
geosciences

Article

U-Th-He Geochronology of Pyrite from Alteration of the
Au-Fe-Skarn Novogodnee-Monto Deposit (Polar Urals,
Russia)—The Next Step in the Development of a New
Approach for Direct Dating of Ore-Forming Processes

Olga Yakubovich 1,2,* , Ilya Vikentyev 3,4 , Ekaterina Ivanova 1,2, Mary Podolskaya 5, Ivan Sobolev 3,
Eugenia Tyukova 3,6 and Alexander Kotov 2

����������
�������

Citation: Yakubovich, O.; Vikentyev,

I.; Ivanova, E.; Podolskaya, M.;

Sobolev, I.; Tyukova, E.; Kotov, A.

U-Th-He Geochronology of Pyrite

from Alteration of the Au-Fe-Skarn

Novogodnee-Monto Deposit (Polar

Urals, Russia)—The Next Step in the

Development of a New Approach for

Direct Dating of Ore-Forming

Processes. Geosciences 2021, 11, 408.

https://doi.org/10.3390/

geosciences11100408

Academic Editors: Giacomo Oggiano

and Jesus Martinez-Frias

Received: 9 August 2021

Accepted: 20 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Earth Sciences, Saint-Petersburg University, 199034 Saint-Petersburg, Russia;
ekate.s.ivanova@gmail.com

2 Institute of Precambrian Geology and Geochronology (IPGG), Russian Academy of Sciences,
199034 Saint-Petersburg, Russia; abkotov-spb@mail.ru

3 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy
of Sciences, 119017 Moscow, Russia; viken@igem.ru (I.V.); sobolev_id@mail.ru (I.S.); evgtyuk@mail.ru (E.T.)

4 Engineering Academy, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
5 Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences,

119991 Moscow, Russia; marypodolskaya@gmail.com
6 Scientific Geoinformation Centre, Russian Academy of Sciences, 119019 Moscow, Russia
* Correspondence: olya.v.yakubovich@gmail.com

Abstract: We report on the application of the U-Th-He method for the direct dating of pyrite from the
alteration halo of the Novogodnee-Monto Au-Fe-skarn deposit, Polar Urals. The deposit is genetically
related to the formation of volcanogenic complexes of the Ural Paleozoic belt. A modification of the
original methodology for measuring U, Th and He isotopes in a single grain allowed us to determine
a U-Th-He age of 382 ± 8 Ma (2σ) based on six pyrite samples from the altered rocks of the deposit
(U mass fraction ~0.2 mg/kg; Th/U ~3.5; 4He specific volume ~10−5 cm3·STP·g−1). This age is
consistent with estimates of the age of ore formation and coeval with the end of the period of island
arc magmatic activity. Our results indicate that U-Th-He dating for pyrite samples of ~1 mg in weight
from the hydrothermal-metasomatic halo of ore bodies is possible, providing a crucial next step in
the development of U-Th-He pyrite geochronology.

Keywords: geochronology; U-Th-He; pyrite; Novogodnee-Monto; Polar Urals; alteration; Au-Fe-
skarn deposit; Russia

1. Introduction

In the past decade, a large body of work has been focused on understanding the
behavior of radiogenic helium in various minerals that has not been traditionally stud-
ied for geochronology, such as hematite, magnetite, calcite, native metals, arsenides and
sulfides ([1–7] and references within). Some of these minerals have shown a high reten-
tivity of helium, which may facilitate their use as He-geochronometers [1,3,8], including
pyrite. The first application of dating pyrite using the U-Th-He method from the Uzelga
VMS-type deposit was successful [8,9]. This success opened up a new perspective for
dating ore-forming, sedimentary and tectonic processes, as pyrite is often formed during
these processes.

Traditionally, sulfide mineralization has been directly dated by the Re-Os method and
in some cases by the Rb-Sr, Sm-Nd and Ar-Ar methods [10–16]. To date, Re-Os geochronol-
ogy of pyrite has successfully used a large variety of ore deposits, such as orogenic gold,
porphyry, sedimentary exhalative and Mississippi Valley-type deposits [11,17–20]. How-
ever, the analytical procedures and results obtained from pyrite Re-Os geochronology are
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complex, typically showing a high degree of scatter and/or imprecise ages [20–22]. The
imprecise ages could be related to isotopic heterogeneity of the trapped Os or by disruption
of the Re-Os system by subsequent processes such as metamorphism.

U-Th-He dating of pyrite holds several potential advantages compared to the tra-
ditional Re-Os dating technique. Firstly, it requires less material (∼1 mg) compared to
Re-Os dating (∼400 mg). Secondly, the methodology of U-Th-He dating is simpler, and its
realization is financially less expensive, as it is based only on the measurement of U, Th
and He concentrations. Thirdly, the behavior of osmium during polycyclic ore formation
and/or secondary overprinting processes, which are often accompanied by recrystalliza-
tion/overgrowth of the pyrite, is extremely difficult to quantify. This results in scattering
of the Re-Os ages. In the case of the U-Th-He isotope system, the behavior of parent
and daughter isotopes exhibits greater contrast compared to other radioisotope systems.
Helium is chemically inert, and its response to geologic processes is mainly diffusion con-
trolled. This provides unique opportunities for the dating of geological processes, which
are not possible by other techniques, for example, to quantify the timing of recrystallization.
Breaking the bonds during the recrystallization provoke He loss when the mobility of other
non-inert elements is limited.

Here, we applied the U-Th-He method for the direct dating of pyrite from altered
rocks of the Novogodnee-Monto Au-Fe-skarn deposit, located in the Polar Urals, Russia.
The Novogodnee mineral field is the largest and most promising one in the entire Polar
Urals, with estimated gold reserves of 33 t. Quarrying the deposit over the last 10 years, in
preparation for open pit mining, allowed the authors to better study this ore field in terms
of the sequence of magmatic processes, hydrothermal alterations and ore mineralization.
The goal of this paper is to experimentally test the possibility of U-Th-He dating of pyrite
from such ore deposits, promoting the development of an approach for using pyrite as a
U-Th-He geochronometer.

2. Isotope-Geochemical Background

The U-Th-He method is based on the accumulation of He atoms produced by the
alpha decay of U and Th, which is described by the following equation:

4He = 8 238U
(

eλ238t − 1
)

+ 7235U
(

eλ235t − 1
)

+ 6232Th
(

eλ232t − 1
)

, (1)

where λ238, λ235 and λ232 are the decay constants of 238U, 235U and 232Th, respectively. The 8,
7 and 6 coefficients are the amounts of 4He atoms produced by the decay of corresponding
parental nuclide.

The detailed isotope-geochemical constraints regarding the possibility of U-Th-He dating
of pyrite are described elsewhere [2,8,9]. Here, we briefly summarize the major prerequisites.

1. The mass fraction of parental nuclides of U and Th in the pyrite range from the first
ng/kg to first wt.% depends on the type of ore and its locality [23–25]. The positions of
U and Th within the pyrite crystal lattice are unclear. Some U and Th may be in micron-
size inclusions of U-bearing and/or Th-bearing minerals, such as uraninite, brannerite,
monazite, apatite or rutile [26–28]. Alpha particles produced by the decay of U and
Th travel from 10 to 20 µm from their parents [29]. It indicates that all radiogenic
4He produced in U-bearing and Th-bearing micron-size inclusions is implanted in
the crystal structure of pyrite due to the alpha-recoil effect. It also indicates that the
accumulation of radiogenic He by micron size inclusions is physically impossible.
Thus, the question of the genetic relationship of the inclusions and pyrite is not
applicable. U-Th-He age records the age of pyrite formation rather than the age of
the inclusions. A microradiography study has shown that there is another form of
U occurrence within pyrite in addition to inclusions, which does not form star-like
inclusion-related patterns on the detector [25]. Baranov and Vertepov [25] interpreted
such microradiographic patterns as possible evidence of U sorption from the fluid
by the pyrite surface during crystal growth. The mechanism of U sorption by pyrite
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is described in detail in Reference [30]. In general, the distributions of U and Th in
pyrite are strongly heterogeneous [9], requiring the measurement of U, Th and He in
the same grain.

2. Specific volume of trapped/hydrothermal fluid-derived He in sulfides do not typically
exceed 10−8–10−10 cm3·STP·g−1 [31–35]. Thus, the amount of fluid-derived 4He may
be considered insignificant for samples older than a few tens of millions of years [9].

3. Pyrite has a particularly strong thermal retentivity for 4He [2]. Step-heating ex-
periments have shown that He begins to migrate from the pyrite crystal lattice at
temperatures of ~450 ◦C, when the mineral begins its transformation into pyrrhotite
or magnetite (depending on the amount of oxygen in the system).

All of the above indicate that U-Th-He geochronology could potentially be applied
to pyrite. This notion is supported by the first results of U-Th-He dating of pyrite from
the VMS-type Uzelga deposit [8,9] and indirectly by successful Pt-He dating of sperrylite
(PtAs2) [3], which is its complete crystallographic analog.

3. Object of Study
3.1. Geological Setting

The Au-Fe-skarn Novogodnee-Monto deposit is the first industrial-scale gold body
in the Polar Urals (Yamal-Nenets Autonomous Area) [36]. The deposit is located in the
south-eastern part of the Toupugol-Khanmeyshor ore district (66◦48.81′ N; 66◦29.01′ E),
which is a constituent of the Voikar zone of the Polar Urals (Figure 1). The Voikar zone is a
narrow (a few dozen km) band of Late Ordovician–Middle Devonian volcanic-sedimentary
and partly comagmatic plutonic complexes, elongated in a north-north-east direction [37].
Together, they belong to the Polar-Urals paleo-island arc system and the Voikar back-arc
basin [38–41].

The ore district is located within a large (8.5 × 7.5 km) asymmetric volcanic-tectonic
depression, composed mainly of Silurian–Lower Devonian island-arc basalts and basaltic
andesites, volcanic-sedimentary and sedimentary rocks of the Toupugol series (Wenlock–
Ludlow), with silty pelitic, psammitic and gravel sizes of volcanic clasts [42–45]. The
volcanic-sedimentary series form a monocline, complicated by a series of bends with a dip
towards the south-east (Figures 2 and 3). These stratified rocks are located in the roof of the
Late Silurian–Middle Devonian comagmatic, multiphase gabbro-diorite-plagiogranite Sob’
(Lagorta-Kokpela) batholith [38,41,44–48]. The ore district is located in a long-lived tectonic
zone forming a series of faults oriented in a north-west direction, which are recognized as
some of the key conduits for various types of ore mineralization [46,49–52].

The Novogodnee-Monto deposit is located in the exocontact zone of the large diorite
stock of the Sob’ complex and is hosted by predominantly metabasalts, basic volcanoclastic
rocks and limestones of the Toupugol series [45–47] (Figure 4). At the Novogodnee-
Monto deposit and in its vicinity, younger Early Carboniferous rift-related basite intrusions
(dolerite sills, monzodiorite and lamprophyre dykes) are also identified [50]. These bodies
belong to the Musyur (Malyi Khanmey) hypabyssal complex (Figures 2 and 3). Their
formation was associated with the accretion by the Polar Ural island arc and formation of
the Early Uralian orogen [48,50].

3.2. Types of Gold Mineralization

The Novogodnee gold field contains several different types of ore mineralization,
which are superimposed on each other and distributed across a relatively small area of
2.5 km2. Based on the morpho-structural features of the deposit, there are two industrial
types of Au-bearing mineral assemblages: (1) gold-sulfide-magnetite ore confined to skarn-
magnetite bodies; and (2) veinlet-disseminated gold-sulfide-quartz ore, associated with
zones of propylitization (epidote–chlorite–sericite–secondary albite assemblage ± calcite)
and pyrite-sericite-quartz alteration [45].
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Figure 1. Location maps. (A) Tectonic scheme of the Ural fold belt based on the geological map in [42]; I—Mesozoic–
Cenozoic complexes of the East European platform and West Siberian plate; II, III—Paleozoic complexes of the Western Urals
(II) and Precambrian (III); IV—Early–Middle Paleozoic complexes of the Tagil-Magnitogorsk megazone; V—Precambrian
and Paleozoic complexes of the East Uralian megazone; VI—Paleozoic and Precambrian complexes of the Trans-Urals;
VII—Main Ural fault; VIII—position of the Toupugol-Khanmeyshor ore district of the Polar Urals. (B) The position of the
Toupugol-Khanmeyshor ore district in the structures of the Polar Urals was compiled using data from [38,39]. PNS and UrS
(on the inset)—Paykhoy-Novaya Zemlya and Ural folding-thrust structures.

The gold-sulfide-magnetite type of mineralization is associated with skarn and skarn-
magnetite quasi-conformable lenses, located above the diorite massif at the contact point
between limestone and tuff-sedimentary rocks. The ore bodies are represented by compli-
cated lenses reaching thicknesses of several tens of meters. The ore structures are massive,
banded-spotted and occasionally spotty-disseminated. This type of mineralization is di-
rectly associated with intrusion of the diorite of the Sob’ plutonic complex. Ore minerals
are represented by magnetite, pyrite, minor chalcopyrite and rare cobaltite, pyrrhotite,
arsenopyrite, marcasite and native gold. The occurrence of gold minerals is controlled by
pyrite defects, and they are occasionally associated with chalcopyrite cementing pyrite. In
general, native gold corresponds to low-fineness gold (76.0–88.0 at. %), however, if it is
associated with cobaltite and Co-bearing pyrite and chalcopyrite, its fineness increases to
90.0–99.0 at. % [51].

Gold-sulfide-quartz mineralization mainly corresponds to pyrite-sericite-quartz alter-
ation. Thin gold-bearing steeply dipping quartz and carbonate-quartz veins and linear
stockworks are confined to fault zones. Ores of this type comprise steeply and sub-vertically
dipping thin vein disseminated mineralization zones. The thickness of the Au-sulfide-
quartz ore bodies is variable and ranges from 1 to 10 m, with average CAu = 3.7 g/t [43]. The
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mineral assemblage of this ore type is pyrite, with minor galena, sphalerite, chalcopyrite
and hematite. Small occurrences of native gold (up to 20 µm) are associated with pyrite
and galena, rarely with chalcopyrite, and sometimes they occur in quartz or chlorite [36].
Gold fineness is rather low (83.0–86.0 at. %) [45].

3.3. Hydrothermal Metasomatic Alterations

Within the deposit, alteration haloes are the result of skarn, propylitization and
beresitization processes [52]. Based on the results of Rb-Sr dating of quartz-sericite alter-
ation [52,53], V.V. Kenig and K.V. Butakov concluded that the processes of metasomatism
and ore formation occurred between 360 and 400 Ma [49]. Infiltration calcareous skarns
were formed at the contacts between mafic volcanic rocks and limestones or carbonate-
bearing volcaniclastic rocks. Therefore, their formation is tectonically and lithologically
controlled. The skarns are located in the supra-intrusive part of the diorites of the Sob’
complex. Due to the morphology of the pluton, the skarn bodies have a lenticular-ribbon
shape in terms of cross section and correspond to the pyroxene-garnet-epidote facies. The
last stage of skarn formation was magnetite mineralization, and massive magnetite bodies
formed as a result. They host inclusions of pyrite and other ore minerals, along with minor
late gold mineralization. The thickness of the alteration aureoles reaches tens of meters.

Figure 2. Geological map of the Novogodnee gold field, compiled using data in Reference [43] and JSC “Yamalgold”,
simplified after [45]. The white box outlines the boundaries of the geological map illustrated in Figure 4.
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Figure 3. Geological cross-section of the Novogodnee-Monto gold-iron deposit along line I–II on Figure 2, compiled using
data in Reference [43] and JSC “Yamalgold”, simplified after [45].

Figure 4. Geological scheme of the Novogodnee-Monto deposit. The labelled yellow dot indicates the sampling location
(NM-17), was compiled using data from [46].

The propylitization process is represented by epidote-chlorite, carbonate-chlorite
and actinolite-epidote facies in the outer zones of the skarn. It should be noted that
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representative epidote-chlorite alteration forms haloes on a larger scale of up to 100 m,
including across the endocontacts of the diorite massif. In contrast, actinolite-epidote
rocks are confined to fractures oriented in submeridional and north-eastern directions. The
propylitization zones reach lengths of hundreds of meters and thicknesses of tens of meters.

The processes of beresitization (sericite-Ca-Mg-carbonate-pyrite-quartz alteration)
occurred during the subsequent late hydrothermal stage, when north-south-oriented al-
teration zones were formed [52]. These beresite-like altered rocks are associated with
gold-sulfide-quartz mineralization, which is mainly represented by thin quartz and quartz-
carbonate veins, comprising linear vein-veinlet Au-Ag-sulfide-quartz systems (Figure 4).
In the regional scale, the distribution of alteration zones is controlled by submeridional to
north-west striking fault systems (Figure 4). The thicknesses of the beresite-like alteration
zones reach several tens of meters, with average length of hundreds of meters.

3.4. The Age of Mineralization

Mineralization within the Novogodnee-Monto gold-iron-skarn deposit is associated by
most researchers with the Early–Middle Devonian stage of granitoid magmatism, but little
direct evidence has been presented ([45] and references therein). Published estimations for
the age of ore mineralization range from the Silurian to the Triassic and are mainly based on
geological relationships between sedimentary and magmatic rocks [46,49,52,54,55]. Paleo-
tectonic and paleogeodynamic reconstructions are also complicated by the limited number
of reliable geochronological data obtained for magmatic complexes and sedimentary se-
ries [39,48].

Several ore-formation stages may be reconstructed in the Toupugol-Khanmeyshor
mineral district [52,54,56]. All of them are believed to be related to the evolution of the
Polar-Ural paleo-island arc [45,57].

The Novogodnee ore field was formed in a mature island-arc tectonic setting during
two stages. The early stage was associated with the submarine formation of lavas and
accumulation tuffs of the basalt-andesibasalt composition and the associated minor sedi-
mentary strata (Toupugol suite, S1-2). The volcanic-sedimentary deposition of scattered
and mainly stratiform pyrite mineralization, with a geochemical association of Co-Ni-Cu-
Zn-Ag-Au, was synchronous with calc-alkaline volcanism [45]. The late volcanic stage was
closely associated with the accumulation of sedimentary and minor volcaniclastic units
of the basalt-andesite and trachybasalt-andesite series (Toupugol’egart suite, D1). These
rocks are cross-cut by younger intrusions of the gabbro-diorite-plagiogranite Sob’ complex
(D1-2) and the late-stage gabbro-dolerite dykes of the Musyur complex (C1) [40,45,50]. The
geological structure and ore deposits of the Novogodnee mineral field were studied from
1957 [46,51,52,54,58,59]. The U-Pb ages of zircons from diorites of the second (main) and
plagiogranites of the third phases of the Novogodnee gold field are 410 ± 2 Ma [45] and
403 ± 4 Ma [40]. The 40Ar/39Ar age of plagioclase from diorites of the main phase of the
same region is 414 ± 30 Ma [40], which supports the more reliable U-Pb dates.

Ore deposit formation was associated with the intrusion and cooling of diorites and
plagiogranitoids of the Sob’ complex, and the process occurred in two major stages: (1) high-
temperature—skarn stage (D1-2); and (2) low-temperature—beresite stage (D2-3) [45]. The
pyrite-sericite-quartz assemblage of the later stage (Figure 5) was superimposed on the
earlier generations of hydrothermal-metasomatic alterations. The age of the beresite-like
alterations can be correlated with the final stage of granitoid magmatism in the Polar
Urals. The dating of sericite from such low-temperature gold-bearing alteration by the
40Ar/39Ar method yields a crystallization age of 382 ± 4 Ma [60]. The Rb-Sr age of
quartz-calcite-sericite-chlorite alteration in the Novogodnee field has been determined as
360 ± 1 Ma [52,53].
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Figure 5. Gold-bearing pyrite-sericite-quartz alteration of the Novogodnee-Monto deposit in thin
section of sample NM-19. Pyrite from the same type of rock nearby was used for U-Th-He dating.
Qz—quartz; Chl—chlorite; Ser—sericite; Cal—calcite.

4. Analytical Methods

The pyrite grains were separated from the rock using bromoform (CHBr3)-based
heavy liquid separation techniques at the Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry (Russian Academy of Sciences, Moscow, Russia). For U-Th-
He dating, pyrite grains without any visible inclusions were picked under the binocular
microscope. Three to ten cubic-shaped grains were used for each measurement. The
average grain size ranged from ~200 to 500 µm, with total sample weights of 1–2 mg. Prior
to U-Th-He dating, pyrite grains from the same rock in polished sections were studied
on a Hitachi S-3400N scanning electron microscope (Tokyo, Japan) equipped with an
AzTec Energy 350 detector (Abingdon, UK) at the “Geomodel” Research Centre (Saint-
Petersburg State University, Saint-Petersburg, Russia) and on JSM-5610LV with JED-2300
EDS (Tokyo, Japan) at the Center for Collective Use IGEM-Analitika (Institute of Geology of
Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences,
Moscow, Russia).

4.1. Measurement of Radiogenic 4He Contents

The 4He contents were measured at the Institute of Precambrian Geology and Geochronol-
ogy (Russian Academy of Sciences, Saint-Petersburg, Russia) with a high-sensitivity MSU-
G-01-M mass spectrometer (Saint-Petersburg, Russia). For each measurement, 3–10 pyrite
grains attaining a total weight of ~1–2 mg were placed in a quartz ampoule (~1 cm long)
and sealed under vacuum conditions (10−3 torr). By using a special lock, the ampoule was
transported into a Re cylinder and heated in several steps up to temperatures of ~1100 ◦C.
The first step included 30 minutes at a temperature of 200 ◦C to remove any remaining
atmospheric 4He and to significantly reduce the He blank. Details of the He measurement
technique and the design of the instrument are described in References [1,9,61]. The total
procedural blank, determined by heating the empty quartz ampoule in the Re cuvette to
1100 ◦C, corresponds to ~5 × 10−10 cm3·STP, whereas the detection limit of the instru-
ment is ~5 × 10−13 cm3·STP of 4He. Preheating reduces the He blank by five times to
~1 × 10−10 cm3·STP. Following the extraction of He, the ampoule was removed from the
mass spectrometer for the subsequent separation of U and Th.

4.2. Measurement of U and Th Contents

We have improved the pyrite dissolution protocol compared to the previously sug-
gested method in Reference [9]. A portion of the U and Th in sulfides may occur in
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micron-sized mineral inclusions. We have performed a set of pyrite dissolution experi-
ments, which revealed that some of these mineral inclusions remain undissolved if HF is
not used in the dissolution process. We therefore recommend the use of HF for complete
dissolution of pyrite grains.

The quartz ampoule with degassed samples was spiked with a 230Th-235U tracer and
dissolved in a mixture of an aqua regia digest (1 mL), concentrated hydrofluoric acid
(0.5 mL) and perchloric acid (0.05 mL) in closed Teflon vials for 24 h at a temperature of
130 ◦C. The solution was dried on a hot plate at 200 ◦C in order to prevent the formation of
fluorine-based complexes. Dissolution of a quartz ampoule (weight ~40–50 mg) signifi-
cantly increases the salinity of the solution. However, prolonged heating in the presence of
hydrofluoric acid will vaporize most of the silica in the SiF6 form. The remaining precipitate
was dissolved in 1.5 mL of 5% nitric acid for further measurements of the 235U/238U and
230Th/232Th isotope ratios on an ELEMENT XR ICP mass-spectrometer (Bremen, Germany)
in Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of
Sciences, Moscow, Russia.

The accuracy of the complete dating procedure (measurement of He, U and Th) was
assessed by simultaneous experiments on a Durango apatite, which is the international
standard for the U-Th-He method.

5. Results
5.1. Mineralogical Features

Scanning electron microscope (SEM) analysis of the pyrite grains revealed the presence
of micron-sized inclusions of gold, galena, hessite and arsenopyrite (Figure 6). The chemical
composition of the pyrite grains is presented in Table 1.

Figure 6. Pyrite-quartz-sericite alteration. (A) Metasomatic sulfide-quartz vein with zonal distribution of sulfide inclusions;
(B) zonal distribution of host rock inclusions in pyrite (Py) metacrystals; (C) micro-inclusions of native gold (Au) and galena
(Ga) along the boundaries of pyrite crystals; (D) linearly distributed micro-inclusions of galena and hessite (Hes) in a pyrite
crystal; (E) zonal block of arsenic-containing pyrite (As-Py) with inclusions of native gold and hessite; (F) the fine-zoning
structure of As-pyrite with small arsenopyrite (Apy) inclusions in the more arsenic-rich zones. (D–F) Scanning electron
microscope (SEM and BSE) images of selected pyrite grains by JSM-5610LV with JED-2300 EMF (Tokyo, Japan), analyst N.V.
Trubkin, IGEM RAS.
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Table 1. Chemical composition of pyrite, wt%.

Sample S Fe As Σ Formula

NM-17 52.43 45.40 <0.05 97.83 Fe0.98As0.0S2.02

51.21 44.65 1.94 97.80 Fe0.98As0.032S1.99

52.33 46.17 2.73 101.23 Fe0.98As0.044S1.98

The analyses were performed by JSM-5610LV with JED-2300 EDS (Tokyo, Japan) analyst N.V. Trubkin (IGEM RAS).

5.2. U, Th and He Measuring Results

The results of the U, Th and He concentration measurements are presented in Table 2.
We performed six measurements of pyrite from the NM-17 location in total. We dated
~70 pyrite grains in total, since each of the six samples was composed of numerous
pyrite grains.

Table 2. Results of U-Th-He dating of pyrite from the Novogodnee-Monto deposit.

Sample
Number

Sample
ID

U,
σ

Th,
σ

Th/U 4He,
σ T, Ma σ

1010 at 1010 at 1010 at

NM-17 872 17.7 0.5 82.3 2.0 4.8 17.8 0.3 370 8
NM-17 875 54.8 1.4 138.0 3.2 2.5 42.0 0.4 368 6
NM-17 877 34.1 0.9 128.6 4.1 3.8 34.0 0.4 405 7
NM-17 878 44.5 1.9 173.0 6.6 3.9 41.7 0.6 376 10
NM-17 889 51.4 2.9 208.8 2.6 4.1 51.2 0.3 391 12
NM-17 890 42.7 1.2 181.7 3.2 4.3 46.4 0.4 417 7

“pooled” * 186.7 2.0 186.7 2.0 3.8 202.5 7.6 383 8
central age 382 4

Qu blank 0.9 0.6 2.4 1.5 0.4 0.3

* Sample 890 was excluded from the calculation of the pooled and central ages as it was considered anomalous.

The specific volume of 4He in pyrite grains were ~10−5 cm3·STP g−1. 4He was released
from all samples when pyrite decomposed into pyrrhotite and sulfur at ~500 ◦C. Measured
4He specific volumes are greater than the typical values for trapped/hydrothermal fluids
(10−8–10−10 cm3·STP·g−1). U mass fraction ranged from 0.1 to 0.5 mg/kg, while the
average Th/U ratio was ~3.5.

5.3. Calculation of the U-Th-He Age

The U-Th-He age was calculated using the Helioplot (ver. 2.1) and IsoplotR software
(ver. 4.2) [62]. The average U-Th-He age can be calculated with different methods, including
(1) the arithmetic mean of the single-grain ages; (2) the “pooled” age; (3) the U-Th-He
isochron age; and (4) the central age. From a mathematical viewpoint, the latter method is
the most accurate [63] (Table 2; Figure 7).
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Figure 7. Weighted mean plot for pyrite from the Novogodnee-Monto deposit, constructed in the
IsoplotR software ver. 4.2.

6. Discussion

The central age calculated for the five pyrite samples is 382 ± 8 Ma (2σ). The age
of pyrite from the Novogodnee-Monto deposit is consistent with independent geological
estimates for the age of ore formation (380–400 Ma). The pyrite U-Th-He ages are quite
reproducible but show scattering within the range of 370–420 Ma, which may be explained
by (1) the presence of excess 4He, (2) the loss or input of U, Th or He at some point during the
sample’s geological history, (3) methodological imperfections, or (4) multistage formation
of pyrite. It is possible that sample NM-17 contains pyrite of two generations, the first
of which corresponds to the skarn stage of formation of the Novogodnee-Monto deposit
(about 400 Ma), and the second pyrite generation corresponds to a lower-temperature—
beresite stage (382–360 Ma).

6.1. Excess 4He

There could be several explanations for an excess of 4He in minerals, including
(1) trapped hydrothermal 4He, (2) excess of 4He in inclusions, or (3) implanted radio-
genic 4He:

1. The measured specific volume of 4He in pyrite are several orders of magnitude
higher (10−5 cm3·STP·g−1) than 4He specific volumes in hydrothermal sulfides
(10−8–10−10 cm3·STP·g−1) [31–35]. In rare cases, the concentrations of trapped hy-
drothermal He can be higher, up to 10−6 cm3·STP·g−1 [64]. In this rare case, the
specific volume of trapped hydrothermal He may increase the apparent U-Th-He age
by 10%.

2. The alteration temperature was significantly higher than the closure temperature for
the U-Th-He isotope system of most minerals [4]. Taking into account that the only
observed inclusions in pyrite from the Novogodnee-Monto deposit were composed
of quartz, it is very unlikely that inclusions contributed a significant amount of excess
4He in these samples.

3. The calculation of U-Th-He ages requires alpha-recoil corrections [29]. The studied
pyrite grains range in size from 200 to 500 µm. Assuming a cubic shape and average
alpha-stopping distance of 14 µm (SRIM calculations; [65]), less than 4% of the He
can be lost due to the alpha-recoil effect [29].
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The mass fractions of U and Th in pyrite are relatively low (0.1–0.5 mg/kg), but they
are higher in the surrounding rocks. As a result, implanted 4He should be taken into
account. If we assume U and Th mass fraction of 1 and 3 mg/kg, respectively, within
the surrounding host rocks (averages for island arc andesites, volcaniclastic sediments
and carbonates; GERM database) and a density of 2.65 g/cm3, the amount of implanted
and ejected He would be practically equal. The amount of implanted He may be more
significant if U and Th mass fractions in the surrounding country rock are higher. However,
as suggested by References [29,66], the implantation of radiogenic He should result in low
reproducibility of the U-Th-He ages due to the highly heterogeneous distribution of U and
Th within the surrounding rocks. As the Novogodnee-Monto pyrite grains produced very
reproducible ages, excess 4He is unlikely.

6.2. U-Th-He System Behavior in Pyrite

The open behavior of the U-Th-He system can be related to U and Th input/loss or
He loss. Radiogenic He was only released from the studied samples at high temperatures
during pyrite decomposition (>450 ◦C), indicating a high retention of radiogenic He in
pyrite. However, the retention of U and Th in the pyrite grains is less clear. Experiments
with pyrite from the Uzelga deposit have shown that the interaction of pyrite with weak
acids may result in U loss [9]. Pyrite grains used for U-Th-He dating in our study did not
show any evidence of oxidation or alteration, which may be expected if long-term contact
with slightly acidic mine waters or the atmosphere had occurred. Furthermore, the grains
were separated from freshly exposed rock fragments in an open pit. Therefore, it is unlikely
that the pyrite U-Th-He system has been recently disturbed.

Pyrite can undergo recrystallization under dynamic and thermal metamorphic events [67–69].
There are currently no data available concerning the behavior of the U-Th-He system during
pyrite recrystallization. However, there is only evidence for low-grade metamorphism of
the Novogodnee-Monto deposit up to zeolite facies [37]. Low-grade metamorphism up
to prehnite-pumpellyite facies did not appear to reset the U-Th-He isotope system in the
Uzelga deposit [9].

6.3. Methodological Imperfections

The main methodological complications that could result in scattering of U-Th-He ages
are the incomplete release of He from pyrite grains and incomplete pyrite decomposition.
4He was released from the pyrite grains at ~1100 ◦C, which is sufficiently hot for releasing
all He from pyrite [2]. The pyrite grains were dissolved in a mixture of HF, HClO4 and
aqua regia acids (see Section 4.2), which should dissolve most of the U-bearing and Th-
bearing minerals.

6.4. Natural Scattering of U-Th-He Ages

Pyrite U-Th-He ages from the Novogodnee-Monto deposit show relatively large
scattering between 370 and 420 Ma. There is no correlation between age and concentrations
of U, Th or He in the grains (Figure 8). This indicates that it is very unlikely that trapped or
implanted He is responsible for the scattering of U-Th-He ages, as the influence of trapped
He is concentration dependent.

All U-Th-He ages fall within the timeframe of magmatic and metasomatic activ-
ity related to the formation of the volcano-plutonic belt in this region (360–414 Ma; see
Section 3.4). Since the pyrite grains display a zonal structure (Figure 6), relatively large
scattering of the U-Th-He ages could be related to different phases during ore genesis
and crystallization of pyrite. Previous studies of the Kondyor isoferroplatinum deposit
have shown that scattering of Pt-He ages between 110 and 145 Ma can be correlated with
polycyclic mineral formation [70]. Several generations of pyrite formation are described
within the Novogodnee-Monto deposit as well, which potentially could be separated in
time. The answer to this question at the moment remains unclear as it is not currently
possible to date different growth zones within the pyrite grains.
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Figure 8. Absence of relationship between He amount of He and U-Th-He age for samples from the
Novogodnee-Monto deposit.

6.5. Comparison of Pyrite U-Th-He and Geological Ages

The U-Th-He age of pyrite from the Novogodnee-Monto deposit (382 ± 8 Ma) is
supported by independent geological observations. The age of mineralization within
the Novogodnee-Monto gold-iron-skarn deposit is associated by most researchers with
Early–Middle Devonian granitoid magmatism ([45] and references therein), corresponding
to the main stage of diorite magmatism in the Polar Urals. At the final stage of subduction,
at the end of the Middle Devonian (387–383 Ma), small granitoid intusives of the Yanaslor
complex were formed in the Voikar zone [71–73]. Rb-Sr isochronous ages for the youngest
monzodiorite porphyry dykes (382 ± 10 Ma; Eifelian–Frasnian) and ore quartz-calcite-
sericite-chlorite alteration (360 ± 1 Ma, Famennian) are younger [52,53]. According to our
data [50], these monzodiorite porphyry dikes are somewhat younger and belong to the
Musyur complex, whose rocks were formed in the Early Carboniferous (349 ± 3, 347 ± 9,
339 ± 4, 334 ± 3 Ma) at the stage of accretion of the island-arc system to Arct-Lavrussia.

40Ar/39Ar dating of the sericite monofraction from low-temperature gold-bearing
alteration in the neighboring gold-porphyry Petropavlovsk deposit yielded a crystallization
age of 382 ± 4 Ma [60]. This date can be interpreted as the upper age limit for gold mineral-
ization. The final death of the magmatic chambers that formed the granitoid bodies of the
Sob’ batholith was reflected in the processes of gold and Cu-Fe (+Au) formation [45,74].

6.6. Questions Regarding the U-Th-He Dating of Pyrite

Our results indicate that U-Th-He dating of pyrite from hydrothermal metasomatic
rocks is possible. Alteration of the Novogodnee-Monto deposit is a second example of
successful application of analytical procedures for the study of the U-Th-He system in
pyrite. The pyrite grains used in this study have different U and He concentrations,
Th/U ratios and grain sizes compared to the first successfully dated pyrite from the Uzelga
deposit [9]. This is an important step in the development of this dating technique, including
a modification from the previously proposed methodology [9].

However, several theoretical and practical problems remain. The reason behind the
scattering of U-Th-He ages is still unclear. Pyrite U-Th-He ages from both the Uzelga
and Novogodnee-Monto deposits show relatively large scatter across a time interval of
around 50 million years. This scatter could be related to both methodological or theoretical
imperfections, such as an underestimation of trapped He or incomplete pyrite decomposi-
tion. However, this scattering could instead indicate a complex history of pyrite formation,
accompanied by sulfide recrystallization. Therefore, this scattering could provide impor-
tant information which may aid our understanding of the ore-forming processes in these
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deposits. These implications could also be applied to understand the “scattering” of Re-Os
ages in sulfides.

As previously described, pyrite is a tricky mineral which is not usually used for
geochronology. By analogy with zircon, pyrite may contain inherited cores that are “ce-
mented” by a younger pyrite generation. This younger pyrite generation could be as-
sociated with tectonics, magmatism, sedimentary basin evolution or biological activity.
Therefore, U-Th-He dating of single pyrite grains and/or understanding the processes that
disturb the U-Th-He system may provide vital missing information for constructing the
geological history of an economic ore deposit.

7. Conclusions

The possibility of U-Th-He dating of pyrite is shown by an example of the altered
rocks of the Novogodnee-Monto deposit, Polar Urals. U-Th-He dating of 70 pyrite grains
separated into six aliquots yields reproducible ages with an average of 382 ± 8 Ma (2σ).
This value is very similar to independent age estimates for the ore-bearing hydrothermal
activity within this gold field (~380 Ma). This is the second example of the successful
application of the U-Th-He isotope system for dating pyrite, but it is the first successful
application for directly dating pyrite from altered rocks. Therefore, our work provides a
crucial next step in the development of the U-Th-He dating technique. However, there are
still a lot of questions that have to be solved to make this technique widely applicable and
reliable. Thus, the U-Th-He system in pyrite has the potential to be a useful tool for the
geochronology of numerous geological processes accompanying sulfide crystallization.

It should be emphasized that for many types of ore mineralization formed at low
and or moderate temperatures, there are no reliable mineral geochronometers. Rather,
they are nominally present, but the impossibility of obtaining their monomineral fractions
(due to thin mutual intergrowths) or the small size of individual grains renders reliable
isotope dating impossible. Pyrite, which has a relatively high degree of crystallinity, usually
forms fairly large crystals even in low-temperature mineral associations. This allows us to
consider the prospects for using direct dating methods of pyrite as quite encouraging.

The areas of potential application of this method include a very wide range of areas
of ore geology and, in general, economic geology, especially in the field of deciphering
the sequence of mineral formation in long-lived ore-forming systems, dating solid sulfide
ores and dating the lowest-temperature hydrothermal processes. It is very tempting to
use pyrite dating in an area that seems far from ore geology, such as low-temperature
geochronology of sedimentary and low-temperature metamorphic rocks, for example,
the study of the age of epi-/catagenesis in thick oil-bearing sedimentary units of deep
epicratonic depressions—the marginal areas of young and ancient platforms adjacent to
orogenic areas. Filling these depressions with oil-producing and gas-producing strata
containing scattered carbonaceous matter usually involves abundant pyrite impregnation,
the study of the radioisotope system of which will allow dating epigenetic processes
associated with oil/gas formation.
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