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Abstract: The presence of the nonstationarity in flow datasets has challenged the flood hazard
assessment. Nonstationary tools and evaluation metrics have been proposed to deal with the non-
stationarity and guide the infrastructure design and mitigation measures. To date, the examination
of how the flood hazards are affected by the nonstationarity is still very limited. This paper thus
examined the association between the flood hazards and the nonstationary patterns and degrees
of the underlying datasets. The Particle Filter, which allows for assessing the uncertainty of the
point estimates, was adopted to conduct the nonstationary flood frequency analysis (NS-FFA) for
subsequently estimating the flood hazards in three real study cases. The results suggested that the
optimal and top NS-FFA models selected according to the fitting efficiency in general align with
the pattern of nonstationarity, although they might not always be superior in terms of uncertainty.
Moreover, the results demonstrated the association and the sensitivity of the flood hazards to the
perceived patterns and degrees of nonstationarity. In particular, the variations of the flood hazards
intensified with the increase in the degree of nonstationarity, which should be assessed in a more
elaborate manner, i.e., considering multiple statistical moments. These advocate the potential of
using the nonstationarity characteristics as a proxy for evaluating the evolutions of the flood hazards.

Keywords: flood hazards; nonstationary structure; flood frequency analysis; particle filter; nonsta-
tionary pattern and degree; point estimation; uncertainty

1. Introduction

The flood risk assessment is critical for designing infrastructure and planning mitiga-
tion measures and policies to improve the water resources management. The flood risk
is assessed through the consideration of three principal aspects, namely the flood hazard
(i.e., the flood probability), the exposure, and the vulnerability [1–3]. The flood frequency
analysis (FFA), which estimates the flood quantiles associated with certain exceedance prob-
abilities (or return periods) and vice versa, is the fundamental tool for assessing the flood
hazards. Conventionally, the FFA has been conducted by fitting a probability distribution
to a set of observations (e.g., annual maximum series (AMS)) under the assumption that
they are independent and identically distributed, and consequently stationary. However,
the conventional FFA, and, thus, the flood hazard assessment, have been challenged in
the last decades in the face of climate change and other anthropogenic changes in the
watersheds (e.g., land use and land cover changes) [4], which lead to the violation of the
assumption of stationarity.

As a result, the development and implementation of the nonstationary FFA (NS-FFA),
in which the distribution is temporally variant, has received more attention [5–7]. In partic-
ular, the distribution evolution in the NS-FFA has been commonly modeled by varying
the distribution parameters. The distribution function can be determined based on the
theoretical foundations, such as the extreme value theory [8]. However, the distribution
has been deemed as a secondary aspect in the NS-FFA and, thus, it is a common practice to
employ a practically acceptable distribution in the study region [9]. Among a variety of
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distributions, the generalized extreme values distribution (GEV) has been often adopted
in many places including the USA and Canada [10–12]. Whereas the determination of
the nonstationary structure, which depicts the temporal evolution of the selected distri-
bution, has been regarded as particularly critical to the successful implementation of the
NS-FFA. The nonstationary structure has been expressed as a function of either the phys-
ical driver(s)/covariate(s) or the temporal covariate (i.e., time). The use of the temporal
covariate is a popular alternative to characterize the temporal evolution of the underlying
process, especially for fitting purposes [13–15], as the nonstationarity has often had a low
to medium correlation with the physical covariate(s) [6,16]. Moreover, the incomplete
understanding of the driving processes behind the nonstationarity could jeopardize the
selection and then the use of physical covariate(s). In the literature, the determination of
the nonstationary model (namely the nonstationary structure and the distribution) has
been conducted by comparing the performance of a set of candidate competing models,
mostly in terms of fitting efficiency (e.g., [17–19]).

The nonstationary flood hazards can be assessed through several indexes. The fre-
quently used flood hazard indexes include the expected waiting time (EWT) [20,21], the
expected number of exceedances (ENE) [22,23], the effective return level (ERL) and effective
return period (ERP) [24], and the risk of failure (R), and/or the reliability (Rl) [25,26]. The
advantages and disadvantages of these nonstationary hazard indexes might vary from
case to case. For instance, the EWT has the drawback of commonly requiring extrapo-
lation of the distribution evolution to achieve convergence, which is dependent on the
distribution shape and the trend direction (upward or downward). Thus, the use of the
EWT is conditioned on the specific characteristics of the study case and the EWT may not
converge in some cases. Differing from the EWT, the ENE only requires the knowledge on
the distribution evolution within the time period of interest (i.e., the assessment horizon)
and does not have the convergence issue. Both the EWT and ENE are derived from two
equivalent interpretations of the return period under nonstationarity, and, thus, might
be redundant to some extent. Similar to the ENE, the estimation of R does not require
extrapolation beyond the assessment horizon either, and is advantageous in providing a
hazard measure expressed in a strictly probabilistic sense. Moreover, among these indexes,
the ERL is directly derived from the three-dimensional frequency surface, which is the
extension of the conventional frequency curve depicting its changes as a function of the
covariate (e.g., time). The ERP is derived from the estimated time-varying exceedance
probability given the pre-defined assessment threshold/design quantile. The selection
of the nonstationary flood hazard indexes could be problem specific, while their redun-
dancy or potential problematic calculation under certain conditions should be taken into
consideration.

In addition, analysis and modeling in the field of hydrology and water resources
are involved with uncertainty [27]. The explicit consideration of the uncertainty allows
accounting for the reliability of the analysis/modeling estimates, and, thus, assists in
making optimal decisions [28,29]. The FFA and consequently the hazard assessment
with the uncertainty are thus more informative in both the stationary and nonstationary
settings [25]. The uncertainty in the NS-FFA mainly arises from the model parameters
estimation based on limited sample sizes and the insufficient knowledge of the true model
of the underlying system of interest [9]. The commonly used approaches to quantify the
uncertainty are the frequentist approach and the Bayesian approach. The former includes
the delta, profile likelihood, and bootstrap methods, which have their own merits and
demerits in terms of computational burden, complexity, and implicit assumptions [30]. The
Bayesian approach fundamentally differs from the frequentist approach in the use of a prior
distribution [31]. Most recently, the Particle Filter (PF) that integrates the recursive Bayesian
filters and the bootstrap resampling technique has been adopted in the stationary FFA [32]
and NS-FFA [33], as well as other hydrological applications, such as data assimilation
in hydrological models [34,35]. The PF is an inverse approach that has the advantage of
providing a rigorous probabilistic framework for state variables estimation. Moreover, to
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quantity uncertainty in estimates, assumptions (such as the statistical characteristics of the
model errors, or the uncertainty in the input parameters, e.g. in [36,37]) have often be made.
However, these assumptions, in general, cannot be properly justified, and, thus, might
become an additional source of error and uncertainty. Unlike other conventional methods
that might heavily rely on the assumptions adopted, the PF is practically assumption-
insensitive, and consequently is more reliable in uncertainty estimation [38,39].

In the face of the constant and sometimes intensive changes in the hydroclimate
systems, there is a necessity of updating the strategies used for the flood hazard assessment
and water resources management [4]. Although the limited understanding of the driving
process(es) poses a major challenge in characterizing the nonstationarity, simply ignoring
it in the planning process is not acceptable [40]. Broadly speaking, the nonstationarity can
be intuitively translated into changes in the flood hazards, such as upward/downward
trends in the annual maximum series (AMS) leading to the increase/decrease in the flood
hazards. A recent study by Read and Vogel [26] illustrated how the nonstationarity can
produce substantial impacts on the flood hazards using a hypothetical streamflow record,
and concluded that the degree of nonstationarity is a critical parameter determining
the impact severity. However, the need for assessing to what extent the nonstationarity
affects the planning and management decisions for water resources management has been
underscored [41,42]. The examination of the connection between the different observed
patterns of nonstationarity and their degrees in the underlying datasets with the flood
hazards is still lacking, especially using real datasets. Such an investigation could elucidate
the response of the flood hazards to the nonstationarity, and, thus, provide insights into
managing floods under nonstationarity.

In the view of the above, this paper employs the most recently proposed PF to conduct
the NS-FFA for assessing the flood hazards under nonstationarity of different patterns. The
temporal evolutions of the selected flood hazard indexes as well as their uncertainties are
examined for three flow AMSs that exhibit different patterns and degrees of nonstationarity.
In particular, the temporal evolution patterns of the flood hazards indexes are contrasted
with the perceived patterns of nonstationarity of the underlying datasets to advance the
knowledge on how the nonstationarity affects the flood hazards.

2. Materials and Methods
2.1. Nonstationary Datasets

Strictly speaking, the stationarity refers to the temporal invariance of the probability
distribution; while the weak/second-order stationarity, which is defined based upon
the temporal invariance of the first two statistical moments of the underlying stochastic
process [43], has been often adopted in the field of hydrology. In the context of the FFA,
the limited sample size constrains the exploration of higher-order moments [41] and
subsequently the estimation of some distribution parameters, such as the shape parameter
of three-parameters distributions. Thus, the definition of weak stationarity was adopted
herein when examining the nonstationarity and its patterns. The Mann–Kendall (MK)
test, which has been commonly adopted in the literature, was employed to detect the
presence of monotonic temporal trends in both the mean and the standard deviation of the
datasets. The MK test was coupled with the moving window approach, in which both the
window length and constant shift are 10 years. These values were used to skip potential
decadal variability and avoid data points to be counted more than once because of window
overlapping. Moreover, the Mann–Kendall–Sneyers and Mann–Whitney–Pettitt tests were
employed to detect the presence of the change point(s) in the datasets. The significance
level of 0.10 was used in these tests.

In the literature, the nonstationarity of AMSs has been commonly reported in terms of
the monotonic trends in the mean and/or the standard deviation, and the non-monotonic
trends (e.g., [5,25,44–46]). Unlike the monotonic trends, the non-monotonic trends refer to
the non-uniform temporal changes, including abrupt shifts and different trends (direction
and/or degree) in different subperiods. In this paper, three datasets, which exhibit three
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different patterns of nonstationarity, were selected for illustrating the temporal evolutions
of the flood hazards under different nonstationary scenarios. The three AMSs were collected
on Chilliwack River (ECCC-08MH016) from the Environment and Climate Change Canada
(ECCC), and Aberjona River (USGS-01102500) and Elizabeth River (USGS-01393450) from
the United States Geological Survey (USGS). These datasets were named as the D1, D2, and
D3, respectively throughout this paper, and have sample sizes of 89, 78, and 98, respectively.
The percentages of missing data in the D1 and D2 are 6% and 3%, respectively. Among
these datasets, D1 exhibits a significant monotonic upward trend in the mean (Figure 1a),
while D2 shows significant monotonic upward trends in both the mean and standard
deviation (Figure 1b). A significant change point was detected around 1951 in the D3,
and a significant monotonic upward trend in the mean was identified in the sub-dataset
after the change point (Figure 1c). These datasets exhibiting upward trends in the mean
and/or the standard deviation were selected, as this type of nonstationary (compared to
the downward trend) would pose more challenges to the decision-makers, engineers, and
urban planners, for managing increasing flood hazards.
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2.2. Distribution and Nonstationary Structure in the Nonstationary Frequency Analysis

In the NS-FFA, the focus has been primarily on the nonstationary structures, as they
are used to model the temporal evolution of the distribution; whereas the distribution is
not envisioned to significantly affect the evolution of the flood hazard estimates under
nonstationarity. In this paper, the distribution type was thus fixed for all datasets, while
seven different nonstationary structures were nested in the selected distribution. The
optimal nonstationary structure was then selected from the competing structures for each
dataset according to their performance.

The GEV developed within the extreme value theory provides a rigorous theoretical
framework for the analysis of hydroclimatic extreme events [8,24]. It has been commonly
used in the NS-FFA [46,47], and, thus, was used herein. Given a set of observations, which
are independent realizations of the random variable, Y, the GEV cumulative function
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(Y (FY)) and the quantile function (ype ) corresponding to an exceedance probability pe
(pe = 1− FY(y; θ)) are given by:

FY(y; θ) =

 exp
(
−
[
1 + κ

(
y−ξ

α

)] 1
−κ

)
, κ 6= 0

exp
(
− exp

(
−
(

y−ξ
α

)))
, κ = 0

, (1)

ype(pe; θ) = FY
−1(pe; θ) =

{
ξ − α

κ [1− {− ln(1− pe)}−k], κ 6= 0
ξ − α ln[− ln(1− pe)], κ = 0

, (2)

where the distribution parameter vector (θ) is composed of the shape, scale, and location
parameters, denoted by κ, α, and ξ, respectively. The return period (T) is the reciprocal of
the exceedance probability, i.e., T = 1/pe.

In the NS-FFA, it is common to adopt time-varying distribution parameters, which
are expressed as a function of a selected covariate to depict the nonstationarity. The
temporal covariate was adopted herein due to its practical convenience, especially for fitting
purposes as discussed previously. The candidate nonstationary structures investigated in
this paper have been commonly employed in the literature (e.g., [17,48,49]). The candidate
nonstationary structures, in which the distribution parameters (except the shape parameter)
are either linear or nonlinear functions of the covariate, are shown in Table 1. The shape
parameter was treated as a constant, as it is particularly unrealistic to allow it to vary
and difficult to estimate [8]. More complicated nonstationary structures (e.g., parameters
expressed as a higher-order polynomial function of the covariate) can be used theoretically;
however, they were not included as their parametrization could be highly uncertain [50,51].

Table 1. Candidate Nonstationary Structures in the nonstationary flood frequency analysis (NS-FFA).
GEV = generalized extreme values distribution.

Model ID GEV Parameters

M1,0,0 ξ(t) = ξ0 + ξ1t, α = α0, and κ = κ0
ME1,0,0 ξ(t) = exp(ξ0 + ξ1t), α = α0, and κ = κ0
M2,0,0 ξ(t) = ξ0 + ξ1t + ξ2t2, α = α0, and κ = κ0
M1,1,0 ξ(t) = ξ0 + ξ1t, α(t) = α0 + α1t, and κ = κ0
ME1,1,0 ξ(t) = exp(ξ0 + ξ1t), α(t) = α0 + α1t, and κ = κ0
M1,E1,0 ξ(t) = ξ0 + ξ1t, α(t) = exp(α0 + α1t), and κ = κ0
ME1,E1,0 ξ(t) = exp(ξ0 + ξ1t), α(t) = exp(α0 + α1t), and κ = κ0

2.3. Particle Filtering for the Nonstationary Frequency Analysis

The idea behind the Bayesian filtering is to estimate the hidden/unobservable state
vector of a dynamic system, x0:i = {x0, x1, . . . , xi}, which is difficult if not impossible to
be measured in the field. The hidden state vector is estimated from the related observations,
y1:i = {y1, y2, . . . , yi}. The general form of the state-space equation system can be
expressed as

xi = g(xi−1, vi) νj ∼ N
(
0, Vj

)
, (3)

yi = f (xi,ϕi) ϕj ∼ N
(
0, Φj

)
, (4)

where g(·) is the dynamic model that describes the stochastic dynamics of the system
(i.e., the state function); f (·) is the measurement model that allows for mapping the states
into the observational space (also referred to as the mapping function); νi and ϕi are the
process noise in xi and measurement noise in yi, respectively; N(·) denotes the normal
distribution; and Vj and Φj are the variance of νj and ϕj, respectively. In Bayesian filtering
techniques, the prior belief propagation from step i-1 to i is conducted using the Chapman–
Kolmogorov equation, which requires an analytical integration over the state space. Such
integration is challenging in non-linear and non-Gaussian problems. The PF method,
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which replaces this integration with an approximation using a cluster of discrete weighted
particles, can solve this issue [52].

When estimating the distribution parameters in the context of FFA, the general struc-
ture of the PF can be formulated by taking θi as the state variable. Under nonstationarity, it
varies over time to depict the distribution evolution. In this paper, ϕi was not considered.
Since the parameters are estimated for a given time period, the hidden states evolve in
pseudo-time, replacing time by iterations in order to incorporate all observations unitized
as a batch at each step i, i.e., Yi = {y1, y2, . . . , yn} ∀ i. This estimation can be expressed as
the search for the joint posterior distribution of the states given the related observations in
the Bayesian framework.

The PF approximates the distribution parameters and their inherent uncertainty
through a set of particles, which are initially sampled from an arbitrary prior distribution.
In this paper, a non-informative prior, namely a uniform distribution, was adopted. The
parameter estimation is achieved by the particle cluster evolving over pseudo-time, which
is controlled by both particle weights updating and white noise perturbation (vi) around
their positions. At each pseudo-time step, the particle weights are estimated based on the
particle likelihood. The particle likelihood is obtained by the error between the model
outputs (quantile estimates) which are computed using the particle set through the quantile
function of the probabilistic model f (·), and the measurements Yi by assigning them
exceedance probabilities using an empirical plotting position formula. Then, the particles
are resampled to guarantee particle diversity and avert particle impoverishment. With
the progress of the PF over pseudo-time steps, θi converges to a stable estimation. The
quantification of the uncertainty in the model parameters is then carried out employing
the stabilized set of parameter particles.

In the PF, several hyperparameters need to be pre-determined and are case-sensitive.
The hyperparameters are dependent on each other and govern the different aspects of the
PF including the estimation precision and the computational burden. For instance, the
selected number of particles governs the accuracy of the estimates to some extent, and
the number of pseudo-time steps to achieve convergence in the estimates depends on the
underlying probabilistic model, the number of particles employed, and the dataset itself.
In this paper, the number of particles and the number of pseudo-time steps to reach a
single estimation were set to 5000 and 500, respectively. The number of simulations to
stabilize the uncertainty estimates was 100. A more detailed description of the PF and
the setup of the hyperparameters of the PF for the FFA can be found in Sen et al. [32] and
Vidrio-Sahagún et al. [33].

2.4. Flood Hazard Metrics

Three hazard metrics, namely the ERL, ERP, and R, were adopted to examine the
temporal evolution of the flood hazards under nonstationarity. These three metrics and their
stationary counterparts (namely the conventional return levels/quantiles, return period,
and R, respectively) are commonly used in flood hazard assessment studies [49,53,54]. The
ERL and ERP are used in both the NS-FFA and the nonstationary flood hazard assessment,
while the R is designated for the latter.

The ERL, which denotes the time-variant return level/quantile corresponding to a
particular exceedance probability pe (or return period T), is given by:

ERL = ype(t) = FY
−1(pe; θt) (5)

where θt is the time-varying distribution parameter vector.
Similarly, the ERP, which denotes the reciprocal of the time-variant exceedance proba-

bility associated with a given assessment threshold (quantile), is given by:

ERP = T(t) = 1
1−FY(ype ,t0 ;θt)

, (6)
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where ype ,t0 is the assessment threshold, which is associated with the exceedance probability
pe at a reference time denoted as t0.

The R explicitly incorporates the design life of an infrastructure or the assessment
horizon of interest, M (in years), for assessing the flood hazard. The R denotes the proba-
bility of observing at least one event exceeding the design threshold ype ,t0 during the time
period M. The R is estimated by:

R = 1−
M
∏

t=1
(1− pet) = 1−

M
∏

t=1
FY
(
ype ,t0 ; θt

)
, (7)

2.5. Model Evaluation and Uncertainty Metrics

The candidate models were evaluated based on the fitting efficiency using the Akaike
Information Criteria (AIC) and the Bayesian Information Criteria (BIC), both of which deal
with the trade-off between the goodness-of-fit offered by a model and its complexity. A
model yielding a smaller AIC/BIC is more efficient in the fitting. These two assessment
criteria were used to select the optimal models and they are calculated by [55,56]:

AIC = n log(RMSE) + 2Npar, (8)

BIC = n log(RMSE) + Npar log(n), (9)

where Npar is the number of model parameters, and the root mean square error (RMSE),
which is calculated by:

RMSE =

√
1
n

n
∑

j=1

(
Mj −Oj

)2, (10)

where Oj are the empirical quantiles obtained using a plotting position formula (p1:n =

(r− 0.35)/n (where r is the rank of the jth observation and n is the sample size of Yi), and
Mj are the corresponding modeled quantiles by the PF. The empirical plotting position
formula was selected due to its better performance for estimating the parameters and
quantiles compared to other formulas for extreme value distributions [57].

In addition, two other commonly used accuracy metrics, Bias, and R2, were included
and they are calculated by:

R2 =

 ∑n
j=1(Oj−O)(Mj−M)√

∑n
j=1(Oj−O)

2
√

∑n
j=1(Mj−M)

2

2

, (11)

Bias = 1
n

n
∑

j=1

(
Mj −Oj

)
, (12)

Regarding the uncertainty in the estimations, it is often desired that a narrow un-
certainty band contains as many as possible observations. Thus, to assess the level of
uncertainty, two uncertainty metrics, namely the average bandwidth (AW) and the percent-
age of coverage (POC) of the uncertainty bands, have often been employed. It is worth to
mention that these two uncertainty metrics conflict with each other, as the band coverage
is in a trade-off with its width. These uncertainty metrics are computed by [37,58]:

AW = 1
n

n
∑

j=1

(
MU

j −ML
j

)
, (13)

POC = 1
n

n
∑

j=1
Cj , where Cj =

{
1 ∀ j s. t. ML

j ≤ Oj ≤ MU
j

0 elsewhere
, (14)

where MU
j and ML

j are the upper and lower uncertainty bounds of the estimates of the jth

observation, respectively.
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3. Results and Discussion
3.1. Optimal Nonstationary Model

The optimal nonstationary model, namely the optimal nonstationary structure given
the selected distribution, is determined based on the efficiency of fitting of the ERL estimates.
Table 2 summarizes the calculated fitting efficiency metrics along with the accuracy metrics
for the ERL estimates of all candidate nonstationary models for each dataset. For the D1,
the three candidate models,M1,0,0,M2,0,0, andME1,0,0, all of which adopt a time-variant
location parameter, but constant scale and shape parameters, are in general superior to other
candidate models in terms of both the fitting efficiency (AIC and BIC) and accuracy (RMSE,
Bias, and R2). Among these top models, theM1,0,0, which models the nonstationarity using
the linear function of time, slightly outperforms the other models in terms of the fitting
efficiency. Recall that a significant upward trend was detected in the mean of this dataset,
which is consistent with the nonstationary structure of the selected optimal model (M1,0,0)
of the D1. For the D2, it is apparent that theME1,1,0 is superior to all other competing
models in terms of both the fitting efficiency (the lowest AIC and BIC) and accuracy (the
second lowest Bias, the highest R2, and the lowest RMSE). In theME1,1,0, the location and
scale parameters are exponential and linear functions of time, respectively. These reflect
the detected trends in both the mean and standard deviation in the D2. For the D3, the
optimal model selected according to both the fitting efficiency and accuracy metrics is
theM1,1,0, followed byM1,E1,0, andME1,1,0. These models (M1,1,0,M1,E1,0, andME1,1,0)
allow both the location and scale parameters to vary over time. Note that differing from
the D1 and D2, a change point was detected in the D3 and that the candidate models are
not formulated to capture change points. Yet, if ignoring the change point, significant
trends in the mean and standard deviation were detected over the whole observation
period. Therefore, the nonstationary structure of the optimal and top models of the D3 also
aligns with the perceived pattern of nonstationarity. As illustrated by the three datasets,
irrespective of their different patterns of nonstationarity, the nonstationary structure of
their optimal models (and often, other top models) appears to be related to the patterns of
nonstationarity detected in the underlying datasets at a great degree.

Table 2. The fitting efficiency and accuracy metrics of all candidate nonstationary models for each
dataset. The selected optimal models in terms of the fitting efficiency are highlighted in boldface.

RMSE (m3/s) Bias (m3/s) R2 AIC BIC

M1,0,0 1.54 <−0.01 >0.99 46.43 56.39
ME1,0,0 1.54 0.02 >0.99 46.63 56.59
M2,0,0 1.51 <−0.01 >0.99 46.52 58.97
M1,1,0 1.65 −0.01 0.99 54.82 67.27
ME1,1,0 1.64 0.01 0.99 53.79 66.23
M1,E1,0 1.61 0.01 0.99 52.29 64.73
ME1,E1,0 1.63 0.04 0.99 53.70 66.15

D2
M1,0,0 0.79 <−0.01 0.99 −10.67 −1.24
ME1,0,0 1.16 −0.08 0.98 19.25 28.68
M2,0,0 0.73 −0.01 0.99 −14.85 −3.07
M1,1,0 0.83 −0.01 0.99 −4.26 7.52
ME1,1,0 0.69 −0.01 0.99 −19.10 −7.31
M1,E1,0 0.91 −0.18 0.99 3.01 14.80
ME1,E1,0 1.30 −0.09 0.98 30.21 41.99

D3
M1,0,0 2.37 −0.01 0.99 92.57 102.91
ME1,0,0 2.45 0.05 0.99 95.99 106.33
M2,0,0 2.27 −0.01 0.99 90.35 103.28
M1,1,0 1.43 <0.01 >0.99 44.86 57.79
ME1,1,0 1.58 0.03 >0.99 54.64 67.57
M1,E1,0 1.48 0.01 >0.99 48.50 61.43
ME1,E1,0 2.58 −0.21 0.99 102.96 115.88
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Moreover, Figure 2 displays the uncertainty metrics of all candidate nonstationary
models for each dataset. For the D1, it appears that the optimal and top candidate models
(M1,0,0,M2,0,0, andME1,0,0) selected in terms of the fitting efficiency (AIC and BIC) result
in a relatively higher AW compared to other candidate models, while the high POCs (>95%)
are reported in most of the models (exceptM1,E1,0) (Figure 2a). Recall that the AW and POC
are two uncertainty metrics conflicting with each other, as a smaller AW can be achieved at
the expense of decreasing the POC, and vice versa. In contrast, for the D2, theME1,1,0 is
not only optimal according to the fitting efficiency metrics but also superior in uncertainty,
as it yields the lowest AW and the highest POC among the candidate models. Similarly,
for the D3, the top models (M1,1,0,M1,E1,0, andME1,1,0) in general also offer a lower level
of uncertainty than that of other competing models. Besides, the optimal model (M1,1,0)
selected in terms of fitting efficiency has the lowest AW and its POC is only 1% below the
maximum POC reported in theME1,0,0,M2,0,0, andM1,E1,0. Thus, the selected optimal
models based on the fitting efficiency (AIC/BIC) do not always yield the lowest level of
uncertainty (e.g., for the D1). These results argue that the optimal models selected in terms
of the fitting efficiency might not necessarily guarantee to be optimal in terms of different
assessment criteria, such as the uncertainty. Therefore, developing more elaborate criteria
for incorporating the uncertainty into the selection of the optimal model might be beneficial
for improving the NS-FFA, and, thus, the flood hazard assessment, as the reliability is also
an important practical aspect of the analysis and assessment.
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3.2. Flood Hazard Assessment under Nonstationarity

The selected optimal NS-FFA models, namelyM1,0,0,ME1,1,0, andM1,1,0 for the D1,
D2, and D3, respectively, are used to exemplify the temporal evolution of the flood hazard
indexes. The nonstationarity in the three datasets is shown to be acceptably captured in
the NS-FFA, as the nonstationary structures of the optimal models showcase coherence
with the perceived patterns of nonstationarity of the underlying datasets as discussed
previously. Among the three datasets, the D1 has the lowest degree of nonstationarity, as its
estimated trend (Sen’s) slope in the mean is 0.02µ̃ m3/s per decade (i.e., an upward trend
with a slope of 2% per decade with respect to the reference statistic, in this case, the mean
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of the dataset). The degree of nonstationarity of the D3 is considered moderate among
these datasets, as it shows a significant trend slope in the mean of 0.05µ̃ m3/s per decade in
the subperiod after the detected change point; whereas the slopes of the trends in the mean
and standard deviation over the whole observation period (ignoring the change point) are
0.08µ̃ m3/s per decade and 0.06σ̃ m3/s per decade, respectively. The D2 is considered to
have the highest degree of nonstationarity among the datasets, as the slopes of its upward
trends in the mean and standard deviation are 0.07µ̃ m3/s per decade and 0.15σ̃ m3/s per
decade, respectively.

The frequency surfaces (Figure 3) present the temporal evolution of the point estimates
of the ERLs. As expected, the ERLs increase with time at any given T for all three datasets.
This behavior is consistent with the perceived upward trends in the mean and/or standard
deviation in these datasets. Comparing the frequency surfaces of the datasets, the curvature
of the frequency surface of the D2 is at a higher degree. Quantitatively, the ERLs increase
at a constant rate of 0.03ẼRL m3/s per decade independently of the T and time for the
D1. Here, ẼRL refers to the mean of the ERLs taken along the T-axis at every 5-yrs interval
every year over the observation period. For the D3, the ERLs increase at an average rate of
0.09ẼRL m3/s per decade, while the trend slope varies along with the contour lines of
Ts. For example, the ERLs increase at the rates of 0.07ẼRL m3/s and 0.10ẼRL m3/s per
decade along with the contour lines of T = 5-yrs and 75-yrs, respectively. For the D2, the
ERLs increase at the highest average rate of 0.16ẼRL m3/s per decade among the datasets,
while the trend slopes of ERLs also vary with both the T and time. Thus, the variation
pattern and degree of the ERLs appear to be consistent with the perceived pattern and
degree of nonstationarity in the datasets.
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Figure 4 further depicts the point estimates of the ERLs corresponding to three selected
Ts (10-, 50-, and 100-yr). As shown in Figure 4, the ERL point estimates of the three
datasets tend to increase, indicating the rise of the expected quantiles associated with a
given T. The most pronounced variations in the ERLs (and frequency surfaces) can be
noticed in the D2, followed by the D3 and D1, which coincides with the most and least
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prominent degree of nonstationarity perceived in the D2 and D1, respectively. For instance,
at the given T = 50-yr, the ERL point estimates for the D2 display an upward trend of
0.14ERL50−yr m3/s per decade, whereas the trends are 0.09ERL50−yr m3/s per decade
and 0.03ERL50−yr m3/s per decade for the D3 and D1, respectively. Note that significant
upward trends were detected in both the mean and standard deviation in the D2 and D3
(over the entire observation period).
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Figure 5 shows the point estimates of the ERPs corresponding to three assessment
thresholds ype ,t0 for D1, D2, and D3, respectively. These three ype ,t0 are the 10-, 50- and
100-yr quantiles derived from the optimal nonstationary model at the reference time point
(t0). The selection of t0 is problem specific. It can be the start time of the operation of the
infrastructure under assessment or the start of the period of interest for policy evaluation.
For illustration purposes, t0 = 30 years prior to the end of the observation period of the
datasets is used here. Differing from the point estimates of the ERL, the ERP point estimates
tend to decrease temporally, suggesting the increase of the expected recurrence of ype ,t0

over time for all three datasets. Furthermore, similar to the ERLs, a larger change in the ERP
point estimates is resulted in when the degree of nonstationarity is higher. For example,
at the given yT=50−yr,t0 , the ERP point estimates for the D2 and D3 have (downward)
average trends of −656 yrs per decade and −421 yrs per decade, respectively, whereas
the trend for the D1 is −42 yrs per decade. As illustrated in Figure 5, the extremely
high point estimates of the ERP for the D2 and D3 (ERP > 105 years for the reference
assessment thresholds yT=50yr,t0 and yT=100yr,t0) might be unrealistic. Pertaining to the
unrealistic estimates, Ouarda et al. [51] and Serinaldi and Kilsby [25] pointed out that
the estimates of the flood quantiles and their exceedance probabilities can be sometimes
unrealistic/improbable under nonstationarity. Thus, the estimates of the flood hazards
might be unrealistic as well. A possible solution to avoid the unrealistic estimates might be
to refine the nonstationary structure [25,51], such as through advancing the understanding
of the cause–effect mechanism behind the nonstationarity.
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To exemplify the temporal evolution of the R, the M is set to the last 30 years of the
observation period. Thus, the R is evaluated over the assessment horizon from the t0 to the
end of the observation period. The point estimates of the R at the previously defined three
ype ,t0 and their uncertainties are shown in Figure 6 for the three datasets. Comparing the R
point estimates of these three datasets, the D2 always has the highest R (and the largest
increase rate in R), while the lowest R is reported for the D1. For example, at the given
yT=50−yr,t0 , the R for the D1 increases at the average rate of 0.21 per decade, whereas the R
for the D3 and D2 increases at the rates of 0.26 per decade and 0.35 per decade, respectively.
The results on the R along with the previous results on the ERL and ERP support that
the flood hazards change more (increase or decrease) when the degree of nonstationarity
of the underlying datasets is more pronounced. This implies that the impacts of climate
change and other anthropogenic forces leading to the nonstationarity of flow AMSs on the
flood hazards might be quantified according to the degree of nonstationarity. In addition,
the trends in both the mean and standard deviation are shown to affect the flood hazards
(e.g., in the D2 and D3). This calls for examining the temporal trends in the mean and
standard deviation, and even higher order-moments if possible considering the sample
size, to model and assess the effect of the nonstationarity on flood quantiles and hazards.

3.3. Uncertainty in the Flood Hazard Assessment

The application of the PF allows for the uncertainty estimation simultaneously with
the point estimates of flood quantiles and hazards. As shown in Figures 4 and 5, the
uncertainty bandwidths of ERLs and ERPs, in general, increase with the increments of
the T and ype ,t0 , respectively. These results illustrate that the hazard estimation is more
uncertain in the tail region of the distribution compared to those events that are more
recurrent. Moreover, the bandwidth of the ERL increases along with time at all three Ts
for the three datasets. For instance, at the given T = 50-yr, the upward trend slopes of the
ERL bandwidths are 0.01 AW, 0.12 AW, and 0.06 AW per decade for the D1, D2, and D3,
respectively. Thus, the bandwidth of the ERL of the D2 increases at the highest rate among
the datasets. Similar results were obtained at the given T = 10-yr and 100-yr. Therefore, the
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level of uncertainty in the ERL appears to elevate over time and its change rate is related to
the degree of nonstationarity as well. This suggests that the elevation of the uncertainty in
the ERLs would be more prominent when the degree of nonstationarity is higher. Similar
to the trend in their point estimates, the bandwidth of the ERP decreases along with the
time. It is worth it to mention that, at a certain time subperiod (i.e., the beginning of the
evaluation period of the ERP), the uncertainties of the ERPs of the D2 and D3 are very
large and range over a few orders of magnitude at the reference assessment thresholds of
yT=50yr,t0 and yT=100yr,t0 (Figure 5).

Geosciences 2021, 11, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 6. The point estimates of the risk of failure (R) (red lines) and their uncertainty estimates (shaded areas) at the three 
selected assessment thresholds ( ) (the 10-, 50-, and 100-yr quantiles derived from the corresponding nonstationary 
model at the reference time  = 30 years prior to the end of the observational period) for the three datasets, (a) D1, (b) 
D2, and (c) D3. 

3.3. Uncertainty in the Flood Hazard Assessment 
The application of the PF allows for the uncertainty estimation simultaneously with 

the point estimates of flood quantiles and hazards. As shown in Figures 4 and 5, the un-
certainty bandwidths of ERLs and ERPs, in general, increase with the increments of the T 
and , , respectively. These results illustrate that the hazard estimation is more uncer-
tain in the tail region of the distribution compared to those events that are more recurrent. 
Moreover, the bandwidth of the ERL increases along with time at all three Ts for the three 
datasets. For instance, at the given T = 50-yr, the upward trend slopes of the ERL band-
widths are 0.01 , 0.12 , and 0.06  per decade for the D1, D2, and D3, respec-
tively. Thus, the bandwidth of the ERL of the D2 increases at the highest rate among the 
datasets. Similar results were obtained at the given T = 10-yr and 100-yr. Therefore, the 
level of uncertainty in the ERL appears to elevate over time and its change rate is related 
to the degree of nonstationarity as well. This suggests that the elevation of the uncertainty 
in the ERLs would be more prominent when the degree of nonstationarity is higher. Sim-
ilar to the trend in their point estimates, the bandwidth of the ERP decreases along with 
the time. It is worth it to mention that, at a certain time subperiod (i.e., the beginning of 
the evaluation period of the ERP), the uncertainties of the ERPs of the D2 and D3 are very 
large and range over a few orders of magnitude at the reference assessment thresholds of ,  and ,  (Figure 5). 

As for the uncertainty in the R of the three datasets (Figure 6), the D1, which shows 
the lowest degree of nonstationarity, has the lowest R but the largest uncertainty; whereas 
the uncertainty in the R of the D2 is the lowest. For instance, at the given , , the 
AW is 0.45, 0.34, and 0.35 for the D1, D2, and D3, respectively. Thus, different from its 
point estimates, the uncertainty in the R appears to be inversely correlated with the degree 
of nonstationarity of the datasets. From all the results of the ERL, ERP, and R, it can be 
concluded that despite the uncertainty in the flood hazard indexes respond differently to 

Figure 6. The point estimates of the risk of failure (R) (red lines) and their uncertainty estimates (shaded areas) at the three
selected assessment thresholds (ys

pe
) (the 10-, 50-, and 100-yr quantiles derived from the corresponding nonstationary model

at the reference time t0 = 30 years prior to the end of the observational period) for the three datasets, (a) D1, (b) D2, and
(c) D3.

As for the uncertainty in the R of the three datasets (Figure 6), the D1, which shows
the lowest degree of nonstationarity, has the lowest R but the largest uncertainty; whereas
the uncertainty in the R of the D2 is the lowest. For instance, at the given yT=50−yr,t0 , the
AW is 0.45, 0.34, and 0.35 for the D1, D2, and D3, respectively. Thus, different from its
point estimates, the uncertainty in the R appears to be inversely correlated with the degree
of nonstationarity of the datasets. From all the results of the ERL, ERP, and R, it can be
concluded that despite the uncertainty in the flood hazard indexes respond differently to
the nonstationarity, it is evidently associated with the nonstationary degree. The different
responses of uncertainty in the flood hazard indexes to the nonstationarity would be
ascribed to their different formulations, and, thus, their natures.

4. Conclusions

To advance the understanding of the impact of the nonstationarity on the flood
hazards, this paper conducted the flood hazard assessment through the NS-FFA using the
PF for three selected flow AMSs, which exhibit different nonstationary behavior and degree.
In particular, the response of the flood hazards to the perceived pattern and degree of
nonstationarity was investigated. In the NS-FFA, the nonstationary structure of the optimal
models according to the fitting efficiency appeared to align with the perceived patterns of
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nonstationarity in these three underlying datasets, irrespective of their different patterns
of nonstationarity. However, the optimal model selected in such a way did not always
guarantee its superiority in terms of other assessment criteria, such as the uncertainty
level in terms of the AW and/or POC, as illustrated in the D1. Therefore, to further
improve the NS-FFA, and, thus, flood hazard assessment, it is desirable to incorporate the
uncertainty into the selection of the optimal model, as the model reliability is the other
important practical aspect of the frequency analysis. As for the flood hazard indexes, the
responses of the three selected indexes, namely the ERL, ERP, and R (in both their point
estimates and uncertainty levels) were also associated with the patterns and degrees of
nonstationarity. Among the three datasets, the D2 having the most pronounced degree
of nonstationarity was found to have the largest increases in the indexes; whereas the
lowest increases in the indexes were calculated for the D1, which has the lowest degree of
nonstationarity. Thus, the variations of the point estimates of the flood indexes intensified
with the degree of nonstationarity, which should be characterized considering the temporal
evolutions of the mean and standard deviation, and possibly the high-order moments.
The uncertainties in the ERP and ERL tended to increase with the increase in the degree
of nonstationarity. In contrast, the uncertainty in the R decreased with the increase in
the degree of nonstationarity. As a result, the uncertainty in these flood hazard indexes
showed different responses to the nonstationarity, depending on their formulations. All of
these advocate the sensitivity of the flood hazards to the perceived patterns and degrees of
nonstationarity of the underlying datasets. Therefore, the impacts of climate change and
other anthropogenic factors on the flood hazards might be depicted by the nonstationarity
characteristics of the datasets. On the other hand, further research on the effect of the PF
on the NS-FFA, in particular in the context of the uncertainty in estimates, is recommended
through comparing with other available approaches.
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