correlation. The larger neighborhood
size suggests that Mn was transported from the known mine locations, and primarily
concentrated downstream in lower elevation valley areas. The metal transport seems to
be affected by drainage and showed better model accuracy when % silt and moisture
content were added as covariates. Higher moisture content was found in downstream soil,
with low silt content. The previous study [22] in the same study area indicated surface
soils exhibited a well-graded sand textural class where most PTMs beside Zn showed a
significant positive correlation with % sand, and a significant negative correlation with %
silt. Moreover, as anticipated, the turbulent stream in a hilly landscape deposited sands
as bed load material from the surrounding slopes of Chilhowee Group sandstones. Mn
concentration in lower elevation valleys could also be related to localized ponding, which
creates wetland conditions. This finding was supported by the field survey and higher
measured moisture content in the valley. In an oxygen-depleted environment, facultative
bacteria utilize Mn as terminal electron acceptors to make energy. As a result, Mn is reduced
and becomes soluble in soil water. As water mobilizes the soluble Mn, it eventually may
encounter oxygenated air through root channels or other macropores, where it oxidizes
and redeposits as concentrated Mn [50].
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4.2. Zinc

For Zn, the cokriging model was selected as the best model, but there was little
difference in the diagnostics of the two models. Likewise, there was little difference between
the maps, although the cokriging map better captured the outliers on the southeastern
periphery. The variogram for the kriging model (Figure 4a) is flat, with a maximal nugget,
while that of the cokriging model (Figure 4b) has a very short range. These suggest that
kriging interpolation is not optimal for the Zn data. The best Zn prediction model from
the spatial regression modeling used a distance threshold of 150 m, i.e., 6–8 neighbors, to
estimate meaningful spatial correlation, which means Zn concentration at the study area is
spatially dependent on fewer neighboring data points at a shorter distance.

In the cove, Zn concentration was overall higher than the common 10–300 mg/kg
range. Unlike Mn, Zn was concentrated upgradient of the mines, and showed lesser
degree of transportation through drainage, which supports the use of the smaller distance
threshold (fewer neighbors) in the interpolation. The resulting distribution could be
because of upgradient mine tailings and waste rocks or due to localized bioaccumulation.
Unmapped mines in the study area may have also impacted Zn concentrations, as the mine
locations acquired from the USGS are approximate. The cokriging result indicated that Zn
concentration was sensitive to pH and CEC, where Zn was found in higher concentration
in soil with near neutral pH and low CEC. The solubility of Zn decreases with an increase
in pH. When soil pH exceeds 5.5, Zn becomes less mobile as it is adsorbed in the clay
minerals [51] and our findings agreed, whereby a higher concentration of Zn was found
in the clay rich soil along the ridges of the western part of the study area. CEC is also
known to affect PTM concertation in soil. High CEC has been reported to impact retention
of PTMs [52–54]. For soils of the Bumpus Cove, CEC was a significant covariate in the
cokriging model, however, the result indicated a negative relation between Zn and CEC [22],
in contrast to the significant positive correlation between Zn and CEC found at a different
site by Navas and Machin [52].

4.3. Lead

For Pb, the diagnostics suggest that the kriging model was superior, and it better captured
outlier values albeit at the expense of increased spatial variability (ASE − RMS = 56.086).

Pb was concentrated around the abandoned mine areas in carbonate bedrock and
did not show much evidence of transportation. At pH > 6.0, in soils with high calcite,
iron and phosphorus content, Pb is not transported and is captured in soil, which might
explain limited transportation of Pb. The model results did not improve with addition of
covariates like pH and CEC, though other studies have shown that concentration of Pb
could be sensitive to soil physico-chemical properties [21,22,52].

4.4. Copper

For Cu, the cokriging model with log transform was selected as the better model with
a smaller RMS and ASE, and a low variability (ASE − RMS = −1.290). The cokriging map
also better captured high outliers.

Cu was not a minable ore at Bumpass Cove, and likely came from the northwest
Chilhowee Group Sandstone bedrock. The general trend of the Cu prediction map showed
a decrease from northwest to southeast direction, validating its source. It was interesting to
see a northwest–southeast trending linear patch with Cu concentration, which correlated
with a mining related disturbance at the specific location. Like Pb, concentration of Cu is
also known to correlate with soil physcio-chemical properties like clay content, soil pH,
and cation exchange capacity, TOC, and BD [21,22,55]. However, the addition of these
covariates did not produce improvement in the model results for distribution of Cu at
the cove.



Geosciences 2021, 11, 434 14 of 16

4.5. Cadmium

Lastly, Cd had small errors and RMSS close to one for both models. Cokriging had
better diagnostics (smaller MES, RMSS closer to one, and a smaller ASE-RMS) and better
captured outliers; it was therefore selected as the best model.

Like Cu, Cd also had no ore sources and was possibly found as trace metal in carbonate
bedrock that concentrated primarily downstream, in the lower elevation valley. The Cd
prediction map improved when pH, % sand, and % silt were added as covariates. Studies
found that Cd concentration in soil is pH dependent; with lower pH, Cd becomes soluble
and can be transported, whereas as pH increases, Cd becomes trapped in the soil [56].
Based on the distribution of pH in the soil of Bumpass Cove, we propose that soluble Cd
was transported from high elevation low pH areas, and was deposited downstream at the
valley region as the soil pH increased. The reason for the presence of a high concentration
of Cd in sandy soil is unclear, but at the cove, sandy soil was prevalent in the valley.

5. Conclusions

To obtain the most realistic spatial distributions of PTMs we used optimized ordi-
nary kriging and cokriging models by systematically selecting cokriging variables and
neighborhood settings from prior statistical analyses. The PTMs analyzed in this study
are Zn, Mn, Pb, Cu, and Cd. While each model successfully produced PTM concentration
maps, the findings were mixed in terms of whether kriging or cokriging models were
deemed superior for each metal. For Mn, Zn, Cu, and Cd, the cokriging models improved
interpolation accuracies, where for Pb the kriging model yielded better results.

The interpolation maps indicated that Mn, Pb and Cd were concentrated around the
vicinity of the mine area. Mn and Cd were further transported downstream possibly due to
seasonal wetland condition and variable pH. Zn and Pb soil concentration were elevated,
with Pb exceeding the USEPA soil regulatory limit.

The study established that soil physico-chemical properties influence the spatial
distribution of PTMs in mineralized areas. Moreover, prior to applying spatial interpolation
method, development of spatial regression models is an important preliminary step, and
should be performed to select the contributing soil properties as this process can improve
the final outcome.
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24. Mirčovski, V.; Gičevski, B.; Dimov, G. Hydrochemical characteristics of the groundwaters in Prilep’s part of Pelagonia valley–
Republic of Macedonia. Rud. Geol. Naft. Zb. 2018, 33, 111–119. [CrossRef]

25. Šapina, M. A comparison of artificial neural networks and ordinary kriging depth maps of the lower and upper Pannonian stage
border in the Bjelovar Subdepression, Northern Croatia. Rud. Geol. Naft. Zb. 2016, 31, 75–85. [CrossRef]

26. Kiš, I.M. Comparison of ordinary and universal kriging interpolation techniques on a depth variable (a case of linear spatial
trend), case study of the Šandrovac Field. Rud. Geol. Naft. Zb. 2016, 31, 41–58. [CrossRef]
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