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Abstract: There has been an increasing trend of land area being brought under human’s use over time.
This situation has led the community to carry out land-use development activities in landslide hazard-
prone areas. The use of land can have a positive impact by increasing economic conditions, but it
can have negative impacts on the environment. Therefore, this study aimed to identify the landslide
hazard, focusing on the development of a landform map to reduce the risk of landslide disaster in
JLS, Malang Regency. The integration of remote sensing and geographic information systems, as
well as field observation, were used to create a landform map and a landslide susceptibility map.
Using the geomorphological approach as a basic concept in landform mapping, the morphology,
morphogenesis, and morphoarrangement conditions were obtained from the remote sensing data,
GIS, and field observation, while morphochronological information was obtained from a geological
map. The landslide susceptibility map was prepared using 11 landslide conditioning factors by
employing the index of entropy method. Thirty-nine landform units were successfully mapped into
four landslide susceptibility classes. The results showed that the study area is dominated by a high
level of landslide susceptibility with a majority of moderate to strongly eroded hill morphology.
It also reaffirms that landform mapping is a reliable method by which to investigate landslide
susceptibility in JLS, Malang Regency.

Keywords: remote sensing; GIS; landform; landslide susceptibility; Malang Regency; East Java; Indonesia

1. Introduction

Indonesia is a country that has a high risk of landslides [1–3]. Of the 9383 landslide
disasters that have occurred in Indonesia, 1483 were in a single year in 2019 [4]. They
are spread across almost all provinces in Indonesia, including the East Java Province in
general and the Malang Regency specifically [5]. More than 80% of the southern region
in the Malang Regency is categorized as being at a high risk of landslide occurrence [6].
Landslides can have an impact on environmental damage and cause both physical and
economic losses [7,8].

The occurrences of a landsalide is triggered by many factors, such as topography,
climate, vegetation, land use, earthquakes, and others [2,9]. Factors affecting landslides can
be divided into intrinsic factors and extrinsic factors. An intrinsic factor is the main factor
originating from the condition of the land itself, while an extrinsic factor is a trigger factor
from outside which can increase the potential for landslides [10]. Parameters included
in intrinsic factors are topographic conditions, soil material, and geology. Increased steep
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slope conditions can lead to the more frequent occurrence of landslides due to low soil
stability [11]. Meanwhile, extrinsic parameters are the result of factors such as human
activity, e.g. the development of residential areas on steep slopes and the construction of
roads with slope cuts and improper slope loading, rain, and earthquake activity [3].

There has been an increasing trend of land areas being brought under human’s use over
time. This situation has led the community to carry out land-use development activities
in landslide hazard-prone areas, such as hilly areas and steep slopes. The southern part
of the Malang Regency of Indonesia is dominated by hills with fairly steep slopes, where
the Southern Cross Road (JLS) has been built with the aim of increasing the accessibility of
people between regions, especially for tourism promotion. With this increased accessibility,
it is likely that the use of new areas in hilly terrain will increase too. However, the region’s
morphological condition, dominated by steep slopes, means that unless development is
planned properly the area possesses a very high risk of landslide occurrences triggered by
extrinsic factors. In order to reduce the risk, a comprehensive understanding, in particular
of the physical aspect of the area, is urgently needed.

Traditionally, one of the first steps in landslide disaster management is to create a
landslide susceptibility map [12] through which an estimate of the level of potential land-
slides can be investigated [13]. Thus, a landslide susceptibility map serves as a reference
for disaster management [14]. Information on landform conditions are very useful for
preparing the landslide susceptibility maps [15] by identifying, mapping, and analyzing the
landslide risk areas [16–18]. Since the study of landform involves a detailed investigation of
the morphology, flow patterns, and processes related to landslide susceptibility, a landslide
susceptibility map is useful in determining landslide-prone areas [19]. The basic concept
used in landform study consists of understanding four elements of analysis, namely:
morphology, morphochronology, morphogenesis, and morphoarrangement [20,21]. In con-
ducting a landform analysis morphological identification has an important role, because for
each individual slope the process that occurs is different, which in turn produces different
materials [22]. In addition, these differences of process and material will have different
effects on the frequency of landslide occurrences.

Several studies have been developed and carried out to create a landslide susceptibil-
ity and hazards assessment [23]. Scholars such as Gökceoglu and Aksoy have proposed
the landslide susceptibility mapping using deterministic stability analyses and image pro-
cessing technique for use in the Mengen region, Turkey [24]. This approach studied the
mechanisms of the landslides by two-dimensional stability analysis from field observa-
tion and the parameters controlling such slide development. Furthermore, Clerici et al.
applied the procedure for landslide susceptibility zonation by the conditional analysis
method, which is conducted in the Parma river basin, Italian Northern Apennines [25].
This approach uses a multivariate method that simultaneously considers all the factors
contributing to instability by means of a geographic information system (GIS). Landslide
susceptibility is determined by calculating landslide density according to the combination
of different instability factors. Another scholar used the artificial neural network for de-
termination and application of the weights for landslide susceptibility mapping, which is
applied in Yongin, Korea, using a GIS as the basic analysis tool for spatial data management
and manipulation [26]. Landslide location, slope, curvature, soil texture, soil drainage,
effective thickness, wood type, and wood diameter were used for analyzing landslide
susceptibility. In addition, Rawat and Joshi proposed the landslide susceptibility index
(LSI) method for use in the Igo river basin, Eastern Himalaya, India [27], and Spinetti
et al. proposed the use of the LSI method in the Sorrentina Peninsula, Southern Italy [28].
However, using a landform map as a basis for the creation of a landslide susceptibility map
is rare, particularly in Indonesia.

In order to create a landform map, the integration of remote sensing and a GIS plays
an important role [29–33]. While the remote sensing data can be used to produce land
cover information, the digital elevation model (DEM) can be used for hill shade and slope
analysis, which is then reduced to a topographic map to obtain detailed information about
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the morphological conditions of the study area [21]. The GIS has a role in the presentation
and storage of spatial data, field observation, and others data in the form of attributes,
therefore it can store the information needed in making landform maps [20]. Since the
identification of landslide hazards based on a landform map is rare in Indonesia, this study
aimed to identify landslide susceptibility through the development of a landform map, in
order that a land susceptibility map can be an important input in the planning of land use
development, to reduce landslide disaster risk in JLS, Malang Regency.

2. Methodology

This study used a GIS and remote sensing technology to create both landform and
landslide susceptibility maps. The formulation of landform maps is based on: (1) mor-
phological aspects for slope information, (2) morphoprocess for erosion and deposition
information, (3) morphochronology for rock lithology information, and (4) morphoarrange-
ment for the detailed slope information. The compilation of landform maps is used as
one of the landslide conditioning factors and it then models the distribution of landslide
susceptibility. The model used is the bivariate statistical analysis method, which is the
index of entropy. The model was applied and developed to analyze the spatial relationship
between landslide conditioning factors and the distribution of landslides in the study area.
The procedures followed for landform and landslide susceptibility mapping in this study
are presented in Figure 1.

Figure 1. Research methodology of landform and landslide susceptibility mapping in JLS,
Malang Regency.

2.1. Study Area

This research was conducted in JLS, Malang Regency, East Java of Indonesia, located
between 8.269◦ to 8.447◦ S latitudes and 112.362◦ to 112.785◦ E longitudes with a total area
of 437.95 km2, and elevation ranging from 14 to 748 masl. The study area included five
districts, namely Donomulyo, Bantur, Gedangan, Sumbermanjing Wetan, and Dampit. The
physiographic conditions of the study area are very diverse and consist dominantly of
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bumpy and hilly morphological conditions prone to landslide risk [34], and hence they
serve as good site for this study (Figure 2).

Figure 2. Location of the study area.

2.2. Data Availability

The remote sensing data used in this study were Sentinel-2B (10 m resolution) and
ALOS PALSAR DEM (12.5 m resolution) acquired from the Alaska Satellite Facility website
(https:/asf.alaska.edu). The Sentinel-2B that has been launched by the European Space
Agency (ESA) is utilized for monitoring land use/land cover change [35]. The product
characteristics are provided in Table 1 [36].

Table 1. Product characteristics.

Characteristic Description

High-level description Top-of-atmosphere reflectance in cartographic geometry

Production and distribution Systematic generation and on-line distribution

Data volume 600 MB (each 100 × 100 km2)

Ortho-images projection UTM/WGS 84

The data acquired on 22 April 2020 was processed to level-1C through cloud masking
and geometric corrections. ALOS satellite, which is equipped with a PALSAR radar sensor, is
useful for monitoring the landslide susceptibility [37,38]. We used ALOS PALSAR DEM for
topographic and morphometric analysis as an input for determining landslide susceptibility
(Table 2). In addition, the information on lithology at the study area was obtained from the
geological map of the Turen Sheet and Blitar in 1992, with the scale of 1:100,000 from the
Center for Geological Research and Development. Table 2 describes the data characteristics
and their sources from which various intrinsic and extrinsic factors were derived for creating
landform and landslide susceptibility maps.

https:/asf.alaska.edu
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Table 2. Data sources for landform and landslide susceptibility mapping.

Factors Data
Used/Resolutions/Scales Data Sources

Aspect (slope orientation)
DEM ALOS PALSAR

(12.5 m × 12.5 m
spatial resolution)

https://asf.alaska.edu/
Alaska Satellite Facility [39]

Compound topographic index

Elevation (m)

Landform units

DEM ALOS PALSAR
(12.5 m × 12.5 m spatial

resolution), geology map (1:50,000
scale map), and Sentinel-2B

imagery (10m × 10m
spatial resolution)

https://asf.alaska.edu/
Alaska Satellite Facility [39],

https://vsi.esdm.go.id/
Galleries of Geology Map [40]
https://scihub.copernicus.eu/

Copernicus Open-access Hub [41]

Land use Sentinel-2B imagery (10 m × 10 m
spatial resolution)

https://scihub.copernicus.eu/
Copernicus Open-access Hub [41]

NDVI Sentinel-2B imagery (10 m × 10 m
spatial resolution)

https://scihub.copernicus.eu/
Copernicus Open-access Hub [41]

Plan curvature (100/m)
DEM ALOS PALSAR

(12.5 m × 12.5 m
spatial resolution)

https://asf.alaska.edu/
Alaska Satellite Facility [39]

Profile curvature (100/m)
DEM ALOS PALSAR

(12.5 m × 12.5 m
spatial resolution)

https://asf.alaska.edu/
Alaska Satellite Facility [39]

Slope (degree)

Stream density (km/km2) Digital topographic map,
river (1:25,000)

https://tanahair.indonesia.go.id/
Inageoportal WebGIS [42]

Distance to stream (m) Digital topographic map,
river (1:25,000)

https://tanahair.indonesia.go.id/
Inageoportal WebGIS [42]

2.3. Data Analysis

In this study, landform and landslide susceptibility maps were created using the On-
Screen Image Interpretation (OSII) method and the index of entropy model as suggested
by [43].

2.3.1. Data Extraction Using DEM

The elevation data was derived through the neighborhood technique to determine
topographic and morphometric features, such as slope, topographic position index, stream
power index, and hill shading effects [44]. This technique can produce the detailed topo-
graphic position index (TPI) attributes. TPI is an index value that determines the difference
between the elevation of the central point z0 in a grid (DEM data pixel) and the average
elevation of z, and can be calculated using the following Equations [45].

TPI = z0 − z (1)

z =
1

nR
∑ i ∈ RZi (2)

Positive values on the TPI attribute indicate that the central point is in a higher
position than the average elevation conditions in the vicinity. The radius (R) value for
the neighborhood technique can be set with the provisions, the higher value of R will
produce more general landform units, while the small value is indicated by the presence of
minor landscapes, such as valleys and ridges. The TPI attribute is useful to determine the
dominant morphology. The combination of the radius size of the neighborhood technique
is used to extract complex morphological information [45,46].

Furthermore, the morphoprocess identification for landform mapping requires mor-
phometric attributes, which is derived from DEM data. We used the stream power index
(SPI) attribute for this process due to its ability to detect the potential of erosion processes.
Greater SPI values indicate the erosion hazards due to a higher amount of overland water

https://asf.alaska.edu/
https://asf.alaska.edu/
https://vsi.esdm.go.id/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://asf.alaska.edu/
https://asf.alaska.edu/
https://tanahair.indonesia.go.id/
https://tanahair.indonesia.go.id/
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runoff from the upper slopes [44]. The SPI product was created by using the Raster calcula-
tion tool available in the ArcGIS Pro v2.5 software. SPI can be calculated as shown in the
following Equation.

SPI = Astanβ (3)

where, SPI is the stream power index. As is the specific catchment area (m2/m) and β is
the slope of the degree unit.

2.3.2. On-Screen Image Interpretation (OSII)

The OSII method is used to generate landform aspects, such as morphological data
(slope and hill shade), morphochronology (geological maps), morphoprocess (stream power
index), and morphoarrangement (topographic position index). The hybrid approach was
implemented in making landform maps by superimposing all landscape features to identify
unique landforms [43]. The reason behind using this method is to follow the mapping scales
of the maps that were used in the analysis, including the spatial resolution of remote sensing
data. The scale of the map can be determined through mathematical calculations based on the
selection of optimal spatial resolution [47]. The mapping scale of 1: 50,000 requires at least
remote sensing data with a spatial resolution of 10–20 m.

2.3.3. Landslide Susceptibility Mapping

Landslide events in the study area represent the interaction of several conditioning
factors, such as slope aspect (slope orientation), compound topographic index, elevation
(m), landform unit, land use, normalized difference vegetation index (NDVI), plan curva-
ture (100/m), profile curvature (100/m), slope (◦), stream density (km/km2), and stream
distance (m) [48,49] as presented in Figure 3.

Figure 3. Landslide conditioning factors: (a) aspect, (b) compound topographic index, (c) elevation,
(d) landform unit, (e) land use, (f) NDVI, (g) plan curvature, (h) profile curvature, (i) slope, (j) stream
density, and (k) stream distance.
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There is no universal standard or rules to select the conditioning factors, rather the
selection is based on the condition of the study area itself because of these are specific to
the different areas [50]. All conditioning factors were prepared from several sources as
presented above in Table 2. ALOS PALSAR DEM data was used to extract the topographic
and morphometric attributes, such as aspect, elevation, plan curvature, profile curvature,
and slope. Environmental factors, such as NDVI and land use are obtained by classifying
the sentinel-2B remote sensing data, and hydrologic factors, which include stream density
and stream distance were prepared by processing vector data of river networks into raster
data obtained from the Geospatial Information Agency [42].

The mapping of landslide susceptibility provides the basis for predicting landslide events
in the form of landslide susceptibility zoning. There are several methods and techniques for
landslide susceptibility zoning, such as qualitative vs quantitative, and direct vs indirect [51].
This study used the quantitative method based on bivariate statistics for the prediction of
landslide susceptibility in JLS, Malang Regency. The index of entropy model used in deriving
land susceptibility accommodates the calculation and measurement of instability, imbalance,
interference, and uncertainty within a system. After that, the system accepts entropy values
having a one-to-one relationship based on Boltzmann’s principle of the level of interference of
the system itself [52]. The Shannon-refined Boltzmann’s principle specifically uses an entropy
model related to information theory.

The index of entropy model has been widely used to determine the natural haz-
ard weighting index and is also implemented for environmental modeling, such as the
prediction of landslide susceptibility, drought level index, and groundwater quality as-
sessment [53–55]. Entropy information on landslides refers to the degree of influence on
various landslide conditioning factors. Additional value is given to several important fac-
tors into the index system, and hence the entropy value can be converted to an objectively
weighted value in the index system. Calculation of entropy values for the prediction of
landslide susceptibility were done using the following Equations [53,56].

Pij =
b
a

(4)

(Pij) =
Pij

∑
Sj
j=1 Pij

(5)

Hj = −
Sj

∑
j=1

(Pij)log2(Pij), j = 1, . . . , n (6)

Hjmax = log2Sj, Sj = number o f classes (7)

Ij =
Hjmax − Hj

Hjmax
, I = (0, 1), j = 1, . . . , n (8)

Wj = IjPij (9)

where, a and b are the percentage of landslide events and domains (classes of each vari-
able), respectively, Pij is the probability density, Hj and Hjmax are entropy values, Ij is the
coefficient of information, and Wj is the weight value generated for the variable as a whole.

The landslide susceptibility index is calculated by adding the weight value of the vari-
able, which has been reclassified for the second time. The values of landslide susceptibility
index using the index of entropy model is presented below Equation (10).

y = aspectrec ×
(
Wj o f aspect

)
+ ctirec ×

(
Wj o f cti

)
+ elevrec ×

(
Wj o f elev

)
+

land f ormrec ×
(
Wj o f land f orm

)
+ landuserec ×

(
Wj o f landuse

)
NDVIrec ×

(
Wj o f NDVI

)
+ pcurverec ×

(
Wj o f pcurve

)
+ prcurverec

×(Wj o f prcurve + sloperec ×
(
Wj o f slope

)
+ streamdensrec

×
(
Wj o f streamdens

)
+ streamdistrec ×

(
Wj o f streamdist

)
(10)
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where, y is the landslide susceptibility index value, aspectrec is the second reclassifica-
tion result and so on the next variable, Wj is the weight value for each variable that has
been calculated based on the entropy value information. The results of the susceptibility
index have a continuous interval data type. The division of susceptibility index classes
refers to the natural-breaks method of classification [53,57,58].

3. Results and Discussion

The data analysis produced 39 landform units in the study area. Compared to other
landforms in the East Java province of the country, the landforms in the study area were
found to be more diverse in characteristic, as the study area is dominated by Karst land-
forms. Figure 4 presents the spatial distribution of the landform factors and landform units
and Table 3 presents the area coverage of each landform unit.

Figure 4. Landform map result: (a) morphochronology, (b) morphology, (c) morphoarrangement,
(d) morphoprocess, and (e) landform unit map.

Table 3. Landform units in JLS, Malang Regency.

Unit Code Symbol Landform Unit Area (km2)

1 U/3/SSE/1 Middle slope of the Wonosari formation—significantly eroded 132.59

2 P/5/D/4 Colluvium foot slope and alluvium deposition 14.44

3 H/3/M/2 Middle slope of the hills Nampol formation—moderate erosion 1.80

4 U/4/SSE/1 Lower slopes of the Wonosari formation—significantly eroded 40.74

5 H/1/SSE/5 Hilltops of the Mandalika formation—significantly eroded 3.67

6 H/3/SSE/5 Middle slope of tuff hills the Mandalika formation—significantly eroded 12.48

7 H/2/M/5 Upper slope of the tuff hills the Mandalika formation—moderate erosion 17.35
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Table 3. Cont.

Unit Code Symbol Landform Unit Area (km2)

8 H/1/SSE/2 Hilltops of the Nampol formation—significantly eroded 2.23

9 H/2/SSE/3 Upper slopes of the Wuni formation—significantly eroded 2.09

10 H/2/SSE/2 Upper slope of the Nampol formation—significantly eroded 3.15

11 U/4/SSE/2 Lower slope of the Nampol formation—significantly eroded 3.74

12 U/2/M/2 Upper slope of the Nampol formation—moderately eroded 11.22

13 U/2/M/1 Upper slope of the Wonosari formation—moderately eroded 86.68

14 U/5/D/1 Colluvium foot slope and alluvium Wonosari formation 1.29

15 U/5/D/2 Colluvium foot slope and alluvium Nampol formation 2.08

16 U/4/SSE/2 Lower slope of the Nampol formation—significantly eroded 8.62

17 U/2/SE/1 Hilltops of the Wonosari formation—slightly eroded 5.45

18 U/1/SE/2 Hilltops of the Nampol formation—slightly eroded 0.34

19 H/4/M/2 Lower slope of the hills of Nampol formation—moderately eroded 0.47

20 H/4/SSE/5 Lower slope of the tuff Mandalika formation—significantly eroded 13.98

21 H/2/SSE/5 Upper slope of the Mandalika formation—significantly eroded 6.62

22 H/4/SSE/5 Lower slopes of the Mandalika formation—significantly eroded 11.43

23 U/3/M/2 Middle slope of the Nampol formation—moderately eroded 11.38

24 H/4/SSE/2 Lower slope of the Nampol formation—significantly eroded 2.20

25 H/3/SSE/2 Middle slope of Nampol formation—significantly eroded 1.41

26 U/5/M/5 Colluvium foot slope and alluvium of Mandalika formation—moderately eroded 0.94

27 H/1/SE/5 Hilltops of the Mandalika formation—slightly eroded 0.46

28 U/5/D/2 Colluvium foot slope and alluvium of Nampol Formation—deposited 1.25

29 H/3/M/3 Middle slope of the Wuni formation—moderately eroded 1.35

30 H/1/SSE/3 Hilltops of the Wuni Formation—significantly eroded 0.49

31 H/4/SSE/3 Lower slopes of the Wuni formation—significantly eroded 1.39

32 H/1/SSE/5 Hilltops of the Mandalika formation—significantly eroded 10.75

33 H/3/SSE/5 Middle slope of the Mandalika formation—significantly eroded 7.19

34 H/4/M/3 Lower slope of the hills—moderately eroded 0.18

35 H/5/D/5 Colluvial foot slope and alluvium of Mandalika formation—deposited 1.05

36 U/2/SSE/1 Upper slope of the Wonosari formation—significantly eroded 3.42

37 H/2/SSE/5 Upper slope of the tuff Mandalika formation—significantly eroded 2.24

38 U/4/D/1 Lower slope of Wonosari formation—deposited 1.79

39 U/3/D/1 Middle slope of Wonosari formation—deposited 2.64

3.1. Morphological and Morphoarrangement Conditions in the Study Area

The morphological conditions play an important role in determining landform bound-
aries, because the morphological configuration is able to present different processes. As
described in the above section, the information on morphological conditions (hill shade
and slope) were extracted from ALOS PALSAR DEM data, and the morphoarrangement
condition from the TPI. Thus, it was possible to determine the boundary difference of
morphology and morphoarrangement. The morphological conditions in this study were
divided into three classes: hilly, moderately hilly, and flat, while the morphoarrangement
was arranged into five classes, namely: peak of hills, upper slopes of hills, middle slopes of
hills, lower slopes of hills, and colluvium and alluvium foot slopes.
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3.2. Morphochronological Condition in the Study Area

The landform condition, especially the morphochronological condition, is closely
related to the lithology conditions. In this study, information on the lithology conditions
was done through manual delineation using the geological map, which showed six litho-
logical units in JLS, Malang Regency (Table 4). In the study area, Karst materials are the
dominant lithological units and most rock formations are of tertiary Miocene age. It affects
the level of rock resistance to erosion, and the rock resistance is an important parameter for
determining landslide susceptibility [59].

Table 4. Geological formation in JLS, Malang Regency.

Symbol Formation Materials

Qa Alluvium deposits Pebble, gravel, sand, and mud

Tmwl Wonosari Coralline limestone, argillaceous-tuffaceous-sandy limestone, claystone, black claystone with
peats, claystone intercalations, and calsirudite

Tmn Nampol Tuffaceous or calcareous sandstone, black claystone, sandy marl, and calcareous sandstone

Tmwl Wuni Andesitic-basaltic breccia and lava, tuff breccia, laharic breccia, and sandy tuff

Tomm Mandalika Andesitic, basaltic, dacitic lava, and andesitic breccia

Tomt Tuff Mandalika Andesitic-rhyolitic-dacitic tuff and pumiceous tuff breccia

3.3. Morphogenesis Condition

Morphogenesis condition represents the dominant process that occurred in the study
area. This information was obtained from the SPI OSII attribute. The index value of SPI is
related to the strength of water flow, which eventually depends on the slope and catchment
area. The greater the index value, the greater the potential for strong erosion, and vice
versa. Although, different processes produce different landform conditions, the process
that occurs is usually closely related to lithology and the slope gradient. Areas with steep
slopes are associated with the erosion process, while gentle slope areas are associated with
the deposition process. Rocks that have a high level of resistance will have a low erosion
tendency [60]. The rock resistance to erosion can be known from the flow density. Greater
flow density indicates that rock conditions are prone to erosion [59].

The results of morphoprocess identification at the study site revealed four erosion
categories, namely significantly eroded, moderately eroded, slightly eroded, and deposited.
The study area is dominated by significantly eroded areas (62.52%), and moderately
(30.36%) eroded areas as can be explained by the hilly and undulating topographic charac-
teristics. The process of strong erosion occurs mostly in the upper steep slopes of the hills.
Meanwhile, the deposition process mostly occurs on the foot slopes because the slope is
gentler and flat, covering a small proportion of the study area.

3.4. Analysis of Landslide Susceptibility

The zoning of landslide susceptibility was done based on the previous landslide inven-
tory data, as these data are very useful for reconstructing landslide activity, building databases,
and assessing landslide susceptibility [61]. The prediction of landslide susceptibility also
requires historical landslide data using entropy models and is calculated based on the value
of the probability density Pij on the occurrence of landslides in each variable class.

The results of the calculation of the weight valuesn Table 5 show the importance of each
slope instability class. It is indicate that the higher of weight value, the higher contribution of
landslide occurrences. The largest weight value Wj is in the variable landform unit (0.003061),
followed by slope (0.00164) and land use (0.000918). A class that has no zero occurrence
indicates no effect on the landslide itself. The small weight value indicates that the proportion
between the number of landslide pixels and each class of variables is small. The most impor-
tant landslide conditioning factors for modeling landslide susceptibility, especially using the
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index of entropy model, in this study are landform units, slope, and land use. Topographic
conditions with steep slopes have the potential for very high landslide susceptibility [3].

Table 5. Spatial relationships between each landslide conditioning factor and landslide occurrence,
using the index of entropy model.

Factors Hjsum Hjmax Ij Wj

Aspect 3.072837 3.321928 0.074984 0.00015

CTI 2.242363 2.321928 0.034267 0.000039

Elevation 2.550763 2.807355 0.0914 0.000127

Landform unit 3.874697 5.285402 0.266906 0.003061

Land use 1.685205 3.321928 0.492703 0.000918

NDVI 2.271285 2.321928 0.021811 0.000025

Plan curvature 1.501695 1.584963 0.052536 0.000034

Profile curvature 2.215833 2.321928 0.045693 0.000071

Slope 2.009295 2.584963 0.222699 0.00164

Stream density 2.096787 2.584963 0.188852 0.000217

Stream distance 2.213677 2.321928 0.046621 0.000073

From the data analysis, the resulting landslide susceptibility in this study was divided
into four categories; low, medium, high, and very high. It was found that the high suscepti-
bility class has the largest proportion covering 51.75% of the total study area. About 13.59%
of the area falls into the very high susceptibility class and about one-third of the area falls
combinedly in the moderate and low susceptibility classes. Spatially, the areas that are very
prone to landslides are widely spread in the eastern part of JLS (Figure 5), mainly due to the
morphological factors dominated by hills with a steep slope.

In terms of lithology, the study area is dominated by limestone composed of a variety
of carbonate minerals. The mineral has high dissolving characteristics and thus makes the
pores of the constituent rocks easy to crack. The continuing process of Karstification caused
the limestone resistance to become weaker [62], resulting in the increased occurrences of
landslides [63]. In addition, the result of the study showed that landslides often occur in
the corridor of a road, where translational landslides are common due to the weakening of
rock resistance as the road construction cuts across this landform (Figure 6). The pictures,
as selected example sites in the study area, depict most of the landslide occurrences
due to a cut-slope failure during the road construction, posing a highly hazardous zone
for landslides.

Human activity, such as deforestation and land conversion, are extrinsic factors in high
risk areas that are frequently the reason for the occurrence of landslides. Another significant
reason for the occurrence of landslides is the expansion of settlements in the study area
not only near the river but also in the hilly areas with high susceptibility. The process
of urbanization and road construction activities have changed the topographic structure,
causing slope deformation and instability [64] making the Malang Regency, especially
along JLS, highly susceptible to landslides. However, with better-planned comprehensive
JLS Malang Regency infrastructure development, it is expected that the flow of logistics
distribution, improvement of accessibility, agropolitan production centers, and industrial
zones can develop properly with less disturbance in high-risk areas [65]. In addition, the
tourism sector in the Malang Regency, where there is a total of 44 beaches scattered along
the south coast, is also very dependent on the development of this access [66,67].

The analysis of landslide susceptibility is expected to help minimize the impact
and improve the accessibility of the community and the development of tourist areas
by providing information to avoid the high-risk areas, as the consideration of disaster
management is crucial.
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Figure 5. Landslide susceptibility map of JLS, Malang Regency.

Figure 6. Landslide prone area (a,b) and the landslide characteristic of JLS, Malang Regency (c).

4. Conclusions

Landform mapping in the JLS Malang Regency was carried out based on an un-
derstanding of the concepts of morphology, morphochronology, morphogenesis, and
morphoarrangement. Geospatial technology in the form of remote sensing and GISs were
used to conduct all analyses. The hybrid approach and OSII methods were used as they are
able to produce more realistic landform units by being able to integrate the data and maps
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of various scales and resolutions. A zoning map of landslide susceptibility used bivariate
statistical methods, namely the index of entropy model.

The most influential factor in the occurrence of landslides in the study area is the
landform unit, slope, and land use. Thirty-nine landform units were successfully mapped
with four landslide susceptibility classes. The study area is dominated by a high level of
landslide susceptibility with a majority of moderate to strongly eroded hill morphology.
However, the landslide conditioning factor will be different and vary depending on the
geographical conditions of the region itself, hence the weight values in this study may not
be suitable for other regions although general methodology can be adopted for landslide
susceptibility mapping [68]. The results of the landslide susceptibility assessment model
index of entropy can be used as a reference to minimize disaster risk and optimize regional
development along the southern cross road (JLS) in South Malang.

Author Contributions: Conceptualization, S.B. and S.S.; Formal analysis, S.B. and R.P.S.; Methodol-
ogy, S.B. and F.Y.; software, K.S.B.U. and Y.E.A.; writing—original draft preparation, S.B. and S.S.;
writing—review and editing, S.B., R.P.S. and F.Y.; Visualization, K.S.B.U. and Y.E.A. All authors have
read and agreed to the published version of the manuscript.

Funding: Open Access Funding by Universitas Negeri Malang through PNBP UM research grant
No. 4.3.298/UN32.14.1/LT/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: This study was conducted as a part of the PNBP UM research grant. The author
would like to thank all contributors for their assistance during data collection in the area Southern
Cross Road in South Malang.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hadmoko, D.S.; Lavigne, F.; Sartohadi, J.; Hadi, P.; Winaryo. Landslide Hazard and Risk Assessment and Their Application in

Risk Management and Landuse Planning in Eastern Flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Nat. Hazards
2010, 54, 623–642. [CrossRef]

2. Priyono, K.D.; Jumadi; Saputra, A.; Fikriyah, V.N.; Saputra, A. Risk Analysis of Landslide Impacts on Settlements in Karanganyar,
Central Java, Indonesia. Int. J. Geomate 2020, 19, 100–107. [CrossRef]

3. Bachri, S.; Shresta, R.P. Landslide Hazard Assessment Using Analytic Hierarchy Processing ( AHP ) and Geographic Information
System in Kaligesing Mountain Area of Central Java Province Indonesia. Annu. Int. Work. Expo Sumatra Tsunami 2010, 9, 108–112.

4. BNPB. Trends in Disasters in the Last 10 Years in Indonesia; BNPB: Jakarta, Indonesia, 2020.
5. BPBD. East Java Disaster Risk Study 2016–2020; BPBD: Jawa Timur, Surabaya, Indonesia, 2015.
6. Hasyim, A.W.; Gusti, H.I.K.; Prayitno, G. Determination of Land Cover as Landslide Factor Based on Multitemporal Raster Data

in Malang Regency. Int. J. GEOMATE 2020, 18, 254–261. [CrossRef]
7. Hadmoko, D.S.; Lavigne, F.; Samodra, G. Application of a Semiquantitative and GIS-Based Statistical Model to Landslide

Susceptibility Zonation in Kayangan Catchment, Java, Indonesia. Nat. Hazards 2017, 87, 437–468. [CrossRef]
8. Wang, L.; Sawada, K.; Moriguchi, S. Landslide Susceptibility Mapping by Using Logistic Regression Model with Neighborhood

Analysis: A Case Study in Mizunami City. Int. J. GEOMATE 2011, 1, 99–104. [CrossRef]
9. Arsyad, U.; Barkey, R.A.; Wahyuni, W.; Matandung, K.K. Characteristics of Landslides in the Tangka River Basin. J. Hutan dan

Masy. 2018, 10, 203–214. [CrossRef]
10. Pamungkas, Z.; Sartohadi, J. Slope Stability Study in Landslide Area in Magelang District Bompon Sub-Watershed. J. Bumi

Indones. 2017, 6, 1–10.
11. Xiong, J.; Sun, M.; Zhang, H.; Cheng, W.; Yang, Y.; Sun, M.; Cao, Y.; Wang, J. Application of the Levenburg-Marquardt Back

Propagation Neural Network Approach for Landslide Risk Assessments. Nat. Hazards Earth Syst. Sci. 2019, 19, 629–653.
[CrossRef]

12. Thiery, Y.; Terrier, M.; Colas, B.; Fressard, M.; Maquaire, O.; Grandjean, G.; Gourdier, S. Improvement of Landslide Hazard
Assessments for Regulatory Zoning in France: STATE–OF–THE-ART Perspectives and Considerations. Int. J. Disaster Risk Reduct.
2020, 47, 1–44. [CrossRef]

13. Dahal, B.K.; Dahal, R.K. Landslide Hazard Map: Tool for Optimization of Low-Cost Mitigation. Geoenvironmen. Disasters 2017,
4, 1–9. [CrossRef]

http://dx.doi.org/10.1007/s11069-009-9490-0
http://dx.doi.org/10.21660/2020.73.34128
http://dx.doi.org/10.21660/2020.69.71522
http://dx.doi.org/10.1007/s11069-017-2772-z
http://dx.doi.org/10.21660/2011.2.2c
http://dx.doi.org/10.24259/jhm.v0i0.3978
http://dx.doi.org/10.5194/nhess-19-629-2019
http://dx.doi.org/10.1016/j.ijdrr.2020.101562
http://dx.doi.org/10.1186/s40677-017-0071-3


Geosciences 2021, 11, 4 14 of 15

14. Khan, A.; Gupta, S.; Gupta, S.K. Multi-Hazard Disaster Studies: Monitoring, Detection, Recovery, and Management, Based on
Emerging Technologies and Optimal Techniques. Int. J. Disaster Risk Reduct. 2020, 47, 1–53. [CrossRef]

15. Rahma, A.D.; Mardiatno, D. Potential of Flood and Landslide Hazard Based on Geomorphological Characteristics in Sub-Das
Gelis, Keling, Jepara. Maj. Ilm. Globe 2018, 20, 23–34. [CrossRef]

16. Pradhan, B. Remote Sensing and GIS-Based Landslide Hazard Analysis and Cross-Validation Using Multivariate Logistic
Regression Model on Three Test Areas in Malaysia. Adv. Sp. Res. 2010, 45, 1244–1256. [CrossRef]

17. Pradhan, B.; Lee, S.; Buchroithner, M.F. Remote Sensing and GIS-Based Landslide Susceptibility Analysis and Its Cross-Validation
in Three Test Areas Using a Frequency Ratio Model. Photogramm. Fernerkund. Geoinf. 2010, 1, 17–32. [CrossRef]

18. Shahabi, H.; Hashim, M.; Ahmad, B. Bin. Remote Sensing and GIS-Based Landslide Susceptibility Mapping Using Frequency
Ratio, Logistic Regression, and Fuzzy Logic Methods at the Central Zab Basin, Iran. Environ. Earth Sci. 2015, 73, 8647–8668.
[CrossRef]

19. Nugraha, H.; Wacano, D.; Dipayana, G.A.; Cahyadi, A.; Mutaqin, B.W.; Larasati, A. Geomorphometric Characteristics of
Landslides in the Tinalah Watershed, Menoreh Mountains, Yogyakarta, Indonesia. Procedia Environ. Sci. 2015, 28, 578–586.
[CrossRef]

20. Smith, M.J.; Paron, P.; Griffiths, J.S. Geomorphological Mapping Methods and Applications; Elsevier Science: Amsterdam, The Netherlands,
2011; Volume 53. [CrossRef]

21. Bishop, M.P.; James, L.A.; Shroder, J.F.; Walsh, S.J. Geospatial Technologies and Digital Geomorphological Mapping: Concepts,
Issues and Research. Geomorphology 2012, 137, 5–26. [CrossRef]

22. Malik, R.F.; Sartohadi, J. Detailed Geomorphological Mapping Using the Step-Wise-Grid Technique in the Bompon Watershed,
Magelang District, Central Java. J. Bumi Indones. 2017, 6, 1–16.

23. Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achieve-
ments and Perspectives. Remote Sens. 2014, 6, 5909–5937. [CrossRef]

24. Gökceoglu, C.; Aksoy, H. Landslide Susceptibility Mapping of the Slopes in the Residual Soils of the Mengen Region (Turkey) by
Deterministic Stability Analyses and Image Processing Techniques. Eng. Geol. 1996, 44, 147–161. [CrossRef]

25. Clerici, A.; Perego, S.; Tellini, C.; Vescovi, P. A Procedure for Landslide Susceptibility Zonation by the Conditional Analysis
Method. Geomorphology 2002, 48, 349–364. [CrossRef]

26. Lee, S.; Ryu, J.; Min, K.; Won, J. Landslide Susceptibility Analysis Using GIS and Artificial Neural Network. Earth Surf. Process.
2003, 28, 1361–1376. [CrossRef]

27. Rawat, J.S.; Joshi, R.C. Remote-Sensing and GIS-Based Landslide-Susceptibility Zonation Using the Landslide Index Method in
Igo River Basin, Eastern Himalaya, India. Int. J. Remote Sens. 2012, 33, 3751–3767. [CrossRef]

28. Spinetti, C.; Bisson, M.; Tolomei, C.; Colini, L.; Galvani, A.; Moro, M.; Saroli, M.; Sepe, V. Landslide Susceptibility Mapping by
Remote Sensing and Geomorphological Data: Case Studies on the Sorrentina Peninsula (Southern Italy). GIScience Remote Sens.
2019, 56, 940–965. [CrossRef]

29. Evans, I.S. Geomorphometry and Landform Mapping: What Is a Landform? Geomorphology 2012, 137, 94–106. [CrossRef]
30. Kaliraj, S.; Chandrasekar, N.; Ramachandran, K.K. Mapping of Coastal Landforms and Volumetric Change Analysis in the South

West Coast of Kanyakumari, South India Using Remote Sensing and GIS Techniques. Egypt. J. Remote Sens. Sp. Sci. 2017, 20,
265–282. [CrossRef]

31. Metelka, V.; Baratoux, L.; Jessell, M.W.; Barth, A.; Ježek, J.; Naba, S. Automated Regolith Landform Mapping Using Airborne
Geophysics and Remote Sensing Data, Burkina Faso, West Africa. Remote Sens. Environ. 2018, 204, 964–978. [CrossRef]

32. Saha, K.; Wells, N.A.; Munro-Stasiuk, M. An Object-Oriented Approach to Automated Landform Mapping: A Case Study of
Drumlins. Comput. Geosci. 2011, 37, 1324–1336. [CrossRef]

33. Verstappen, H.T. Old and New Trends in Geomorphological and Landform Mapping. Geomorphol. Mapping-Methods Appl. 2011,
15, 13–38. [CrossRef]

34. Maulana, E.; Wulan, T.R. Multi-Prone Mapping of Southern Malang Regency Using the Landscape Approach. In Proceed-
ings of the National Symposium on Geoinformation Science, PUSPICS Fakultas Geografi UGM, Yogyakarta, Indonesia,
25–26 November 2015; pp. 526–534.

35. Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 Images. Remote Sens. Environ. 2016, 187, 241–252. [CrossRef]
36. ESA. Sentinel-2 MSI Introduction. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-

types (accessed on 12 June 2020).
37. Kaku, K. Satellite Remote Sensing for Disaster Management Support: A Holistic and Staged Approach Based on Case Studies in

Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [CrossRef]
38. Julzarika, A.; Sari, I.L. Utilization of ALOS Palsar DEM, SRTM DEM, and Landsat Imagery to Determine Potential Landslides

(Case Study: Purworejo Regency—Central Java Province). Inderaja LAPAN 2010, 1, 6–12.
39. Alaska Satellite Facility. Available online: https://asf.alaska.edu/ (accessed on 12 June 2020).
40. Galleries of Geology Map. Available online: https://vsi.esdm.go.id/ (accessed on 12 June 2020).
41. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 12 June 2020).
42. BIG. Indonesia Geospatial Portal. Available online: https://tanahair.indonesia.go.id/portal-web (accessed on 12 June 2020).
43. Rashid, I.; Romshoo, S.A.; Hajam, J.A.; Abdullah, T. A Semi-Automated Approach for Mapping Geomorphology in Mountainous

Terrain, Ferozpora Watershed (Kashmir Himalaya). J. Geol. Soc. India 2016, 88, 206–212. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2020.101642
http://dx.doi.org/10.24895/MIG.2018.20-1.724
http://dx.doi.org/10.1016/j.asr.2010.01.006
http://dx.doi.org/10.1127/1432-8364/2010/0037
http://dx.doi.org/10.1007/s12665-015-4028-0
http://dx.doi.org/10.1016/j.proenv.2015.07.068
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1016/j.geomorph.2011.06.027
http://dx.doi.org/10.3390/rs6109600
http://dx.doi.org/10.1016/S0013-7952(97)81260-4
http://dx.doi.org/10.1016/S0169-555X(02)00079-X
http://dx.doi.org/10.1002/esp.593
http://dx.doi.org/10.1080/01431161.2011.633121
http://dx.doi.org/10.1080/15481603.2019.1587891
http://dx.doi.org/10.1016/j.geomorph.2010.09.029
http://dx.doi.org/10.1016/j.ejrs.2016.12.006
http://dx.doi.org/10.1016/j.rse.2017.08.004
http://dx.doi.org/10.1016/j.cageo.2011.04.001
http://dx.doi.org/10.1016/B978-0-444-53446-0.00002-1
http://dx.doi.org/10.1016/j.rse.2016.10.030
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
http://dx.doi.org/10.1016/j.ijdrr.2018.09.015
https://asf.alaska.edu/
https://vsi.esdm.go.id/
https://scihub.copernicus.eu/
https://tanahair.indonesia.go.id/portal-web
http://dx.doi.org/10.1007/s12594-016-0479-5


Geosciences 2021, 11, 4 15 of 15

44. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological
Applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

45. Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI User Conference,
San Diego, CA, USA, 9–13 July 2001; Volume 200.

46. Muddarisna, N.; Yuniwati, E.D.; Masruroh, H.; Oktaviansyah, A.R. An Automated Approach Using Topographic Position Index
(TPI) for Landform Mapping (Case Study: Gede Watershed, Malang Regency, East Java, Indonesia). IOP Conf. Ser. Earth Environ.
Sci. 2020, 412. [CrossRef]

47. Li, L.; Qiang, Y.; Zheng, Z.; Zhang, J. Research on the Relationship between the Spatial Resolution and the Map Scale in the
Satellite Remote Sensing Cartographies. Adv. Intell. Syst. Res. 2019, 168, 194–199. [CrossRef]

48. Masruroh, H.; Sartohadi, J.; Setiawan, A. Developing Landslide Identification Method Based on Small Format Aerial Photography
in the Bompon Watershed, Magelang, Central Java. Maj. Geogr. Indones. 2016, 9, 169–181. [CrossRef]

49. Bachri, S.; Sumarmi; Yudha Irawan, L.; Utaya, S.; Dwitri Nurdiansyah, F.; Erfika Nurjanah, A.; Wahyu Ning Tyas, L.; Amri
Adillah, A.; Setia Purnama, D. Landslide Susceptibility Mapping (LSM) in Kelud Volcano Using Spatial Multi-Criteria Evaluation.
IOP Conf. Ser. Earth Environ. Sci. 2019, 273. [CrossRef]

50. Ayalew, L.; Yamagishi, H. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the
Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

51. Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Carrara, A. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin,
Central Italy. Environ. Manage. 2000, 25, 247–263. [CrossRef] [PubMed]

52. Shi, Y.; Jin, F. Landslide Stability Analysis Based on Generalized Information Entropy. Proc. Int. Conf. Environ. Sci. Inf. Appl.
Technol. ESIAT 2009, 2009, 2–83. [CrossRef]

53. Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide Susceptibility Mapping Using Index of Entropy and Conditional
Probability Models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [CrossRef]

54. Bacanli, Ü.G. Entropy Based Assessment and Palmer Drought Severity Index of Drought Analysis. Sci. Res. Essays 2012,
7, 3823–3833. [CrossRef]

55. Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater Quality Assessment Using Entropy Weighted Water Quality Index (EWQI) in
Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [CrossRef]

56. Arabameri, A.; Cerda, A.; Tiefenbacher, J.P. Spatial Pattern Analysis and Prediction of Gully Erosion Using Novel Hybrid Model
of Entropy-Weight of Evidence. Water 2019, 11, 1129. [CrossRef]

57. Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide
Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison
at Mugling-Narayanghat Road Section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [CrossRef]

58. Wang, Q.; Guo, Y.; Li, W.; He, J.; Wu, Z. Predictive Modeling of Landslide Hazards in Wen County, Northwestern China Based on
Information Value, Weights-of-Evidence, and Certainty Factor. Geomatics Nat. Hazards Risk 2019, 10, 820–835. [CrossRef]

59. Bahrami, S.; Rahimzadeh, B.; Khaleghi, S. Analyzing the Effects of Tectonic and Lithology on the Occurrence of Landslide along
Zagros Ophiolitic Suture: A Case Study of Sarv-Abad, Kurdistan, Iran. Bull. Eng. Geol. Environ. 2020, 79, 1619–1637. [CrossRef]

60. Priyono, K.D.; Priyono, P. Morphometry Analysis and Morphostructure of Slope of Slides in Banjarmangu District, Banjarnegara
Regency. Forum Geogr. 2008, 22, 72–84. [CrossRef]

61. Raska, P.; Klimes, J.; Dubisar, J. Using Local Archive Sources to Reconstruct Historical Landslide Occurrence in Selected Urban
REgions of the Czech Republic: Examples from Regions with Different Historical Development. Land Degrad. Dev. 2015, 26, 142–157.
[CrossRef]

62. Parise, M. Karst Geo-Hazards: Causal Factors and Management Issues. Acta Carsologica 2016, 44, 401–414. [CrossRef]
63. Sari, D.F.N.; Damayanti, A.; Rokhmatullah. Karstification Identification of Dolina Characteristics Case Study: Ponjong District and

Semanu District, Gunung Kidul District. In Proceedings of the National Geomatics Seminar, Surabaya, Indonesia, 12 July 2018;
pp. 115–124. [CrossRef]

64. Chen, L.; Guo, Z.; Yin, K.; Pikha Shrestha, D.; Jin, S. The Influence of Land Use and Land Cover Change on Landslide Susceptibility:
A Case Study in Zhushan Town, Xuan’en County (Hubei, China). Nat. Hazards Earth Syst. Sci. 2019, 19, 2207–2228. [CrossRef]

65. Regional Development Planning Agency - East Java, Infrastructure Development in East Java; Bappeda Jawa Timur. 2018.
66. Ramanda, P.; Hakim, L.; Pangestuti, E. Community Participation in the Management of Tourist Objects of the Southern Cross

Corridor in Malang Regency. J. Profit 2019, 13, 22–31.
67. BPS of Malang Regency. Malang Regency In Figures 2020; BPS-Statistics of Malang Regency: Malang, Indonesia, 2020.
68. Bijukchhen, S.M.; Kayastha, P.; Dhital, M.R. A Comparative Evaluation of Heuristic and Bivariate Statistical Modelling for

Landslide Susceptibility Mappings in Ghurmi-Dhad Khola, East Nepal. Arab. J. Geosci. 2013, 6, 2727–2743. [CrossRef]

http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.1088/1755-1315/412/1/012027
http://dx.doi.org/10.2991/masta-19.2019.33
http://dx.doi.org/10.22146/mgi.15640
http://dx.doi.org/10.1088/1755-1315/273/1/012014
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1007/s002679910020
http://www.ncbi.nlm.nih.gov/pubmed/10629308
http://dx.doi.org/10.1109/ESIAT.2009.258
http://dx.doi.org/10.1016/j.catena.2012.05.005
http://dx.doi.org/10.5897/SRE12.077
http://dx.doi.org/10.1007/s12665-014-3255-0
http://dx.doi.org/10.3390/w11061129
http://dx.doi.org/10.1007/s11069-012-0347-6
http://dx.doi.org/10.1080/19475705.2018.1549111
http://dx.doi.org/10.1007/s10064-019-01639-3
http://dx.doi.org/10.23917/forgeo.v22i1.4926
http://dx.doi.org/10.1002/ldr.2192
http://dx.doi.org/10.3986/ac.v44i3.1891
http://dx.doi.org/10.24895/sng.2017.2-0.404
http://dx.doi.org/10.5194/nhess-19-2207-2019
http://dx.doi.org/10.1007/s12517-012-0569-7

	Introduction 
	Methodology 
	Study Area 
	Data Availability 
	Data Analysis 
	Data Extraction Using DEM 
	On-Screen Image Interpretation (OSII) 
	Landslide Susceptibility Mapping 


	Results and Discussion 
	Morphological and Morphoarrangement Conditions in the Study Area 
	Morphochronological Condition in the Study Area 
	Morphogenesis Condition 
	Analysis of Landslide Susceptibility 

	Conclusions 
	References

