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Abstract: Preparation of a flood probability map serves as the first step in a flood management
program. This research develops a probability flood map for floods resulting from climate change in
the future. Two models of Flexible Discrimination Analysis (FDA) and Artificial Neural Network
(ANN) were used. Two optimistic (RCP2.6) and pessimistic (RCP8.5) climate change scenarios were
considered for mapping future rainfall. Moreover, to produce probability flood occurrence maps,
263 locations of past flood events were used as dependent variables. The number of 13 factors
conditioning floods was taken as independent variables in modeling. Of the total 263 flood locations,
80% (210 locations) and 20% (53 locations) were considered model training and validation. The
Receiver Operating Characteristic (ROC) curve and other statistical criteria were used to validate the
models. Based on assessments of the validated models, FDA, with a ROC-AUC = 0.918, standard
error (SE = 0.038), and an accuracy of 0.86% compared to the ANN model with a ROC-AUC = 0.897,
has the highest accuracy in preparing the flood probability map in the study area. The modeling
results also showed that the factors of distance from the River, altitude, slope, and rainfall have the
greatest impact on floods in the study area. Both models’ future flood susceptibility maps showed
that the highest area is related to the very low class. The lowest area is related to the high class.

Keywords: flood hazard; climate change; data mining model; ROC curve

1. Introduction

Since the beginning of the second half of the nineteenth century, significant climate
changes have taken place. These, in turn, have led to widespread shifts in rainfall regimes,
pressure patterns, and sea surface temperatures, resulting in the direct and indirect effects
on various aspects of life on earth [1]. Among the most significant effect was the rising
global temperature. According to several studies conducted on different parts of the world,
significant temporal and spatial changes in precipitation and evaporation occurred upon
the earth’s rising temperature. Altogether, such changes in rainfall patterns cause water
resources have changed [2,3].

According to the IPCC reports, climate change has caused hydrological changes
worldwide in recent years, increasing the possibility of extreme weather events such as
floods [4]. Due to the adaptation of human societies’ ecosystems and physical structures to
normal climatic conditions, they do not have sufficient resilience under extreme climatic
phenomena. Therefore, such anomalies can adversely affect ecosystems and communities
and cause significant economic and social damage [1,5].

Global warming increases the magnitude and frequency of maximum rainfall. This
subsequently leads to severe and broader floods in flooded rivers. Studies show that the
frequency of floods varies depending on local climate and the watershed characteristics
in different parts of the world [6,7]. Uncertainty about climate change’s effects on severe
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events is challenging at both the local and regional levels. To reduce the risk of flood-
ing, it is necessary to identify the flood-prone area in current and future environmental
conditions [8–10]. Different models can be used to prepare a flood probability map after
heavy rain or storm (danger) to assess the risk [11]. The most important models and
methods used in the preparation of climate change-related flood risk mapping include
hydrological models [12–14], statistical models [15,16], and GIS [17–21].

Recently, given the importance of climate change and its impacts on increasing runoff
and the number of floods in different parts of the world, literature is fraught with studies
using different models and approaches in this field [22–24]. The following are some critical
studies on the impacts of climate change on floods:

Rutger Dankers and Luc Feyen assessed the effects of climate change and the risk of
catastrophic floods in Europe. They found that maximum discharge levels are probably
observed in many European rivers (both in scale and frequency) by the end of this century.
Moreover, in some rivers, especially those located in western and parts of Eastern Europe,
the return period of floods was reduced. However, a significant reduction in the risk
of floods in the northeastern parts is predicted. Due to warmer winter in these areas,
shorter snowfall seasons can significantly reduce snowmelt in spring. Simultaneously,
other rivers in central and southern Europe are characterized by a significant reduction in
peak discharge [25].

In a study to prepare a flood susceptibility map in the Tessta River in northern
Bangladesh, two-hybrid model groups, including Dagging, Random Subspace (RS), Arti-
ficial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM)
were used. Moreover, 12 factors affecting the flood and 413 current and former flood
locations were used. A multi-line detection test was used to determine the relationship
between flood occurrence and factors affecting flood. To validate and compare the models,
Wilcoxon, Friedman, paired t-test, and Relative Characteristic Curve (ROC) were used. The
Area Under the ROC (AUC) value indicated that the Dagging model was more accurate
than the other models [26].

The impact of climate change on flooding and humans in the Deba River Basin (northern
Spain) was studied by [27]. In this study, four RCM models and the MIKESHE-MIKE11
hydrological model were used. The results showed that the maximum discharge with a return
period of 40 years for the three models between 14 and 15 percent in 2001–2040. Moreover, for
two models in 2041–2080, this increase between 14 and 19 percent was recorded. Moreover, it
was forecasted that flood areas and the severity of its risks would increase.

The Ajoy River in eastern India faces severe flooding during monsoon rains. This
region has a large population and good agricultural productivity. The current study maps
flood prone-areas in the Ajoy River Basin using Support Vector Machine (SVM), Random
Forest (RF), and Biogeography-Based Optimization (BBO). Various factors affecting floods
(topography, hydrology, soil characteristics, environment, and geology) were considered.
The results of these models were evaluated using the area under the ROC curve (AUC).
The AUC values for BBO, RF, and SVM are 0.985, 0.925, and 0.896, respectively. Therefore,
the BBO model (AUC = 0.98) had the highest accuracy and showed that BBO is a prominent
method for identifying flood-prone areas in eastern India [28].

The literature review showed that given the importance of climate change and floods,
different methods and models had been used to evaluate them. Pros and cons characterize
each one. Recently, new machine learning methods in hydrological [29–32] and climate
modeling [33,34] have been widely applied. However, machine learning methods have
rarely been used to investigate climate change’s effect on flood susceptibility areas.

In this study, flood-prone area due to the existence of extensive agricultural lands,
especially rice cultivation around the Tajan River, and the role of agriculture in the economy
of the people of this basin, was determined. Therefore, the most important objectives of
this study include: 1—Determining the areas with flood probability risk in the current
and future 2—Selecting the most important factors affecting the flood in the study area 3—
Evaluating two machine learning methods. For this, two data mining models of artificial
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neural network (ANN) and flexible discriminant analysis (FDA) under two optimistic
(RCP2.6) and pessimistic (RCP8.5) climate scenarios were used. This approach has rarely
been used in mapping future flood probability. Therefore, it is necessary to evaluate this
approach using data mining models.

2. Materials and Methods
2.1. Description of the Study Area

Tajan watershed, with approximately area 4000 Km2 is located in Mazandaran province
and the southern part of Sari city. The study area between longitude 53◦18′ to 53◦05′ and
latitude 36◦29′ to 36◦09′ is located. This basin is surrounded on one side by the Caspian
Sea and the other by the Alborz Mountains. Part of the study basin is located in the eleva-
tions of Semnan province and part in the highlands of Neka city (Figure 1). The average
annual temperature of this area is approximately 15 ◦C, and the amount of annual rainfall
is 832 mm [35]. Tajan watershed’s topography varies from −2 m at the watershed outlet
to 3670 m above sea level (asl). The most important rivers in this region are Tajan and
Zaremrud rivers. Forestlands cover the largest area of this region, followed by irrigated
agricultural and dry farming lands. The primary agricultural land use in the downstream
areas up to the middle parts of this watershed is rice planting. Due to topographic condi-
tions and lack of sufficient water resources, dry farming crops are grown at higher altitudes.
The main occupation of most people in this area is agriculture. The occurrence of floods in
this area will significantly damage their agriculture and increase their vulnerability and
reduce their resilience to other natural hazards.
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Figure 1. Location of the study area in Iran.

2.2. Methods
2.2.1. Flood Inventory Map

Zonation of floods that have occurred in the past is necessary to predict future floods.
The reasons are that there is a strong correlation between them [36–38]. Therefore, first,
using various methods, including reviewing maps and photos of previous floods, field
surveys, and using Google Earth, previous flood areas were identified. Then, a flood
susceptibility map was prepared. In this research, a flood map is considered a binary
classification in which flood inventory is converted into two classes of flood locations (1)
and non-flood locations (0). Therefore, to prepare a list of flood training inventory that is
a dependent variable, flood points (points 1) and non-flood points (points 0) are needed.
Flood points indicate areas where floods have occurred in the past decade, and non-flood
points indicate areas where no floods have been recorded in the past decade. Flood and
non-flood zones were prepared in polygons, which were first turned into points and then
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into modeling. Finally, 263 flood points and 263 flood non-flood points were identified.
These points were divided into two categories for modeling: 80% (212) for training and
20% (53) for validation. Finally, in this study, R software version 3.3 was used to prepare a
flood probability map of the study area (Figure 2).
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2.2.2. Flood Conditioning Factors

Flood susceptibility mapping is a complex process. It depends on many factors, such
as topographic, hydrological, geomorphological, and climatic factors [38,39]. Therefore,
to prepare a flood probability map of an area, it is necessary to determine the critical and
practical factors of floods. Literature review [40,41] showed that the most critical factors
affect floods. They include altitude, slope, slope aspect, rainfall, land use, plan curvature,
plan curvature, distance from the River, drainage density, lithology, soil, topographic
wetness index (TWI), and terrain position index (TPI) (Figure 2). In this study, these
13 factors were selected as independent variables affecting the flood. They were prepared
using Arc Map software version 10.4.1 (Esri, Redlands, CA, USA) and Saga 3.3-version
(SAGA, Hamburg, Germany) (Figure 2). The base layer for preparing some of these layers
was a digital elevation models (DEM) with a spatial resolution of 12.5 m, downloaded from
the https://vertex.daac.asf.alaska.edu/ site. The importance of each of these layers on
flooding is explained below.

Topographical Conditioning Factors

The most critical factors affecting runoff in a watershed are topographic factors [42–44].
Elevation, slope, and aspect in an area can cause severe hydrological changes in the
watershed by changing the velocity and volume of runoff [45]. For example, steep areas
increase the rate of runoff evacuation and reduce runoff accumulation in the area. Areas
with lower elevation and slopes increase the runoff height and flooding of the area. The
slope aspect could also affect the runoff amount due to its effect on soil moisture [46,47].
For example, in the northern hemisphere, the northern and western aspects have less
permeability due to more moisture. Moreover, the potential for runoff production in these
areas is greater than the southern and eastern ones. In this research, slope, aspect, and
altitude maps were prepared using a digital elevation model with a spatial resolution of
12.5 m in the GIS software (Figure 3).

https://vertex.daac.asf.alaska.edu/
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As curvature is useful in the water budget, it has been used in preparing the flood
susceptibility map [48]. The curvature of the profile indicates the change in slope along the
flow line and rotation rate. The curvature of the plane indicates the change in direction
along a meter. It shows the convergence of flow and deviation [36]. The plan and profile
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curvature are divided into three classes: concave, convex, and flat. These two layers were
prepared using a DEM map in ASCII format in the Saga software environment (Figure 3).

Hydrological Conditioning Factors

The most critical factor affecting flood damage is the distance from the River. For
this reason, this layer is used in most flood-zoning studies. The distance from the River
is inversely related to the amount of damage caused by the flood [26,37]. This layer was
prepared using the layer of rivers in the watershed and the GIS software distance tool. The
Drainage Density (DD) layer also is vital in flood susceptibility mapping. This is due to its
effect on the expansion and discharge of runoff from the floodplain area. This layer was
also prepared using the river layer and the Density tool in GIS software (Figure 3).

The topographic wetness index also affects the flood of an area. This index shows
the amount of water stored per pixel in the study area. Floods are more common in areas
with high topographic humidity [48]. The amount of water stored in each pixel is obtained
using the following equation.

TWI =
ln(As)

tanβ
(1)

where, As indicates the specific catchment area (m2m−1), and tanβ indicate slopes of the
basin in degrees. This layer was obtained in the Saga software environment using the DEM
map (Figure 3).

Rainfall is found to be the most crucial trigger for floods in a region. This factor
affects the volume and intensity of floods in an area. The amount of rainfall in each region
depends on its topographic and climatic conditions [49,50]. To prepare the rainfall layer
in this research, annual rainfall data of 6 (Sangdeh, Soleaman tangeh, Kordkhil, Kiasar,
Qarakhil, Rig cheshmeh) stations with a period of 25 years (1990–2015) have been used.
Due to its greater accuracy than the IDW method, the Kriging interpolation method was
selected to produce the final rainfall map (Figure 3).

Environmental Conditioning Factors

Land use the most critical factor affecting surface runoff and the amount of sediment
and, consequently, the flood in an area [18]. Because land use directly affects surface runoff
and infiltration rate. For this reason, the number of floods increases in residential areas
due to the increase in the area of impervious lands. Therefore, the occurrence of floods
is inversely related to vegetation density [38]. In this study, to prepare the land use layer
in 2019, Landsat satellite images and sensor OLI were used. This image was used after
geometric and atmospheric corrections and its validation with training samples in ENVI
software 5.3-version (Harris Geospatial, Broomfield, CO, USA) (Figure 3).

The type of lithological formation also plays an essential role in flooding. Areas with
permeable soils and hard lithological formations are characterized by lower waterway
density [19]. The lithological layer in this study was prepared using the Iranian lithological
layer with a scale of 1/50,000. It has 25 types of lithological formations (Table 1, Figure 3).
The type and texture of the soil in the study area also affect the volume of runoff. In areas
with higher soil depth and permeability, the surface runoff amount is reduced (Figure 3). In
this study, the study area’s soil map was obtained from the Natural Resources Department
of Mazandaran province at a scale of 1/100,000.



Geosciences 2021, 11, 25 7 of 20

Table 1. Characteristics of existing formations in the study area.

Number Code Description Age

1 Cm Dark grey to black fossiliferous limestone with subordinate black shale (MOBARAK
FM) Carboniferous

2 Dbsh Undifferentiated limestone, shale, and marl Devonian

3 Dj Yellowish, thin to thick-bedded, fossiliferous argillaceous limestone, dark grey
limestone, greenish marl, and shale, locally including gypsum Devonian

4 E Nummulitic limestone Eocene

5 E1 Dark red medium-grained arkosic to subarkosic sandstone and micaceous siltstone
(LALUN FM) Cambrian

6 E2l2 Globotrunca limestone Late.Cretaceous

7 Ebt Alternation of dolomite, limestone, and variegated shale (BARUT FM) Cambrian

8 Em Dolomite platy and flaggy limestone containing trilobite; sandstone and shale (MILA
FM) Cambrian

9 Ez Reef-type limestone and gypsiferous marl (ZIARAT FM) Paleocene-Eocene

10 J Light grey, thin-bedded to massive limestone (LAR FM) Jurassic-Cretaceous

11 K1l Thick bedded to massive, white to pinkish orbitolina bearing limestone (TIZKUH FM) Early.Cretaceous

12 K2 Hyporite bearing limestone (Senonian) Late.Cretaceous

13 K2plm Thick-bedded to massive limestone (maastrichtian) Late.Cretaceous

14 Mc Red conglomerate and sandstone Miocene

15 Msm Marl, calcareous sandstone, sandy limestone, and minor conglomerate Miocene

16 Pd Red sandstone and shale with subordinate sandy limestone (DORUD FM) Permian

17 Pec Light-red coarse-grained, a polygenic conglomerate with sandstone intercalations Paleocene-Eocene

18 PEk Dull green grey slaty shales with subordinate intercalation of quartzitic sandstone
(KAHAR FM; Morad series and Kalmard Fm) Pre-Cambrian

19 Pel Medium to thick-bedded limestone Paleocene-Eocene

20 PEm Marl and gypsiferous marl locally gypsiferous mudstone Paleocene-Eocene

21 Plc Polymictic conglomerate and sandstone Pliocene

22 Pr Dark grey medium-bedded to massive limestone (RUTEH LIMESTONE) Permian

23 Qt High-level piedmont fan and valley terrace deposits Quaternary

24 TRe Thin bedded, yellow to pinkish argillaceous limestone with worm tracks Triassic

25 URig Red marl, gypsiferous marl, sandstone, and conglomerate (Upper red Fm.) Miocene

2.3. Description of the Data Mining Model
2.3.1. Flexible Discrimination Analysis (FDA)

FDA model is one of the non-parametric models for creating complex decision bound-
aries. This classification model is based on non-parametric regression models. It changes
the response variable using optimal scoring to prepare the data better for linear separa-
tion [51,52]. The purpose of the FDA model is to modify the linear regression method by a
parametric semi-regression method. This, in turn, creates a practical structure for various
regression methods. FDA provides different discrimination rules (i.e., based on the rela-
tionships between flood occurrence and the predictor factors) and flexible class boundaries.
FDA could create a predictive map that division the reduced space into subareas; they are
identified with group membership, and the decision boundary type is linear [51,53]. The
statistical background of this model is accurately stated in some studies [51,54].

An example of an FDA model extension is as follows:

Ŷ = Sx(Y) (2)



Geosciences 2021, 11, 25 8 of 20

where Y is an indicator response matrix and Sx is a regression procedure (Linear regression,
Polynomial Regression, Additive Models, MARS, Neural Network . . . ).
The most important limitations of the LED method that led to the use of the LED

method in this study are:

• Lots of data, many predictors: LDA under fits (restricts to linear boundaries)
• Many correlated predictors: LDA (noisy/wiggly coefficients)
• Dimension reduction limited by the number of classes

2.3.2. Artificial Neural Network (ANN)

An artificial neural network inspired by biological neural systems comprises several
processing elements that usually operate in parallel. They are formed in regular archi-
tectures. An artificial neural network can learn, summons, and generalize data learning
patterns [55]. The general structure of neural network models consists of three layers: the
first layer is the input layer in which the input information is introduced to the model;
the second layer is the hidden layer (s) in which the information is processed; the out-
put layer is the third layer in which the results of the model performance are generated.
Generally, neural networks are classified into supervised and unsupervised groups. In
unsupervised training, neural network parameters are regulated by the system. However,
in supervised training, a set of data and results or related responses are presented to the
neural network [56].

Input data in the monitored type include training, experimental, and validation data.
Training data are used to obtain optimal weights. Then, test data are entered into the system
to obtain network error and efficiency. Validation data is used to prevent the model’s false
and over-modeling, which usually reduces the formal learning of the model’s process. This
data is a criterion for evaluating the performance of models [57].

One of the neural network algorithms used to solve the classification problem is LVQ.
The LVQ network is a vector learning algorithm of a hybrid network that is trained in both
supervised and unsupervised methods. This network has two layers, with each neuron
in the first layer classifying a portion of the input based on the initial vector learning.
Sometimes several neurons are given to a class and then in the second layer there is one
neuron for each class. The second layer of LVQ is used to combine subclasses into a single
network class. It is assumed that an optimal learning rule for the LVQ network must
provide the differential equation from Equation (2) in the continuous space.

dmi
dt

= atui(x)(x−mi) (3)

Or in discrete space
∆mi = atut(x)(x−mi) (4)

In relation 3, x is the input vector, mi is the neuron memory vector i. ui(x) is the
output value of the neuron i where x is the input layer.

2.4. Predicting Climate Change

To investigate climate change’s effect as an essential parameter, six synoptic and clima-
tological stations of Sangdeh, Kordkhil, Kiasar, Qarakhil, Rig Cheshmeh, Soleaman tangeh
in a statistical period of 25 years (1990–2015) were used. Three steps were performed to
implement the Lars-WG model: First, to analyze the model and examine the observational
data characteristics, the Site Analysis function was used in the Lars-WG model. In the next
step, the observational data and the generated data were evaluated using the model to
evaluate the model’s ability to predict future data. Finally, climate change prediction was
performed using Model HadESM2. Its outputs were created as two separate files contain-
ing RCP2.6 and RCP8.5 scenario data. After generating future climate data, the annual
average rainfall for each station was calculated. A future rainfall map for different climatic
scenarios was generated using the Kriging interpolation method in the GIS environment.
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These layers were entered into data mining models as an independent variable to prepare
a flood susceptibility map.

2.5. Receiver Operating Characteristic (ROC)

One of the appropriate methods to evaluate a classifier’s results and evaluate its
capability in identifying the desired class is to use the receiver operating characteristic
(ROC) curve. It is used to evaluate the sensitivity of the method [58,59]. The sensitivity
index refers to the relationship between the numbers of cells that are correctly classified.
Then, the number of cells that are incorrectly classified. The greater the deviation from
the baseline for a specific class in the ROC curve, the greater the classifier’s efficiency
in identifying that class. In addition to examining the desired class diagram trend, the
area under the curve (AUC) is also calculated. The AUC indicates the probability of
correctly classifying a randomly selected cell. This value indicates the reliability of the
method [60–62].

In this index, the evaluation of cells that are correctly assigned to the desired class
(TP), cells that are not correctly assigned to the desired class (TN), cells that are incorrectly
assigned to the desired class (FP), and cells that are not incorrectly assigned to the desired
class (FN) are considered [63,64]. To draw this curve, the x-axis, which represents the
“1-Specificity”, and the y-axis, which contains “sensitivity,” calculated for each value of the
desired class threshold.

Speci f icity =
TN

TN + FP
(5)

Sensitivity =
TP

TP + FN
(6)

To evaluate the results obtained by the models used, other statistical criteria including
Bias, accuracy, True Skill Statistic (TSS), Cohen’s Kappa (KAPPA), confidence interval (CI),
success ratio (SR), and the probability of detection (POD) were also used.

3. Results
3.1. Project Climate Change

Climate change modeling results for the next 30 years (2020–2050) showed that rainfall
changes would be significant in almost all stations. These results also show that the amount
of rainfall in the RCP2.6 scenario in most months, especially in winter, is more than the
RCP8.5 scenario. It seems that the number of rainfalls increases in all stations. Still, this
increase is more in stations near the Caspian Sea, such as Kordkhil and Qarakhil, than
stations at higher altitudes, such as Kiasar and Sangdeh (Figure 4).
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3.2. The Importance of Influencing Factors

The results of floods factor analysis in the study area showed that in the ANN model,
the distance from the River (43%), slope (21%), altitude (17%), and rainfall (9%) factors are
the most important, respectively. While in the FDA model, distance from the River (45%),
altitude (39%), slope (31%), land use (15%), and rainfall (14%) have the most significant
impact on flood occurrence in the study area, respectively (Figure 5).
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The study area’s flood susceptibility was mapped by two data mining models of
ANN and FDA and two scenarios RCP2.6 and RCP8.5, then using natural break algorithm
in a GIS software environment to 5 classes including very low, low, moderate, high and
very high were classified. There are various algorithms in a GIS software for classifying
raster map classes. They include natural break, equal interval, quintile, regular interval,
standard deviation, and manual technique. The natural break algorithm is the most famous
algorithm for classifying maps used in most studies. The flood susceptibility map of the
models used is shown in Figures 6–8.

The flood classification area results using two models of ANN and FDA showed that
under the influence of different climatic scenarios (RCP2.6 and RCP8.5), different parts of
the watershed understudied are affected by floods. These results showed that 381 Km2

(16%) and 352 Km2 (15%) of the study area were identified by the FDA and ANN models as
very high susceptibility classes, respectively. Moreover, In the ANN model under scenario
RCP2.6, the flood susceptibility map class area includes very high, high, moderate, low,
and very low, respectively 485, 226, 289, 1361, and 1555 Km2, and under scenario RCP8.5,
the flood susceptibility map classes area includes very high, high, moderate, low and very
low, respectively 406, 204, 278, 586 and 2442 Km2 (Figure 9).
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In the FDA model under scenario RCP2.6, the flood susceptibility map classes’ area
includes: very high, high, moderate, low, and very low with 385, 253, 296, 523, and
2459 Km2, respectively. Under scenario RCP8.5, the flood susceptibility map class area
includes very high, high, moderate, low, and very low, respectively 402, 277, 339, 605, and
2309 Km2 (Figure 9).

3.3. Validation Models and Maps

ROC curves are one of the most common methods of evaluating data mining modeling
results. In this curve, the area under the ROC curve (AUC) ranges between 0.5 and 1. The
closer the AUC is to 1, the more accurately the model is used to predict the phenomenon
under study. To use this method, in the validation stage, 20% of the flood points were placed
in front of 20% of the non-flood points, and the ROC curve was drawn. The performance
of the two models used in this study, including the FDA and ANN, was evaluated using
a ROC curve. The results showed that the FDA model with AUC of 0.918% compared to
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the ANN model with AUC of 0.897% is more accurate in preparing the study area’s flood
susceptibility map (Figure 10 and Table 2).
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Table 2. The accuracy Assessment of flood susceptibility mapping models.

Model
Criteria

AUC SE %CI Accuracy TSS Kappa Bias SR POD

FDA 0.918 0.038 0.799 to 0.936 0.86 0.78 0.72 0.82 0.89 0.92

ANN 0.897 0.042 0.761 to 0.90 0.82 0.69 0.71 0.86 0.84 0.90

Maps prepared by two models, FDA and ANN, were also evaluated using validation
points. For this purpose, the Arc Map software models’ final maps were converted into
fuzzy maps, and using the validation points and Extract Multi-Values to Points Tool, the
values required to prepare the ROC curve were extracted. The results of the ROC curve
using the validation points of the maps showed that the FDA model map under scenario
RCP2.6 with a standard error (SE) of 0.03 and a confidence interval (CI) of 0.83 to 0.95 has
the highest value AUC = 0.91 (Table 3). The FDA model map under scenario RCP8.5 with
an SE of 0.032 and a CI of 0.81 to 0.94 had an AUC of 0.893, followed by the ANN model
map under scenario RCP8.5 with a SE of 0.032 and a CI 0.81 to 0.94 had an AUC of 0.892.
The ANN model map under scenario RCP2.6 had a SE of 0.035, and the CI 0.80 to 0.94 had
an AUC of 0.888 (Table 3 and Figures 11 and 12).

Table 3. The accuracy assessment of flood susceptible maps of scenarios RCP2.6 and RCP8.5 using
validation points.

Models
Criteria AUC SE 95% CI

ANN RCP2.6 0.888 0.035 0.80 to 0.94

ANN RCP8.5 0.892 0.032 0.81 to 0.94

FDA RCP2.6 0.910 0.032 0.83 to 0.95

FDA RCP8.5 0.893 0.032 0.81 to 0.94
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4. Discussion

Zonation of the flood-prone area is the most crucial approach to protecting stakehold-
ers and their assets, as area prioritization for executive plans. Therefore, flood management
is an important method to prevent and reduce flood damage. For this purpose, flood
susceptibility mapping has become a critical flood management method in the world.
Therefore, researchers are always trying to use new methods and approaches to achieve
accurate executive branch results [43,65]. Based on these cases, the current study uses a
new approach to identify susceptibility and vulnerable areas to floods in the future in the
Tajan River watershed using ANN and FDA data mining methods and Lars-WG climate
model. Given that the north of Iran has experienced floods in different years. Hence,
modeling the degree of flood susceptibility in these areas is essential.

The models used in this study have been applied in various studies on landslides [56],
floods [57,66], or groundwater [67] phenomena. However, these models, along with
climatic methods to flood future susceptibility maps, have not been used. Therefore, these
two models’ performance was evaluated under two scenarios, RCP2.6 and RCP8.5, using
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the ROC curve and several other statistical criteria. Moreover, the most critical factors
affecting the flood in the study area were identified.

In this study, 13 factors affecting floods were used to prepare a flood susceptibility
map of the Tajan watershed. Findings showed that in both data mining models, distance
from the River, altitude, slope, rainfall, and land use factors significantly impact floods
in this area. Distance from the river factor is one of the most critical factors affecting
floods and damage in this area. Most previous studies have been considered the most
critical factor [18,68]. Due to topographic conditions, which are often mountainous and
have a relatively steep slope in this area, it significantly affects the speed and volume of
runoff. It causes rapid evacuation of runoff by upstream areas of the watershed and runoff
accumulation in downstream and flat areas. These results are consistent with researchers’
findings, such as [19,49] on topography’s essential effect on floods. Rainfall and land use
as two dynamic and effective factors on the watershed at different times have a significant
impact on floods. In areas with dense cover such as forests, the runoff’s amount and speed
and the resulting damage decrease [47]. As shown in Figures 5 and 6, areas, where land
use has changed from forest to agriculture or residential are also more likely to be exposed
to flooding in the future. Therefore, preventing deforestation and construction along the
River to reduce future damage should be a priority for policymakers.

Two data mining models, ANN and FDA, were used to predict flood probability in the
Tajan watershed, Sari, Iran. The performance evaluation of the models shows that the FDA
was the most efficient model. Literature review showed that the ANN model compared
to some models has a higher accuracy for prediction, which contradicts the results of this
study. Since ANN and FDA models have not been compared in order to prepare a flood
susceptibility map, so several factors including data type and type of modeling could affect
these results. Moreover, the results of evaluating the ANN and FDA model maps under
two climatic scenarios RCP2.6 and RCP8.5 using the ROC curve showed that the FDA
model map under scenario RCP2.6 with AUC = 0.91, compared to other climatic models
and scenarios, are the most accurate for the preparation of flood susceptibility map of the
study area. It is followed by the FDA model map RCP8.5 with AUC = 0.893, the ANN
RCP8.5 with 0.892, and the ANN RCP2.6 with 0.888. The results of flood susceptibility
classes of different models and scenarios showed that a very low class in both models and
scenarios would cover the largest area in the study area, so that in the ANN model under
scenarios RCP2.6 and RCP8.5 area very low class will be 1555 and 2442 Km2, respectively.
Simultaneously, in the FDA model and under scenarios RCP2.6 and RCP8.5, the area of
very low classes will be 2309 and 2459 Km2, respectively. Moreover, the minimum area of
flood susceptibility classes in both models will be high class.

5. Conclusions and Future Perspectives

For the first time in this study, integrating the two data mining models of artificial
neural network (ANN) and flexible discrimination analysis (FDA) with Lars-WG climate
model was used for future flood susceptibility mapping in Tajan watershed, Mazandaran,
Iran. Moreover, 263 flood points and 13 topographic, environmental, climatic, and hy-
drological factors that affected the flood were selected. They included altitude, slope,
slope aspect, rainfall, land use, plan curvature, plan curvature, distance from the River,
drainage density, lithology, soil, topographic wetness index (TWI), and terrain position
index (TPI). Investigating factors affecting floods in the study area in both models show
the more significant impact of distance factors from the River, altitude, slope, and rainfall.
Evaluation of the models used to use the ROC curve showed that the FDA model under
scenario RCP2.6 with AUC = 0.89 has higher accuracy in preparing the study area’s flood
susceptibility map. The flood susceptibility zoning map produced by both models was
divided into five classes based on the natural break algorithm and based on previous
research: very low, low, moderate, high, and very high. The largest area in both models
and scenarios is very low class, and the lowest area is high class.
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Finally, using other models and approaches of data mining and machine learning
and climatic models is suggested. This increases the accuracy of flood susceptibility maps.
Policymakers should prioritize flood-prone areas identified in this study and take protective
and management measures if necessary, to reduce potential damage. Vulnerability and
indicator factors should be identified in flood susceptible areas. Subsequently, necessary
measures should be taken to strengthen those indicators and improve the resilience of
watershed residents. One of the most important limitations of this research is the lack of
access to some areas for field survey and determination of flooding areas. In order to model
climate change in the study area, different meteorological stations have been used, which
have limited data preparation and standardization of basic data.
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