

Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene

Andrei A. Legalov ^{1,2}

- ¹ Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; fossilweevils@gmail.com; Tel.: +7-9139471413
- ² Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia

Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020

Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented.

Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene

1. Introduction

Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization. The largest superfamily in the Coleoptera is the Curculionoidea, which, among beetles, is one of the Main plant consumers. They develop in living or dead tissues of various plant organs as well as in soil, feeding on roots. As an exception, some weevil larvae can develop completely exposed on plants, as well as on the surface of the soil as detritivores or predators.

The purpose of this study is to evaluate the diversity of Curculionoidea in the Paleogene and to show the specificity of faunas in various epochs, ages and localities. This is the first time a review of the Paleogene Curculionoid beetle has been undertaken.

2. Materials and Methods

The Paleogene is the first period of the Cenozoic, consisting of three epochs, the Paleocene, Eocene and Oligocene (Figure 1). The Paleogene started at about 66 Ma and ended around 23 Ma. The Late Cretaceous preceded it. The Miocene (from the Neogene) began after the Paleogene. The Paleocene consists of three ages (Danian, Selandian and Thanetian). The Eocene is subdivided into three subepochs (Early, Middle and Late) with four ages (Ypresian, Lutetian, Bartonian and Priabonian). The Bridgerian stands out for the North American Provincial Ages at the end of the Ypresian and the beginning of the Lutetian. This age corresponds with the Green River Formation. The Oligocene consists of two subepochs (Early and Late) and two ages (Rupelian and Chattian).

Period	Epoch	Subepoch	Age	
Paleogene	Paleocene 65.5±0.3–55.8±0.2		Danian 65.5±0.3–61.7±0.2	
			Selandian 61.7±0.2–58.7±0.2	
			Thanetian	
			30.710.2-33.010.2	
	Eocene 55.8±0.2–33.9±0.1	Early 55.8±0.2–48.6±0.2	Ypresian 55.8±0.2–48.6±0.2	
				Bridgerian
				50.3-46.2
		Middle	Lutetian	
		48.6±0.2–37.2±0.1	48.6±0.2–40.4±0.2	
			Bartonian	
			40.4±0.2-37.2±0.1	
		Late	Priabonian	
		37.2±0.1–33.9±01	37.2±0.1–33.9±0.1	
	Oligocene 22.9 ± 0.1 22.02 ± 0.1	Early	Rupelian 22.9 ± 0.1 28.4 ± 0.1	
	55.9±0.1-25.05±0.1	33.9±0.1-20.4±0.1	55.9±0.1-20.4±0.1	
		Late	Chattian	
		28.4±0.1–23.03±0.1	28.4±0.1–23.03±0.1	

Figure 1.	Geochronology	of the	Paleogene	(Ma).
0				· · · /

Curculionoidea have been found from 53 localities in 18 countries (Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 9, Figure 12, Figure 14, Figure 20, Figure 21), spanning all ages of the Paleogene (Table 1).

Figure 2. Paleocene Curculionoidea deposits: octagon—Sunchal; square—Starostin; rhombus—Menat; circle—Arkhara; ring—Mirs Bay.

Figure 3. Composition of species of Curculionoidea in the Paleocene fauna.

Figure 4. Composition of species of Curculionoidea in the Eocene fauna.

Figure 5. Composition of species of Curculionidae in the Eocene fauna.

Figure 6. Early Eocene Curculionoidea deposits: square—Oise amber; circle—Peckham and London Clay; rhombus—Havighorst; ring—Mors; red circle—Republic; blue circle—Quilchena; triangle—Tadushi; octagon—Huitrera Formation.

Name	Abbreviation	Location	Age
Arkhara	Arleh (D1d)	Russia: Amurskaya Region, Arkharinskii District,	Lower Paleocene,
AIKIIdId	AIKII (F10)	quarry at Arkhara Railway Station	Age Lower Paleocene, Danian, Cagayan Lower Paleocene, Danian, 63 ± 2 Ma Lower Paleocene, Danian, 66.0–55.8 Ma Middle-Upper Paleocene, Selandian-Thanetian, 61.0–59.0 Ma Paleocene Paleocene, Selandian-Thanetian, 61.0–59.0 Ma Lower Eocene, Ypresian, 54.0 Ma Lower Eocene, Sa.5–48.5 Ma Lower-Middle Eocene, Bridgerian, 53.5–48.5 Ma Lowermost Eocene, Sidgerian, Sa.5–48.5 Ma
Starostin	Stor (D1d)	Norway: Spitsbergen, Svalbard and Jan Mayen,	Lower Paleocene,
StatOstill	Stal (F10)	Firkanten Formation	Danian, 63 ± 2 Ma
Sunchal	Supe (P1d)	Argentina: northern Argentina, Jujuy Province,	Lower Paleocene,
Junchar	Sunc (110)	La Mendieta, Maiz Gordo Formation	Danian, 66.0–55.8 Ma
			Middle-Upper
Monat	Mona (Plsl-t)	France: Puv-de-Dome	Paleocene,
Ivienat	Wiena (1 151-t)	Trance. Tuy-de-Donie	Selandian-Thanetian,
			61.0–59.0 Ma
Mirs Bay	Mirs (P1)	China: Hong Kong, Peng Chau Island, gray	Paleocene
WIII's Day	WIII3 (1 1)	sandy shales, Ping Chau Formation	Age Lower Paleocene, Danian, Cagayan Lower Paleocene, Danian, 63 ± 2 Ma Lower Paleocene, Danian, 66.–55.8 Ma Middle-Upper Paleocene, Paleocene, Selandian-Thanetian, 61.0–59.0 Ma Chower Eocene, Ypresian, 54.0 Ma Lower Eocene, Ypresian, 54.0 Ma Lower-Middle Eocene, Bridgerian, 53.5–48.5 Ma Lower-Middle Eocene, Bridgerian, 53.5–48.5 Ma
Mors	Mors (P2i)	Denmark Fur Formation	Lower Eocene,
			Ypresian, 54.0 Ma
			Lower Eocene,
London Clay	LonC (P2i) U	United Kingdom: England: Sussex, Bognor Regis	Ypresian,
			54.0–50.0 Ma
			Lower-Middle
Roan Mountain	RoaM (P2i-l)	United States: Colorado, Green River Formation	Eocene, Bridgerian,
			53.5–48.5 Ma
		United States: Colorado, Wyoming, Utah States,	Lower-Middle
Green River	GreR (P2i-l)	3–4 km west of railway crossing of Green River,	Eocene, Bridgerian,
		Green-River Formation	53.5–48.5 Ma
Oise amber	OisI (P2i)	France: Paris basin, Creil, Oise	Lowermost Eocene,
			Ypresian, 53.0 Ma

Table 1. Localities with Curculionoidea from the Paleogene.

Name	Abbreviation	Location	Age
Huitrera		Argentina: Arroyo Chacay, Río Negro, near Estancia Don Hipólito, W, about 60 km east from	Lower Eocene, Ypresian,
		San Carlos de Bariloche, Huitrera Formation	54.24 ± 0.45 Ma
Peckham	Peck (P2i)	England: South London, Reding Beds	Lower Eocene, Ypresian
Havighorst	Havi (P2i)	Germany: east of Hamburg, Schleswig Holstein	Lower Eocene, Ypresian
Quilchena		Canada: British Columbia, 3 km south of Nicola Lake, lacustrine shale	Lower Eocene, Ypresian, 51.5 ± 0.4 Ma
Republic	Repu (P2i)	United States: Northeast Washington State, Klondike Mountain Formation	Lower Eocene, Ypresian, 49.0–48.0 Ma
Tadushi	Tadu (P2i)	Russia: Russian Far East, Primorsky Krai, Kavalerovsky District, Pestrushka River near mouth and Ugol'nyi Creek, tributary of Zerkal'nyi (Tadushi) River, near village of Suvorovo, Tadushi Formation	Lower Eocene, Ypresian
Messel	Mess (P2l)	Germany: near Frankfurt, oil shales	Middle Eocene, Upper Ypresian Lower Lutetian, 48.27 ± 0.22–47.0 Ma
Corfe	Corf (P2l)	United Kingdom: England: Dorset, Corfe Clay, Lower Bagshot Beds	Middle Eocene, Lutetian,
Bournemouth	Bour (P2l)	United Kingdom: England, Dorset, Bagshot Series	Middle Eocene, Lutetian, 50.0–42.0 Ma
Geiseltal	Geis (P2l)	Germany: near Halle	Middle Eocene, Lutetian, 47.5–42.5 Ma
Eckfelder Maar	Maar (P2l)	Germany: Rheinland-Pfalz, Rhine Palatine	Middle Eocene, Lutetian, 44.3 Ma
Baltic amber (Kaliningrad region)	BalJ (P2b)	Russia: Kaliningrad Region, Baltic Sea coast and Amber Jantarnyi quarry near Kaliningrad, Prussian Formation	Middle Eocene, Bartonian, 48.0–33.0 Ma
Polish amber	PolJ (P2b)	Poland: Gdansk city area, at the Wisla River Estuary, Baltic amber, Prussian Formation;	Middle Eocene, Bartonian, 48.0–33.0 Ma
Scandinavian amber	ScanJ (P2b)	Denmark, amber deposits on the Danish coast, Baltic amber, Prussian Formation	Middle Eocene, Bartonian, 48.0–33.0 Ma
Rovno amber	RovJ (P2b)	Ukraine: Rovno Region, Klesov and Dubrovice quarries	Middle Eocene, Bartonian, 48.0–33.0 Ma
Bitterfeld amber		Germany: Saxony-Anhalt, Goitzsche near Bitterfeld	Middle Eocene, Bartonian, 48.0–33.0 Ma
Romanian amber		Romania: Alunisului Hill, Valea Sibiciului, Colti	Middle Eocene, Bartonian, 48.0–33.0 Ma
Kutschlin	Kuts (P2b)	Czech Republic, northwest Bohemia, near Bilina	Middle Eocene, Bartonian
Celas	Cela (P2p)	France: Gard Department, railway Uze's-Saint-Julien-de-Casig-nac, Fumades, Corents, Bassein Ales	Upper Eocene, Priabonian

Table 1. Cont.

Name	Abbreviation	Location	Age
Ales-Monteils	Ales (P2p)	France: Gard	Upper Eocene, Priabonian
Florissant	Flor (P2p)	United States: Colorado, Rocky Mountains near Pike's Peak, Florissant Formation	Latest Eocene, Priabonian, 34.07 ± 0.10 Ma
Biamo	Biam (P2p)	Russia: Russian Far East, Primorsky Region, Pozharskii District, source of Barachek Creek, right tributary of Bol'shaya Svetlovodnaya (formerly Biamo) River	Upper Eocene, Priabonian
Fonseca	Fons (P2p)	Brazil: Minas Gerais State, near Fonseca municipality, Whitish shales, under bituminous shales, Fonseca Basin, Fonseca Formation	Oligocene, Priabonian
White River Badlands	WhiR (P3r)	United States: South Dakota	Lower Oligocene, Rupelian, 34.0–31.2 Ma
Brunnstatt	Brun (P3r)	France: Alsace, Haut-Rhine Dept., 5 km southwest of Mulhouse	Lower Oligocene, Rupelian, 33.9 Ma
Corent	Core (P3r)	France: South France, Puy-de-Dom Department, Gergovia Plateau, south of Clermon-Ferran	Lower Oligocene, Rupelian
Cereste		France: Alpes-de-Haute Province, Basses Alp Department	Lower Oligocene, Rupelian
Seifhennersdorf		Germany: Saxony, Oberlausitz	Lower Oligocene, Rupelian, 30.5–30.2 Ma
Ahuehuetes		Mexico: Puebla, 4.5 km NNE from Tepexi de Rodrigues, Los Ahuehuetes, Coatzingo Formation	Lower Oligocene, Rupelian
Kundratice		Czech Republic: near Litomioice and Seifhennersdorf	Lower Oligocene, Rupelian
Sieblos	Sieb (P3)	Germany: Hessen, Rhon	Middle Oligocene
Kleinkembs	Klei (P3)	Germany: Baden-Wurtemberg, 10 km northwest of Lorrach, Pays de Bade, Salt Formation	Middle Oligocene
Gaube	Gaub (P3)	France: Puy-de-Dome, ravin de la Gaube	Lower Oligocene, Rupelian
Puy-Saint-Jean	PuStJ (P3)	France: Puy-de-St. Jean	Middle Oligocene
Luzice	Luzi (P3h)	Czech Republic: northwest Bohemia	Upper Oligocene, Chattian
Enspel		Germany: Rheinland-Pfalz, Westerwald, Bad Marienberg	Upper Oligocene, Chattian, 24.79 – 24.56 Ma
Ashutas		Kazakhstan: East Kazakhstan Region, Kurshim District, right bank of River Cherny Irtysh	Upper Oligocene, Chattian
Perekishkyul'		Azerbaijan: middle course of Sumgait River, village of Perekeshkul, Maikop Formation	Upper Oligocene, Chattian
Rott	Rott (P3h)	Germany: North Rhine-Westfalia, Siebengebirge, near Bonn, Rott Formation	Latest Oligocene, Upper Chattian, 24.0–23.0 Ma
Aix-en-Provance	Aix (P3h)	France: Bouches-du-Rhane, Aix-en-Provence Formation	Latest Oligocene, Upper Chattian
Kap Dalton	KapD (P3)	Denmark: Greenland	Oligocene
Kenderlyk II		Kazakhstan: East Kazakhstan Region, Zaisan district, left bank of Kenderlyk River, 6 km from village of Kenderlyk	Oligocene

Maps for Paleogene localities were from Scotese [1].

The ages of fossil deposits used are from the website Fossilworks—http://fossilworks.org and some publications [2–21]. Baltic amber from the Prussian Formation ranges from 33–48 million years (Lutetian-Bartonian) [22] and in this work the Bartonian age is accepted [23].

The systematics of the superfamily Curculionoidea is currently not stable [24–30]. Previously, it included the Mesozoic family Obrieniidae, the systematic position of which is assumed to be related to the Curculionoidea [31] or considered as a family within the Archostemata [32] or a separate superfamily within the Curculioniformia [30,33] and is not considered in this paper. The number of families, groups related to these families and their taxonomic status are not universally accepted [24–30,34–36]. Also the families Nemonychidae, Anthribidae, Belidae, Ithyceridae, Brentidae, Curculionidae, Platypodidae and Scolytidae not universally accepted. In this work the higher classification proposed by the author [29,30,37–42] is adopted. The subfamily Cimberidinae is considered part of the family Nemonychidae [26,29,37,38,43], in contrast to the opinion of Seunggwan et al. [44]. The families Anthribidae and Belidae are accepted in the traditional composition [25,27,29,30,32,38,45]. Ithyceridae and Caridae are often regarded as unrelated groups [25–28,32,36,44]; however, the author considers the family Ithyceridae (incl. Caridae and Ulyanidae) as a diverse, predominantly extinct group, including five fossil (Mongolocarinae, Baissorhynchinae, Montsecanomalinae, Ulyaninae, Slonikinae) and three recent subfamilies (Carinae, Chilecarinae, Ithycerinae) [29,30,38,46–51]. Rhynchitidae and Attelabidae are considered as independent families [30,38,52–61]. The family Brentidae consists of six subfamilies [38]. Nanophyinae and Apioninae, sometimes considered as separate families [26,62–64], are included in Brentidae [25,27,30,32,36,38]. The family Curculionidae includes Erirhininae according to Zherikhin and Egorov [65] and Legalov [30,41]. Scolytidae and Platypodidae are considered as separate families [29,30,34,66].

Many Paleogene species were described in the 19th - first half of the 20th century in modern genera. The descriptions and illustrations of Many have been re-studied. If the generic affiliation was in doubt, then the genus has been placed in quotes. The results of these studies were presented by Legalov [30,47,50,67–71].

The studied fossil forms are deposited in—A. Bukejs's collection, Daugavpils, Latvia; A. Górski's collection, Bielsko-Biala, Poland; Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow, Russia; C. Gröhn's collection (Glinde, Germany) deposited in the Center of Natural History (formerly Geological-Paleontological Institute and Museum), Hamburg, Germany; Center of Natural History (formerly Geological-Paleontological Institute and Museum), Hamburg, Germany; Centre de Conservation du musée des confluences, Lyon, France; Earth Institute, Warsaw, Poland; F. Kernegger's collection, Hamburg, Germany, deposited in the Forschungsinstitut Senckenberg, Frankfurt am Main, Germany; Friedhelm Eichmann, Hannover, Germany; Górnośląskie Muzeum Przyrodnicze w Bytomiu, Poland; Kaliningrad Regional Amber Museum, Kaliningrad, Russia; Legalov's fossil insects collection Maintained at Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia; Muséum national d'histoire naturelle, Paris, France; Museum of Amber Inclusions, University of Gdańsk, Poland; Museum of the World Ocean, Kaliningrad, Russia; Naturhistorisches Museum Mainz, Landessammlung für Naturkunde Rheinland-Pfalz; Poinar amber collection Maintained at Oregon State University, Corvallis, OR, USA; Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Kiev, Ukraine; V. Alekseev's collection, Kaliningrad, Russia; V. Gusakov's collection, Russia, Moscow; Zoological Museum, University of Copenhagen, Denmark.

The specimens were studied using a stereomicroscope Zeiss Stemi 2000-C in the Institute of Systematic and Ecology of Animals (Novosibirsk, a Leica M165C binocular microscope, with Leica DFG 425, MBS 10, MBS 12 in the Paleontological Institute (Moscow), a Leica MZ 16.0 stereomicroscope with a DFC290 camera in the Zoological Institute (St. Petersburg) and an Olympus SCX9 stereomicroscope with an Olympus camera and a Nikon SMZ1500 with Microscope Eyepiece Camera 9.0MP Aptina Color CMOS MU900 in the Muséum National d'Histoire Naturelle (Paris).

The present work is registered in ZooBank (www.zoobank.org) under LSID urn—lsid:zoobank.org:pub:125CCA9E-7288-4C12-88C9-BDEBDC300A9C.

3. Results

Four species of the family Nemonychidae, 33 species of the family Anthribidae, three species of the family Ithyceridae, nine species of the family Belidae, 41 species of the family Rhynchitidae, three species of the family Attelabidae, 47 species of the family Brentidae, 384 species of the family Curculionidae, two species of the family Platypodidae and 37 species of the family Scolytidae were described from the Paleogene (Table 2).

No.	Taxon	Locality	Age	Sources
	Nemonychidae Bedel, 1882 Cretonemonychinae Gratshev et Legalov, Eocaenonemonychini Legalov, 2013	2009		
1	Eocaenonemonyx kuscheli Legalov, 2013	GreR	P2i-l	72
2	"Sitones" grandaevus Scudder, 1876	GreR	P2i-l	73
3	"Eugnamptus" decemsatus Scudder, 1878	KapD	P3	74
	Cimberidinae Gozis, 1882 Kuschelomacerini Riedel, 2010			
4	Kuschelomacer kerneggeri Riedel, 2010	BalJ	P2b	75
	Anthribidae Billberg, 1820 Anthribinae Billberg, 1820 Cratoparini LeConte, 1876			
5	"Euparius" elusus (Scudder, 1878)	GreR	P2i-l	74
6	"E." repertus (Scudder, 1878)	Flor	P2p	74
7	"E." adumbratus (Wickham, 1911)	Flor	P2p	76
8	"E." arcessitus (Scudder, 1893)	Flor	P2p	77
	Anthribini Billberg, 1820			
9	"Ormiscus" partitus (Scudder, 1890)	GreR	P2i-l	78
10	"Trigonorhinus" pristinus (Scudder, 1876)	GreR	P2i-l	73
11	"T." sordidus (Scudder, 1893)	Flor	P2p	77
	Ecelonerini Lacordaire, 1865			
12	Pseudochirotenon eocaenicus Legalov, 2018	GreR	P2i-l	69
13	Saperdirhynchus prisctitillator Scudder, 1893	Flor	P2p	77
	Mecocerini Lacordaire, 1865			
14	Pseudoecocerus aleksevi Legalov, 2020	BalJ	P2b	71
	Tropiderini Lacordaire, 1865			
15	"Tropideres" remotus Scudder, 1893	GreR	P2i-l	77
16	"T." vastats Scudder, 1893	Flor	P2p	77
	Allandrini Pierce, 1930			
17	Pseudomecorhis orlovi Zherikhin, 1971	Ball	P2b	79
18	P. simulator Voss, 1953	Ball	P2b	80
19	Allandroides vossi Legalov, 2015	BalJ	P2b	30
	Oiserhinini Legalov, Kirejtshuk et Nel, 2	019		
20	Oiserhinus insolitus Legalov, Kirejtshuk et Nel, 2019	OisJ	P2i	81
	Zygaenodini Lacordaire, 1865			
21	Glaesotropis (Pseudoglaesotropis) balticus Legalov, 2020	BalJ	P2b	71

Table 2. List of species of Curculionoidea from Paleogene [8,	,29,30,47,50,67,69–175].
---	--------------------------

No.	Taxon	Locality	Age	Sources
22	G. (P.) martynovi (Legalov, 2012)	BalJ	P2b	82
23	G. (Glaesotrovis) diadiasashai Gratshev et Perkovsky, 2008	RovI	P2b	83
24	G. (G.) gusakovi Legalov, 2015	Ball	P2b	30
25	G. (G.) <i>minor</i> Gratshev et Zherikhin, 1995	Ball	P2b	84
26	$G_{\rm c}(G)$ succiniferus Legalov 2015	Ball	P2b	30
20	$C_{\rm c}$ (C) successful Cratchev at Zharikhin 1995	Ball	P2b	84
27	C (Electronthribus) alloni Localov 2015	Ball	D2b	20
20	G. (E) $cratcheri Logalov, 2015$	Ball	r 20 Doh	20
29	G. (E.) gruisnevi Legalov, 2015 $C_{\rm e}(\Gamma)$ shewilikiwi (Legalov, 2012)	Dalj Dalj	F 20 DOL	50 47
30	G. (E.) zneriknim (Legalov, 2013)	Dalj	P2D	4/
01			DO	
31	Stiraderes conradi Scudder, 1893	Flor	P2p	77
	Choraginae W. Kirby, 1819 Choragini W. Kirby, 1819			
32	"Choragus" fictilis Scudder, 1890	GreR	P2i-l	78
33	"Ch." tertiarius Heyden et Heyden, 1866	Rott	P3h	85
	Valenfriesiini Alonso-Zarazaga et Lyal, 19	99		
34	Eduardoxenus unicus Legalov, Nazarenko et Perkovsky, 2018	RovJ	P2b	86
	Urodontinae C.G Thomson, 1859			
35	"Bruchela" cincta (Foerster, 1891)	Brun	P3r	87
36	"B " nriscus (C Heyden 1862)	Rott	P3h	88
37	"B." <i>multinunctata</i> (Schlechtendal, 1894)	Rott	P3h	89
	Ithyceridae Schoenherr, 1823 Chilecarinae Legalov, 2009 Chilecarini Legalov, 2009			
38	Petropsis rostratus Legalov, Kirejtshuk et Nel, 2017	Mena	P1sl-t	50
	Ithycerinae Schoenherr, 1823			
39	Eoceneithycerus carpenteri Legalov, 2013	Repu	P2i	47
40	Ithyceroides klondikensis Legalov, 2015	Repu	P2i	30
	Belidae Schoenherr, 1826 Oxycoryninae Schoenherr, 1840 Oxycraspedini Marvaldi et Oberprieler, 20	006		
41	Oxycraspedus poinari Legalov, 2016	BalJ	P2b	90
	Metrioxenini Voss, 1953 Metrioxenina Voss, 1953			
42	Archimetrioxena electrica Voss, 1953	BalJ	P2b	80
43	A. zherikhini (Legalov, 2012)	BalJ	P2b	82
	Zherichinixenina Legalov, 2009			
44	Paltorhynchus bisculcatus Scudder, 1893	RoaM	P2i-l	77
45	P. narwhal Scudder, 1893	Flor	P2p	77
46	Succinometrioxena attenuata Legalov et Poinar. 2020	Ball	P2b	91
47	S. hachofeni Legalov 2013	Ball	P2h	47
48	S. poinari Legalov, 2012	Ball	P2b	92
	Allocorynitae Sharp, 1890 Palaeorhonalotriini Logaloy, 2012			
/0	Palaenthonalatria neli Logalov, 2013	Alos	P2n	/7
±2	Physician Cistal 1954	Alts	12p	1/
	Sayrevilleinae Legalov, 2003 Sanyrevilleini Legalov, 2003			

No.	Taxon	Locality	Age	Sources
50	Baltocar converus Legalov 2015	Ball	P2h	.30
51	B groehni Riedel 2012	Ball	P2b	93
52	B hoffeinsorum Riedel 2012	Ball	P2b	93
53	B. subnudus Riedel 2012	Ball	P2b	93
54	B. succinicus (Voss 1953)	Ball	P2b	80
	Vossicartini Localov, 2002	Daij	120	
		D (/	Dal	
55	Germanocartus heydeni (Schlechtendal, 1894)	Rott	P3h	89
	Rhynchitinae Gistel, 1856			
	Auletini Desbrochers des Loges, 1908			
	Auletina Desbrochers des Loges, 1908			
56	Electrauletes unicus Legalov, 2015	BalJ	P2b	30
	Pseudauletina Voss, 1933			
57	Eoropseudauletes plucinskii Kania et Legalov, 2019	BalJ	P2b	94
	Pseudomesauletina Legalov, 2003			
58	Pseudomesauletes groehni Bukejs et Legalov, 2019	RovJ	P2b	95
59	P. culex (Scudder, 1893)	Flor	P2p	77
60	P. ibis (Wickham, 1912)	Flor	P2p	96
61	P. obliguus (Wickham, 1913)	Flor	P2p	97
62	P. striaticeps (Wickham, 1911)	Flor	P2p	76
	Subtribe incertae sedis			
63	"Teretrum" quiescitum Scudder, 1893	GreR	P2i-l	77
64	T. primulum Scudder, 1893	Flor	P2p	77
65	Docirhunchus terebrans Scudder, 1893	Flor	P2p	77
66	"Trupanorhunchus" depratus Scudder, 1893	Flor	P2p	77
67	"Paltorhynchus" rectirostris Scudder, 1893	Flor	P2p	77
68	"Trypanorhynchus" sedatus Scudder, 1893	Flor	P2p	77
	Rhynchitini Gistel, 1856		*	
	Temnocerina Legalov, 2003			
69	Eocenorhynchites vossi Legalov, 2012	BalJ	P2b	74
	Perrhynchitina Legalov, 2003			
70	Succinorhynchites alberti Legalov, 2013	BalJ	P2b	47
71	Tatianaerhynchites goergesi (Zherikhin, 1992)	Rott	P3h	98
	Rhynchitina Gistel, 1856			
72	Cartorhunchites struzei Zherikhin 1992	Rott	P3h	98
72	Onacoinvolvulus rottensis (Zherikhin, 1992)	Rott	P3h	98
78 74	O, zherichini Legalov, 2003	Rott	P3h	55
	Subtribe incertae sedis			
75	"Rhysosternum" punctatolineatum Piton. 1940	Mena	P1sl-t	99
76	Isothea alleni Scudder, 1893	Flor	P2p	77
	=Trypanorhynchus corruptivus Scudder, 1893		1	77
77	Prodeporaus curiosum (Scudder, 1893)	Flor	P2p	77
78	P. exanimale (Scudder, 1893)	Flor	P2p	77
79	P. exilis (Wickham, 1913)	Flor	P2p	97
80	P. minutissimus (Wickham, 1913)	Flor	P2p	97
81	P. smithii (Scudder, 1893)	Flor	P2p	77
82	"Prodenoraides" laminarum (Wickham 1916)	Flor	P2n	100
83	"P." subterraneus (Scudder 1893)	Flor	P2n	77
84	" P " milcan (Wickham 1916)	Flor	P2n	100
85	P zinmani (Souddor 1902)	Flor	1 2 p P2n	77
86	"Mactoutee" carifer Sanddor 1802	Flor	1 2 p P2n	77
87	"Rhunchitee" hageni Houdon at Houdon 1966	Rott	r2p D2h	25 85
07	Mignenico nageni rieguen et rieguen, 1000	NULL	1.011	05

No.	Taxon	Locality	Age	Sources
	Eugnamptini Voss, 1930			
88	"Eugnamptidea" florissantensis Wickham, 1913	Flor	P2p	97
89	E. robusta Wickham, 1916	Flor	P2p	100
90	E. tertiaria Wickham, 1912	Flor	P2p	101
	Attelabidae Billberg, 1820			
	Attelabinae Billberg, 1820			
	Attelabitae Billberg, 1820			
	Euscelini Voss, 1925			
	Clinolabina Legalov, 2003			
91	Paleoclinolabus dormitus (Scudder, 1893)	Flor	P2p	77
	Attelabini Billberg, 1820			
92	"Phytonomus" punctatus Piton, 1940	Mena	P1sl-t	99
93	Palaeoalatorostrum schaali Rheinheimer, 2007	Mess	P21	102
	Brentidae Billberg, 1820			_
	Apioninae Schoenherr, 1823			
	Tanaitae Schoenherr, 1839			
	Ianaini Schoenherr, 1839			
94	Cretotanaos bontsaganensis Legalov, 2014	Tadu	P2i	103
	Rhadinocybitae Alonso-Zarazaga, 1992			
	Khadinocybini Alonso-Zarazaga, 1992			
95	Baltocyba electrinus Legalov, 2018	PolJ	P2b	104
	Notapionini Zimmerman, 1994			
96	Archinvolvulus liquidus Voss, 1972	ScanJ	P2b	105
	Palaeotanaitae Kirejtshuk, Legalov et Nel, 20 Palaeotanaini Kirejtshuk, Legalov et Nel, 20	015 15		
97	Palaeotanaos oisensis Kirejtshuk, Legalov et Nel, 2015	OisJ	P2i	8
	Aspidapiitae Alonso-Zarazaga, 1990			
	Aspidapiini Alonso-Zarazaga, 1990			
98	Pseudaspidapion khnzoriani (Zherikhin, 1971)	BalJ	P2b	79
99	Baltoapion gusakovi (Legalov, 2015)	BalJ	P2b	30
100	B. subdiscedens (Voss, 1953)	BalJ	P2b	80
	Kalcapiini Alonso-Zarazaga, 1990			
101	Melanapion (Melanapionoides) poinari Legalov, 2015	BalJ	P2b	30
102	M. (M.) wanati Legalov, 2012	BalJ	P2b	67
103	Succinapion telnovi Legalov et Bukejs, 2014	BalJ	P2b	106
	Apionitae Schoenherr, 1823 Piezotrachelini Voss, 1959			
104	Conavium alleni Legalov. 2012	Ball	P2b	67
105	Baltoconapium anderseni (Voss, 1972)	ScanI	P2b	105
106	Electrapion kuntzeni (Wagner, 1924)	BalJ	P2b	107
	Aplemonini Kissinger, 1968			
107	Peravion menatensis Legalov. Kireitshuk et Nel. 2017	Mena	P1sl-t	50
108	P. rasnitsuni Legalov. 2018	GreR	P2i-l	69
109	"P." profundum (Schlechtendal, 1894)	Rott	P3h	89
	Apionini Schoenherr, 1823			
	Toxorhynchina Scudder, 1893			

No.	Taxon	Locality	Age	Sources
110	Avionion evestigatum (Scudder, 1893)	RoaM	P2i-l	77
111	Toxorhynchus europeoeocenicus Bukeis et Legalov, 2020	RovI	P2b	108
112	T. michalskii Legalov, in print.	PolI	P2b	109
113	"T." arctus (Scudder, 1893)	Flor	P2p	77
114	"T." confectum (Scudder, 1893)	Flor	P2p	77
115	"T." corruptus (Scudder, 1893)	Flor	P2p	77
116	T. florissantensis (Wickham, 1916)	Flor	P2p	100
117	T. minusculus (Scudder, 1893	Flor	P2p	77
118	T. oculatus (Scudder, 1893	Flor	P2p	77
119	"T." vumilum (Scudder, 1893)	Flor	P2p	77
120	"T." refrenatum (Scudder, 1893)	Flor	P2p	77
121	"T." reventus (Scudder, 1893)	Flor	P2p	77
122	T. scudderianum (Wickham, 1916)	Flor	P2p	100
	Tribe incertae sedis		1	
122	"Anion" cockeralli Wickham 1011	Flor	Dan	76
123	"A" abtueue (Souddor 1892)	Flor	12p D2p	70
124	"A" lazirostra Econstor 1891	Brup	12p P3r	87
125	A. leonostie Foerster, 1891	Brun	1 31 D2m	07 97
120	A. puroum Foerster, 1891	Brun	r 5r	07 07
127	A. Suiculum Foelsler, 1091 "Dhumehitee" enginese Houdon et Houdon 1966	Drun	r or Doh	07 9E
128	"Anion" mimordiale Houdon et Houdon 1866	Rott	Pon Doh	80 85
129	<i>"A " motundum</i> Schlachtendel 1804	Rott	P 50	00 80
130	A. projunuum Schlechlendal, 1894 "Cooliedes" primiganius Oustalat 1874	Aix	P 3H D2h	09 110
151	Coenoues primigenius Oustalet, 1874	AIX	1311	110
	Nanophyinae Gistel, 1856 Nanophyini Gistel, 1856			
132	Palaeonanophyes zherikhini Legalov, 2015	GreR	P2i-l	111
133	Baltonanophyes crassirostre Legalov, 2018	PolJ	P2b	104
134	Zherikhiniellus rarus Legalov, in print.	BalJ	P2b	109
135	"Nanophyes" japetus Heyden et Heyden, 1866	Rott	P3h	85
	Corimaliini Alonso-Zarazaga, 1989			
136	"Corimalia" cycloptera Theobald, 1937	Cela	P2p	112
	Brentinae Billberg, 1820 Trachelizini Lacordaire, 1865 Stereodermina Sharp, 1895			
137	<i>Cerobates</i> (<i>Cerobates</i>) <i>eocenicus</i> Legalov et Wappler, in print.	Maar	P21	113
	Trachelizina Lacordaire, 1865			
138	Eckfelderolisva vetrefacta Legalov et Wappler, in print.	Maar	P21	113
139	<i>E. verita</i> Legalov et Wappler, in print.	Maar	P21	113
140	<i>E. manderschieta</i> Legalov et Wappler, in print.	Maar	P21	113
	Curculionidae Latreille, 1802 Erirhininae Schoenherr, 1825 Erirhinini Schoenherr, 1825 Erirhinina Schoenherr, 1825			
141	Erirhinites bognorensis Britton, 1960	LonC	P2i	114
142	"Procas" vinculatus Scudder 1893	RoaM,	P2i-l,	77
		WhiR	P3r	
143	"P." verberatus Scudder, 1893	Flor	P2p	77
144	"Erycus" brevicollis Scudder, 1893	Flor	P2p	77

Table 2. Cont.

No.	Taxon	Locality	Age	Sources
	Dorytomini Bedel, 1886			
145	Dorytomus bukejsi Legalov, 2020	BalJ	P2b	71
146	D. electrinus Legalov, 2016	BalJ	P2b	90
147	D. groehni Bukejs et Legalov, 2019	BalJ	P2b	116
148	D. korotyaevi Legalov, 2020	Ball	P2b	71
149	D. nudus Legalov, 2016	Ball	P2b	115
150	D. vlaskini Legalov, Nazarenko et Perkovsky, 2019	RovI	P2b	117
151	"D." coercitus Scudder, 1893	Flor	P2p	77
152	"D." vulcanicus Wickham, 1912	Flor	P2p	101
153	"D." williamsi Scudder, 1893	Flor	P2p	77
	Bagoini C.G. Thomson, 1859			
154	"Bagous" palintonus Foerster, 1891	Brun	P3r	87
	Molytinae Schoenherr, 1823			
	Molytini Schoenherr, 1823			
	Hylobiina W. Kirby, 1837			
155	Archaralites zherichini Legalov, 2010	Arkh	P1d	118
156	Furhylobius troesteri Legalov, 2015	Mors	P2i	30
157	Archaeoheilus vackardii (Scudder, 1893)	GreR	P2i-l	77
158	A. provectus (Scudder, 1876)	GreR	P2i-l	73
159	A. scudderi Legalov, 2018	GreR	P2i-l	69
160	A oralis Legalov 2018	GreR	P2i-1	69
161	A deleticius (Scudder 1893)	WhiR	P3r	77
162	A Jacopi (Scudder, 1893)	Flor	P2n	77
162	"Anisorhunchus" offosus Oustalet 1870	Core	P3r	119
164	"Hulohius" antiauus Hevden et Hevden 1866	Rott	P3h	85
101	Disthini Learnaine 10(2	non	1011	
	Leiosomatina Reitter, 1913			
165	Leiosoma klebsi Legalov, 2016	BalJ	P2b	115
	Pissodini Gistel, 1856			
166	Lithopissodes luschitzensis Beier, 1952	Luzi	P3h	120
	Acicnemidini Lacordaire, 1865			
167	Electrotribus henningseni (Voss, 1972)	ScanJ, PolJ BalJ, PolJ	P2b	105
168	E. theryi Hustache, 1942		P2b	121
	=Paleopissodes weigangae Ulke, 1947			122
	=Anchorthorrhinus incertus Voss, 1953			80
	=Isalcidodes Macellus Voss, 1953	Ball		80
169	E. wolfschwenningerae (Rheinheimer, 2007)	Ball	P2b	102
170	E. rarus Legalov, 2020		P2b	71
	Magdalini Pascoe, 1870			
171	"Magdalis" sedimentorum Scudder, 1893	Flor	P2p	77
172	"M." moesta Schlechtendal, 1894	Rott	P3h	89
173	"M." deucalionis (Heyden et Heyden, 1866)	Rott	P3h	85
174	"M." protogenius (Heyden et Heyden, 1866)	Rott	P3h	85
	Cleogonini Gistel, 1856			
175	Rhysosternum aeternabile Scudder, 1893	Flor	P2p	77
176	Rh. longirostre Scudder, 1893	Flor	P2p	77
177	"Conotrachelus" florissantensis Wickham, 1912	Flor	P2p	102

No.	Taxon	Locality	Age	Sources
	Sciabregmini Legalov, Kirejtshuk et Nel, 2	2019		
178	Sciahreoma rugosa Scudder 1893	RoaM	P2i-l	77
170	S. sauamosa Legalov, Kireitshuk et Nel. 2019	OisI	P2i	81
180	S. tenuicornis Cockerell, 1921	GreR	P2i-l	123
	Camptorhinini Lacordaire, 1865			120
181	Camptorrhivitae orariue Britton 1960	LonC	P2;	11/
182	Korustina gracilis Britton 1960	LonC	1 21 P2i	114
102	A adamanini Eaust 1808	Lone	1 21	114
102	Electuation field duit cash 2020	D . 11	DOL	71
183	Electrorninus friedhelmi Legalov, 2020	Balj	P2b	71
	Cryptorhynchini Schoenherr, 1825 Cryptorhynchina Schoenherr, 1825			
184	Taylorius litoralis Britton, 1960	LonC	P2i	114
185	"Cryptorhynchus" annosus Scudder, 1876	GreR	P2i-l	73
186	"C." coloradensis Wickham, 1912	Flor	P2p	102
187	"C." evinctus Scudder, 1893	Flor	P2p	77
188	"C." falli Wickham, 1912	Flor	P2p	102
189	"C." kerri Scudder, 1893	Flor	P2p	77
190	"C." profusus Scudder, 1893	Flor	P2p	77
191	Oisecalles latosquamosus Legalov, Kirejtshuk et Nel, 2019	OisJ	P2i	81
192	Cryptorrhynchites sculpturatus Haupt, 1950	Geis	P2l	124
193	Succinacalles uniques Zherikhin, 1971	BalJ	P2b	79
	Tylodina Lacordaire, 1865			
194	Baltacalles triumurbium Bukejs, Alekseev et Legalov, 2020	BalJ	P2b	125
195	"Acalles" icarus Heyden et Heyden, 1866	Rott	P3h	85
	Tribe incertae sedis			
196	Lutago fetosus Britton, 1960	LonC	P2i	114
197	L. nanus Britton, 1960	LonC	P2i	114
198	Pissodites argillosus Britton, 1960	LonC	P2i	114
199	"Chalcodermus" kirschi Deichmueller, 1881	Kuts	P2b	126
200	Laccopygus nilesii Scudder, 1893	Flor	P2p	77
201	L. rhenanus Meunier, 1924	Rott	P3h	127
202	"Acalles" exhumatus Wickham, 1913	Flor	P2p	97
203	"Pissodes" planatus Foerster, 1891	Brun	P3r	87
204	"Hylobius" deletus Oustalet, 1870	Core	P3r	119
205	"Plinthus" redivivus Oustalet, 1870	Core	P3r	119
206	"Hylobius" morosus Oustalet, 1874	Core	P3r	110
207	"Molytes" hassencampi Heyden, 1858	Sieb	P3	128
208	"Pissodes" effossus Heyden, 185	Sieb	P3	128
209	8	Aix	P3h	110
210	"Plinthus" heerii Oustalet, 1874	Aix	P3h	110
	Livingo Cabacharry 1922		1011	110
	Lixini Schoenherr, 1823			
212	Lixus ligniticus Piton, 1940	Mena	P1sl-t	99
213	"Larinus" longirostris Foerster, 1891	Brun	P3r	87
214	"L." bronni Heyden et Heyden, 1866	Rott	P3h	85
	Cleonini Schoenherr, 1826			

No.	Taxon	Locality	Age	Sources
215	Eocleonus subjectus Scudder, 1893	Flor	P2p	77
216	"Cleonus" degenerates Scudder, 1893	Flor	P2p	77
217	"C." estriatus Wickham, 1912	Flor	P2p	102
218	"C." externanceus Scudder, 1893	Flor	P2p	77
219	"C" foersteri Scudder 1893	Flor	P2p	77
220	"C" primoris Scudder 1893	Flor	P2n	77
220	"C" rohveri Wickham 1911	Flor	P2n	76
221	"C" arziernensis Oustalet 1870	Core	P3r	119
223	"C." fouilhouxii Oustalet, 1870	Core	P3r	119
	Dryophthorinae Schoenherr, 1825 Stromboscerini Lacordaire, 1865			
224	Palaeodexipeus kirejtshuki Legalov, 2016	BalJ	P2b	90
225	Rovnoslonik damzeni Legalov, Nazarenko et Perkovsky,	RovI	P2b	117
226	2019 Stenommatomorphus hexarthrus Nazarenko, 2009	RovI	P2b	129
	Dryophthorini Schoenberr 1825	Rovj	120	12)
		0.1	D0:	01
227	Kninoporkus gratiosus Legalov, Kirejtsnuk et Nei, 2019	Uisj	P21	81
228	Lithophthorus rugosicollis Scudder, 1893	Flor	P2p	77
229	Spodotribus terrulentus Scudder, 1893	Flor	P2p	177
230	Dryophthorus incertus (Theobald, 1935)	Aix	P3h	130
	Sphenophorini Lacordaire, 1865 Sphenophorina Lacordaire, 1865			
231	"Scyphophorus" fossionis Scudder, 1893	Flor	P2p	77
232	S. laevis Scudder, 1893	Flor	P2p	77
233	"S." tertiarius Wickham, 1911	Flor	P2p	76
234	Oryctorhinus tenuirostris Scudder, 1893	Flor	P2p	77
235	"Sphenophorus" proluviosus Heyden et Heyden, 1866	Rott	P3h	85
	Tribe incertae sedis			
236	Hipporhinops sternbergi Cockerell, 1926	Flor	P2p	131
	Cossoninae Schoenherr, 1825 Dryotribini LeConte, 1876			
237	Ampharthropelma decipiens Voss, 1972	ScanJ	P2b	105
238	<i>Caulophilus Martynovae</i> Legalov, Nazarenko et Perkovsky, 2019	RovJ	P2b	117
239	C. rarus Legalov, 2016	BalJ	P2b	115
240	C. squamosus Legalov, 2016	BalJ	P2b	115
241	C. sucinopunctatus (Kuska, 1992)	BalJ	P2b	132
242	C. zherikhini Nazarenko, Legalov et Perkovsky, 2011	RovJ	P2b	133
243	Necrodryophthorus inquilinus Voss, 1953	BalJ	P2b	80
244	Synommatodes patruelis (Voss, 1953)	BalJ	P2b	80
245	Electrocossonus kirejtshuki Legalov, 2020	BalJ	P2b	71
	Rhyncolini Gistel, 1856 Rhyncolina Gistel, 1856			
246	Rhyncolus sitonifrons Zherikhin, 1992	Rott	P3h	98
	Cossonini Schoenherr, 1825			
247	"Cossonus" devoratus Cockerell, 1925	Sunc	P1d	134
248	"C." rutus Scudder, 1893	RoaM	P2i-l	77
249	"C." gabbii Scudder, 1893	Flor	P2p	77
250	C. robustus Meunier, 1916	Aix	P3h	135

No.	Taxon	Locality	Age	Sources
	Conoderinae Schoenherr, 1833 Bariditae Schoenherr, 1836 Apostasimerini Schoenherr, 1844			
	Coelonertina Casey, 1922			
251	Geraeus diruptus (Scudder, 1893)	GreR	P2i-l	77
252	G. anvilis Legalov, 2018	GreR	P2i-l	70
253	G. fossilis Legalov, 2018	GreR	P2i-l	70
254	G. antediluviana (Wickham, 1916)	Flor	P2p	100
255	G. hoveyi (Wickham, 1912)	Flor	P2p	101
256	G. hypogaeus (Wickham, 1916)	Flor	P2p	100
257	G. matura (Scudder, 1893)	Flor	P2p	77
258	G. obnuptus (Scudder, 1893)	Flor	P2p	77
259	G. schucherti (Wickham, 1912)	Flor	P2p	101
260	G. vulcanicus (Wickham, 1913)	Flor	P2p	97
261	Lithogeraeus greenriverensis Legalov, 2018	GreR	P2i-l	70
262	L. circumscripta (Scudder, 1893)	RoaM	P2i-l	77
263	L. ancilla (Scudder, 1893)	RoaM	P2i-l	77
264	L. comminute (Scudder, 1893)	WhiR	P3r	77
265	L. damnata (Scudder, 1893)	Flor	P2p	77
266	L. cremastorhynchoides (Wickham, 1913)	Flor	P2p	97
267	L. florissantensis (Wickham, 1913)	Flor	P2p	97
268	L. nearctica (Wickham, 1916)	Flor	P2p	100
269	L. primalis (Wickham, 1917)	Flor	P2p	136
270	L. renovata (Wickham, 1916)	Flor	P2p	100
271	Nicentrus curvirostris Legalov, 2018	GreR	P2i-l	70
272	Steganus barrandei Scudder, 1893	RoaM	P2i-l	77
273	Miogeraeus recurrens Wickham, 1916	Flor	P2p	100
274	"Pachybaris" rudis Wickham, 1912	Flor	P2p	96
	Baridini Schoenherr, 1836			
	Baridina Schoenherr, 1836			
275	"Baris" palaeophilus Cockerell, 1920	Bour	P21	137
276	"B." divisa Scudder, 1893	Flor	P2p	77
277	"B." harlani Scudder, 1893	Flor	P2p	77
278	"B." imperfecta Scudder, 1893	Flor	P2p	77
279	"B." naviculare (Foerster, 1891)	Brun	P3r	87
280	Catobaris coenosa Scudder, 1893	Flor	P2p	77
	Eurhinina Lacordaire, 1865			
281	Eurhinus occultus Scudder, 1876	Flor	P2p	77
	Tribe incertae sedis			
282	"Ceutorhynchus" clausus Scudder, 1893	Flor	P2p	77
	Conoderintae Schoenherr, 1833 Conoderini Schoenherr, 1833			
283	Jantarhinus compressus Legalov, Kireitshuk et Nel, 2019	OisJ	P2i	81
	Palaeomallerini Legalov. 2018			
284	Palaeomallerus longirostris Legalov, 2018	GreR	P2i-l	70
	Centorhynchitae Cietel 1848			
	Ceutorhynchini Gistel, 1848			

Table 2. Cont.

No.	Taxon	Locality	Age	Sources
285	"Ceutorhynchus" degravatus Scudder, 1893	RoaM	P2i-l	77
286	"C." eocenicus Cockerell, 1920	Peck	P2i	137
287	C. alekseevi Legalov, 2016	BalJ	P2b	115
288	C. electrinus Legalov, 2016	BalJ	P2b	115
289	C. succinus Legalov, 2013	BalJ	P2b	47
290	"C." blaisdelli Wickham, 1916	Flor	P2p	100
291	"C." compactus Scudder, 1893	Flor	P2p	77
292	"C." duratus Scudder, 1893	Flor	P2p	77
293	"C." irvingi (Scudder, 1893)	Flor	P2p	77
294	"C." fischeri Foerster, 1891	Brun	P3r	87
295	"C." crassirostris Foerster, 1891	Brun	P3r	87
296	"C." obliquus Foerster, 1891	Brun	P3r	87
297	"C." funeratus Heyden et Heyden, 1866	Rott	P3h	85
298	Baltocoeliodes sontagae Legalov et Bukejs, 2018	BalJ	P2b	138
	Cnemogonini Colonnelli, 1979			
299	"Coeliodes" primotinus Scudder, 1893	Flor	P2p	77
	Phytobiini Gistel, 1848			
300	"Ceuthorrhynchus" miegi Theobald, 1937	Klei	Р3	112
	Curculioninae Latreille, 1802 Acalyptini C.G. Thomson, 1859			
301	Jantaronosik nebulosus Legalov, Kirejtshuk et Nel, 2019	OisJ	P2i	81
	Ellescini C.G. Thomson, 1859			
302	Succinostuphlus mroczkowskii Kuska, 1996	Ball	P2b	139
002	=Electrotribus erectosauamata Rheinheimer, 2007	Dulj		122
303	Pachytychius eocenicus Legalov, 2016	BalJ	P2b	115
	Palaeoanoplini Legalov, in print.			
304	Palaeoanoplus horridus Legalov, in print.	BalJ	P2b	140
	Smicronychini Seidlitz, 1891			
305	"Smicronyx" antiquus Foerster, 1891	Brun	P3r	87
	Curculionini Latreille, 1802 Erganiina Pelsue et O'Brien, 2011			
306	Pseudoergania perkovskyi Legalov, 2019	BalJ	P2b	141
	Timolina Pelsue et O'Brien, 2011			
307	Baltocurculio Manukyani Legalov, 2020	BalJ	P2b	71
	Curculionina Latreille, 1802			
308	Menatorhis elegans (Piton, 1940)	Mena	P1sl-	99
309	Curculio havighorstensis Zherikhin, 1995	Havi	tP2i	142
310	C. anicularis (Scudder, 1893)	Flor	P2p	77
311	C. curvirostris (Scudder, 1893)	Flor	P2p	77
312	C. duttoni (Scudder, 1893)	Flor	P2p	77
313	C. extinctus (Wickham, 1912)	Flor	P2p	102
314	C. femoratus (Scudder, 1893)	Flor	P2p	77
315	C. flexirostris (Scudder, 1893)	Flor	P2p	77
316	C. florissantensis (Wickham, 1913)	Flor	P2p	97
317	C. minusculoides (Wickham, 1911)	Flor	P2p	76
318	C. minusculus (Scudder, 1893)	Flor	P2p	77
319	C. restrictus (Scudder, 1893)	Flor	P2p	77
320	"C." beeklyi (Cockerell, 1918)	Flor	P2p	143
321	Numitor claviger Scudder, 1893	Flor	P2p	77

No.	Taxon	Locality	Age	Sources
	Anthonomini C.G. Thomson, 1859			
322	"Anthonomus" sunchalensis Cockerell, 1925	Sunc	P1d	134
323	"A." soporus Scudder, 1890	GreR, RoaM,	P2i-l	78
		WhiR GreR	P3r	
		Flor		
324	"A." revictus Scudder, 1893	Flor	P2i-l	77
325	"A." concussus Scudder, 1893	Flor	P2p	77
326	"A." debilatus Scudder, 1893	Flor	P2p	77
327	"A." defossus Scudder, 1893	Flor	P2p	77
328	"A." evigilatus Scudder, 1893	Flor	P2p	77
329	"A." primordius Scudder, 1893	Flor	P2p	77
330	"A." rohweri Wickham, 1912	Flor	P2p	96
331	Coccotorus principalis Scudder, 1893	Flor	P2p	77
332	"C." requiescens Scudder, 1893	Flor	P2p	77
333	Cremastorhynchus stabilis Scudder, 1893		P2p	77
334	Smicrorhynchus Macgeei Scudder, 1893		P2p	77
	Eugnomini Lacordaire, 1863			
335	Archaeoeugnomus balticus Legalov, 2016	BalJ	P2b	115
336	Anthonoeugnomus barsevskisi Legalov, 2020	BalJ	P2b	71
337	Mazurieugnomus pilosus Legalov, 2020	BalJ	P2b	71
338	Groehnius electrum Bukejs et Legalov, 2019	BalJ	P2b	144
339	G. parvum Legalov, 2020	BalJ	P2b	71
	Rhamphini Rafinesque, 1815 Palaeorhamphina Legalov, 2016			
340	Palaeorhamphus damzeni Legalov, 2020	BalJ	P2b	71
341	P. eichmanni Legalov, 2020	BalJ	P2b	71
342	P. primitivus Legalov, 2016	BalJ	P2b	115
	Rhamphina Rafinesque, 1815			
343	Orchestes tatjanae Legalov, 2016	BalJ	P2b	115
344	"O." languidulus Scudder, 1893	Flor	P2p	77
345	Tachyerges hyperoche Legalov et Poinar, 2020	PolJ	P2b	91
	Tychiini C.G. Thomson, 1859 Tychiina C.G. Thomson, 1859			
346	Eocenesibinia prussica Legalov, 2016	BalJ	P2b	115
347	"Sibinia" whitneyi (Scudder, 1893)	Flor	P2p	77
348	"S." melancholicus (Oustalet, 1874)	Aix	P3h	110
349	"Tychius" evolatus Scudder, 1893	Flor	P2p	77
350	"T." ferox Wickham, 1917	Flor	P2p	136
351	"T." secretus Scudder, 1893	Flor	P2p	77
352	"T." latus Foerster, 1891	Brun	P3r	87
353	"T." manderstjernai Heyden et Heyden, 1866	Rott	P3h	85
354	Macrorhoptus intutus Scudder, 1893	Flor	P2p	77
	Camarotini Schoenherr, 1833 Prionomerina Lacordaire, 1863			
355	Paleodontopus smirnovae Legalov, 2020	Ball	P2b	71
356	Masteutes rupis Scudder, 1893	Flor	P2p	77
	Curculioninae incertae sedis			
357	"Centrinus" longipes Piton, 1940	Mena	P1sl-t	99
358	"Gymnetron" lecontei Scudder, 1878	GreR	P2i-l	74
359	"G." antecurrens Scudder, 1893	Flor RovJ	P2p	77
360	"Protoceletes" hirtus Nazarenko et Perkovsky, 2016	-	P2b	145

INO.	Taxon	Locality	Age	Source
	Cyclominae Schoenherr, 1826 Listroderini LeConte, 1876 Palaechthina Brinck, 1948			
361	"Listronotus" muratus Scudder, 1890	GreR	P2i-l	78
	Listroderina LeConte, 1876			
362	"Listroderes" differens (Wickham 1912)	Flor	P2n	102
363	"L." eviscerates (Scudder, 1893)	Flor	P2p	77
	Entiminae Schoenherr, 1823 Entimintae Schoenherr, 1823 Tropiphorini Marseul, 1863			
364	Primocentron wickhami Legalov, 2018	GreR	P2i-l	69
365	Limalophus poinari Legalov, 2020	PolJ	P2b	71
366	Scuccinalophus attenboroughi Legalov, 2016	Ball	P2b	90
367	Limalophus compositus Scudder, 1893	GreR, WhiR	P2i-l,	77
		GreR	P3r	
368	L. contractus Scudder, 1893	WhiR	P2i-l	77
369	"L." receptus Scudder, 1893	WhiR	P3r	77
370	"Coniatus" refractus Scudder, 1893	RoaM	P3r	77
371	"Cryptorhynchus" durus Scudder, 1893	GreR	P2i-l	77
372	"Lenvrus" evictus Scudder, 1893	GreR, RoaM	P2 i-l	77
373	"Sitona" paginarum Scudder, 1893	RoaM	P2 i-1	77
374	enerm pugnim un cedader, 1070	RoaM GreR		
375	"Otiorhunchus" subteractus Scudder 1893	RoaM	P2 i-l	77
376	"Onhrvastes" grandis Scudder 1893	Flor	P2 i-l	77
377	" Ω " compactus Scudder 1878	Flor	P2 i-l	77
378	"O" netrarum Scudder 1893	Flor	P2 i_l	77
379	"O" championi Wickham 1912	Flor	P2n	102
380	Geralophus antiquarius Scudder 1893	Flor	P2n	77
381	C fossicius Scudder, 1893	Flor	P2n	77
382	G. Jassatus Scudder, 1893	Flor	P2n	77
383	C. accultus Scudder, 1893	Flor	P2p	77
384	C. numicaus Scuddor, 1893	Flor	12p P2p	77
304	G. puniteus Scudder, 1893	Flor	12p D2p	77
295	G. repositus Scudder, 1895	Flor	12p	77
200	G. retrius Scudder, 1893	Flor	12p	77
200	G. suxdowi Wiskham 1011	FIOR	r2p D2m	76
200	G. scuudert Wickham, 1911	AIX	r2p	70
300	Tavillas Grand Ler 1893		r2p	77
309	Plantidares carculatus (Hoor 1856)	Aix	r2p D2h	116
390	-Dhytonomy amagua Quatalat 1874	AIX	r 3ft	140
	=Phytonomus unnosus Oustalet, 1874			110
201	"Ph " heavi (Cormor 1840)		D2h	110
391	- Himmonhimus Mathemani Nicolog, 1901		ron	147
	= nipportatus viaineroni inicolas, 1891			140
	=rupportutus simuis Nicolas, 1891	A :		140
	=Hippominus intermetius Nicolas, 1891	Aix		148
	= nipporninus inurioni INICOlas, 1891	AIX		14ð 140
202	= ripporninus pertonii (Nicolas, 1891		D21	148
392 202	Kn. schaumi (Heer, 1856)		P3h	146
393	Hipporninus orevis Giebel, 1856		P3h	149
	Entimina Schoenherr, 1823 Entimina Schoenherr, 1823			
	Entimina Schoenneri, 1025			

No.	Taxon	Locality	Age	Sources
	Eudiagogini LeConte, 1874			
395	Eudiagogus vossi Legalov, 2018	GreR	P2i-l	69
396	Tolstonosik oisensis Legalov, Kireitshuk et Nel, 2019	OisI	P2i	81
397	Oligocryntus sectus (Scudder, 1893)	Flor	P2p	77
398	Eudomus ninguis Scudder, 1893	Flor	P2p	77
399	E. robustus Scudder, 1893	Flor	P2p	77
	Hyperitae Lacordaire, 1863 Hyperini Lacordaire, 1863		- - P	
	Cepurina Capiomont, 1867			
400	Palaeophelypera kuscheli Legalov, 2013	BalJ	P2b	47
401	"Geralophus" discessus Scudder, 1893	Flor	P2p	77
402	Hyperites nadezhkini Zherikhin, 1989	Biam	P2p	150
	Otiorhynchitae Schoenherr, 1826 Hormorini Horn, 1876			
403	"Hormorus" saxorum Scudder, 1893	Flor	P2p	77
	Cyphiceritae Lacordaire, 1863 Sciaphilini Sharp, 1891			
404	"Mitostylus" obdurefactus (Scudder, 1893)	RoaM	P2i-l	77
405	"M." seculorum (Scudder, 1890)	GreR	P2i-l	78
406	"M." abacus (Scudder, 1893)	WhiR	P3r	77
	Trachyphloeini Lacordaire, 1863 Pseudocneorrhinina Kono, 1930			
407	Archaeocallirhopalus alekseevi Legalov et Bukejs, 2015	BalJ	P2b	151
408	A. larssoni Legalov, 2013	BalJ	P2b	47
	Polydrusitae Schoenherr, 1823 Sitonini Gistel, 1856			
409	Sitonitellus egregius (Haupt, 1956)	Geis	P21	152
410	Sitona lata Theobald, 1937	Klei	P3	112
411	"S." venustulus Heyden et Heyden, 1866	Rott	P3h	85
	Anypotactini Champion, 1911			
412	Paonaupactus gracilis Legalov, Nazarenko et Perkovsky, 2019	RovJ	P2b	117
413	P. katyae Legalov, Nazarenko and Perkovsky, 2019	RovJ	P2b	117
414	P. microphthalmus (Zherikhin, 1971)	BalJ	P2b	79
415	P. sitonitoides Voss, 1953	BalJ,	P2b	80
	=Polydrosus scheelei Voss, 1953	ScanJ,		80
	=Pullobius cephalotes Voss, 1972	Poll		105
	=Otiorhynchus pellucidipes Voss, 1972	,		105
416	P. sobrinus (Voss, 1972)	ScanJ,	P2b	105
417	P. viridis (Wanat et Borowiec, 1986)	BalJ, PolJ	P2b	153
	Naupactini Gistel, 1856			
418	"Hipporhinus" ventricosus (Piton, 1940)	Mena	P1sl-t	99
419	Arostronsis groepni Yunakov et Kireitshuk 2011	Ball	P2h	154
420	A gusakavi Legalov 2020	Ball	P2h	71
421	A nerkovskuj Bukeis et Legalov 2019	RovI	P2h	155
422	"Curtomon" subterraneus Wickham 1011	Flor	P2n	76
422	"C" floriecontencie Wickham 1014	Flor	1 2p P2n	156
740	\sim $\mu\nu\nu$	1.101	14P	100

No.	Taxon	Locality	Age	Sources		
	Geonemini Gistel, 1856		8-			
424	"Enissen " dileman (Canddan 1902)	CreP	DO: 1	77		
424	"E " affaceria (Scudder, 1876)	GreR	F 21-1 D2: 1	77		
425	E. effossus (Scudder, 1876)	Grek	P21-1 D2: 1	73		
426	E. eruututus (Scudder, 1893)	Whik CmP	P21-1 D2: 1	77		
427	<i>E. examinis</i> (Scudder, 1876)	Grek	P21-1 D2: 1	73		
420	E. excissus (Scudder, 1893)	CroP	F 21-1 D2: 1	77		
429	E. <i>Journarum</i> (Scudder, 1893)	Grek	P21-1 D2: 1	77		
430	<i>E. suxutuus</i> (Scudder, 1876)	Grek	P21-1 D2: 1	73		
431	E. subterraneus (Scudder, 1893)	Grek	P21-1 D2; 1	11		
432	"E." terrosus (Scudder, 1878)	RoaM, WhiR	P3r	74		
433	"E." evigoratus (Scudder, 1893)	WhiR	P3r	77		
434	Evopes veneratus Scudder, 1893	Flor	P2p	77		
435	E. occubatus Scudder, 1893	Flor	P2p	77		
436	"Lachnopus" recuperatus Scudder, 1893	Flor	P2p	77		
437	"Omileus" evanidus Scudder, 1893	Flor	P2p	77		
Psallidiini Lacordaire, 1863						
438	Trigonoscuta inventa Scudder, 1893	Flor	P2p	77		
	Eustylini Lacordaire, 1863					
439	Pseudophaops perditus (Scudder, 1876)	GreR	P2i-l	73		
	Polydrusini Schoenherr, 1823					
440	Polydrusus archetypus Zherikhin, 1971	Ball	P2b	79		
441	P. zherikhini Legalov, 2020	Ball	P2b	71		
442	Archaeosciaphilus Marshalli Legalov, 2012	BalJ	P2b	82		
	Brachyderini Schoenherr, 1826					
443	Palaeocrassirhinus messelensis Rheinheimer, 2007	Mess	P21	102		
444	<i>P. rugosithorax</i> Rheinheimer, 2007	Mess	P21	102		
445	Palaeocneorhinus messelensis Rheinheimer, 2007	Mess	P21	102		
446	"Brachyderes" rugosus (Deichmueller, 1881)	Kuts	P2b	126		
447	Brachymycterus curculionoides Heyden et Heyden, 1866	Rott	P3h	85		
	=Euruchirus induratus Heyden et Heyden, 1866			85		
	= <i>Rhinocullus improbus</i> Heyden et Heyden, 1866			85		
	=Varus ignotus Schlechtendal, 1894			89		
	Tanymecini Lacordaire, 1863					
	Tainophthalmina Desbrochers des Loges	, 1873				
448	Protainophthalmus asperulus (Heer, 1856)	Aix	P3h	146		
	=Brachyderes aquisextanus Oustalet, 1874			110		
	=Brachyderes longipes Oustalet, 1874			110		
	= Cleonus Marcelli Oustalet, 1874			110		
449	P. margarum (Germar, 1849)	Aix	P3h	147		
	=Sitona antiqua Giebel. 1856			149		
450	P. punctulatus (Nicolas, 1891)	Aix	P3h	148		
451	P. regularis (Nicolas, 1891)	Aix	P3h	148		
452	P. thaisi (Nicolas, 1891)	Aix	P3h	148		
453	P. tuberculatus (Nicolas, 1891)	Aix	P3h	148		
	Pandeleteina Pierce, 1913					
454	Pandeleteinus nudus Wickham, 1917	Flor	P2p	138		
	Tribe incertae sedis		1			

Table 2. Cont.

No.	Taxon	Locality	Age	Sources
455	"Sitona" exitiorum Scudder, 1893	Flor	P3r	77
456	"Strophosomus" marcelini Theobald, 1937	Cela	P2p	112
457	"Sciaphilus" nigrescens Theobald, 1937	Cela	P2p	112
458	"?Argoptochus" incertus Theobard, 1937	Cela	P2p	112
459	"Bagous" atavus Oustalet, 1870	Core	P3r	119
460	"Brachycerus" exilis Germar, 1837	Aix	P3h	157
461	"Phytonomus" firmus Heer, 1856	Aix	P3h	146
	Curculionidae incertae sedis			
462	Otiorhynchites williamsi Cockerell, 1943	Mirs	P1	158
463	<i>O. aterrimus</i> Cockerell, 1925	Sunc	P1d	134
464	O. crassus Cockerell et Wagner, 1936	Sunc	P1d	159
465	O. densepunctatus Haupt, 1956	Geis	P21	152
466	O. fossilis Scudder, 1893	GreR	P2i-l	77
467	O. commutatus Scudder, 1893	RoaM	P2i-l	77
468	O tusoni Scudder 1893	RoaM	P2i-l	77
469	O absentizuus Scudder 1893	Flor	P2n	77
402	O florissantensis Wickham 1911	Flor	$\frac{12p}{P2n}$	76
470	O zviloorianus Wickham 1911	Flor	12p	160
471	Curculionites taxodii Hoor 1870	FIOI	rzp pid	160
472	Curcultonites tuxouli Heer, 1870	Star	P10	101
473	C. angustior Cockerell et Wagner, 1936	Sunc	Pld	159
474	C. <i>episticius</i> Cockerell et Wagner, 1936	Sunc	Pld	159
475	C. eustictus Cockerell et Wagner, 1936	Sunc	Pld	159
476	C. harringtoni Cockerell, 1925	Sunc	P1d	134
477	C. jujuensis Cockerell, 1925	Sunc	P1d	134
478	C. latiusculus Cockerell et Wagner, 1936	Sunc	P1d	159
479	C. magdalinus Cockerell et Wagner, 1936	Sunc	P1d	159
480	C. megastictus Cockerell et Wagner, 1936	Sunc	P1d	159
481	C. microstictus Cockerell et Wagner, 1936	Sunc	P1d	159
482	C. parastictus Cockerell et Wagner, 1936	Sunc	P1d	159
483	C. stebingeri Cockerell, 1926	Sunc	P1d	131
484	C. sunchalicus Cockerell et Wagner, 1936	Sunc	P1d	159
485	C. wielandi Cockerell, 1925	Sunc	P1d	134
486	C. marginatus Giebel, 1856	Corf	P21	149
487	C. <i>punctillatus</i> Haupt, 1950	Geis	P21	124
488	C hartonicus Cockerell 1920	Bour	P21	162
489	C hrenthiformis Cockerell 1920	Bour	P21	162
490	C ontinus Cockerell 1920	Bour	P21	162
490	C. oratus Oustalat 1870	Coro	P2r	110
491	C. marcaus Hoor, 1856	Aix	1 J1 D2h	119
492	Calandritas defessus Souddor 1802	PopM	D2:1	77
493	Culturariles dejessus Sculder, 1895	KUalvi C - D D - M	F 21-1	77
494	C. cineratius Scudder, 1893	Grek, KoaM	P21-1	11
495	C. <i>hindsi</i> Cockerell, 1917	Flor	P2p	
496	C. ursorum Cockerell, 1918	Flor	P2p	
497	Ophryastites gardneri Cockerell, 1920	Bour	P21	
498	O. absconsus Scudder, 1893	Flor	P2p	77
499	O. cinereus Scudder, 1893	Flor	P2p	77
500	O. digressus Scudder, 1893	Flor	P2p	77
501	O. hendersoni Cockerell, 1917	Flor	P2p	
502	O. miocenus Wickham, 1912	Flor	P2p	
503	O. dispertitus Scudder, 1893	WhiR	P3r	77
504	O. heribaudi Piton, 1936	PuStI	P3	
505	Mononychites punctivennis Haupt, 1956	Geis	P21	
506	M. rotundatus Haupt 1956	Geis	P21	
507	Suntomostulus rudis Souddor 1893	RoaM	P2i-1	
508	"S" fortis Cockerell 1000	CroR	P2i-1	
500	5. joins Cockeren, 1707	Gien	ı ∠1 [−] 1	

Table 2. Cont.

No.	Taxon	Locality	Age	Sources
510	"Otiorhynchus" tumbae Scudder, 1890	GreR	P2i-l	
511	"Pachylobius" depraedatus Scudder, 1893	RoaM	P2i-l	77
512	"Pachylobius" compressus Scudder, 1893	GreR,RoaM	P2i-l	77
513	"Phyllobius" antecessor Scudder, 1893	RoaM	P2i-l	77
514	"Rhyssomatus" tabescens Scudder, 1893	WhiR	P3r	77
515	"Scythropus" somniculosus Scudder, 1893	WhiR	P3r	77
516	"Phyllobius" avus Scudder, 1893	RoaM	P2i-l	77
517	"Phyllobius" carcerarius Scudder, 1893	RoaM	P2i-l	77
518	"Pachylobius" yungi Piton, 1936	Gaub	P3	164
519	"Tanymecus" gautieri Piton, 1936	Gaub	P3	164
520	"Pachylobius" martyi Piton et Theobald, 1937	PuStI	P3	166
521	"Lachnopus" dilatatus Theobald, 1937	Klei	P3	166
522	"Cleonus" foersteri Theobald, 1937	Klei	P3	112
523	"Lachnopus" humatus Scudder, 1893	Flor	P2p	77
524	"Sphenophorus" elegans Theobald, 1935	Aix	P3h	130
	Platypodidae Shuckard, 1840			
	Tesserocerinae Strohmeyer, 1914			
	Tesserocerini Strohmeyer, 1914			
525	Eoplatypus jordali Peris, Solórzano Kraemer et Cognato,	Ball	P2b	167
525	2017	Dalj	1 20 Del	107
526	Cenocephalus aniskini Legalov, 2020	Balj	P2b	71
	Scolytidae Latreille, 1804			
	Hylesininae Erichson, 1836			
	HylastiniLeConte, 1876			
527	Hylastes aterites Schedl, 1947	BalJ	P2b	168
528	"H." americanus Wickham, 1913	Flor	P2b	97
529	Hylurgops corpulentus Schedl, 1947	BalJ	P2b	168
530	H. dubius (Hagedorn, 1906)	BalJ	P2b	169
531	H. electrinus (Germar, 1813)	BalJ	P2b	170
532	H. granulatus (Schedl, 1947)	BalJ	P2b	168
533	H. pilosellus Schedl, 1947	BalJ	P2b	168
534	H. schellwieni (Hagedorn, 1906)	BalJ	P2b	168
535	H. tuberculatus Schedl, 1947	BalJ	P2b	168
536	H. piger Wickham, 1913	Flor	P2p	97
	HylesininiErichson, 1836			
537	Hylesinus extractus Scudder, 1893	Flor	P2p	77
538	H. hydropicus (Wickham, 1916)	Flor	P2p	101
539	H. neli Petrov et Zherikhin. 2004	Aix	P3h	171
540	"H." facilis Heer, 1856	Aix	P3h	146
	Hylurgini Gistel, 1848			
541	Xulechinus mozolevskae Petrov et Perkovsky, 2008	RovI	P2b	172
542	Klesovia vubescens Petrov et Perkovsky, 2000	RovI	P2b	173
543	Xylechinites anceys Hagedorn, 1906	Ball	P2b	169
	Phloosinini Nuoselin 1012	,		
544		D - 11	DOL	1/0
544 545	Philocosinus assimus (Scheal, 1947) Dh. hyunui (Hacadama 1006)	Dalj	г 20 D0L	100
545	Th. VIUNIN (Hagedorn, 1906)	Daij	r 20 Doh	109
040 547	Ph. regimontunus (Hagedorn, 1906)	Daij	1°20 D01-	109
047 E49	Ph. reni (Hagedorn, 1906)	Dalj	1°20 D01-	109
548 540	Ph. robustus (Scheal, 1947) Dh_{1} commissions (Scheal, 1947)	Dalj	1°20 D01-	100
549 550	Pn. sexspinosus (Schedl, 1947)	Balj	P2b	168
55U 551	Ph. tubercuiter (Scheal, 1947)	Balj	P2b	168
221	Pn. wolffi (Scheal, 1947)	вац	P2b	168

25	of	51

No.	Taxon	Locality	Age	Sources
	Phloeotribini Chapuis, 1869			
552	Phloeotribus zimmermani Wickham, 1916	Flor	P2p	101
	Polygraphini Chapuis, 1869			
553	Carphoborus keilbachi (Schedl, 1947)	BalJ	P2b	168
554	C. posticus (Schedl, 1947)	BalJ	P2b	168
	Scolytinae Latreille, 1804 DryocoetiniLindemann, 1877			
555	Dryocoetes diluvialis (Wickham, 1916)	GreR BalJ	P2i-l P2b	101
556	Taphramites gnathotrichus Schedl, 1947	RovJ	P2b	168
557	T. rovnoensis Petrov et Perkovsky, 2008	BalJ	P2b	172
558	Taphrorychus immaturatus Schedl, 1947			168
	Incertae sedis			
559	"Dryocoetes" carbonarius Scudder, 1878	GreR	P2i-l	74
560	"Trypodendron" impressus Scudder, 1876	GreR	P2i-l	73
561	"Polygraphus" wortheni Scudder, 1893	RoaM	P2i-l	77
562	Xyleborites longipennis Wickham, 1913	Flor	P2p	97
563	Duartia pulchella Martins-Neto, 2001	Fons	P2p	174
	Curculionoidea incertae sedis			
564	Thryogenosoma cariniger (Motschulsky, 1857)	BalJ	P2b	175

Table 2. Con	nt.
--------------	-----

Abbreviations for localities and ages are given in Material and methods.

3.1. Paleocene Weevil Fauna

The weevil fauna of the Paleocene is the poorest among the Paleogene faunas. This is primarily due to the small number of Paleocene localities, as well as the lack of Paleocene amber with Curculionoidea. Curculionoid beetles were found in five localities, including France, Svalbard (Denmark), south of the Russian Far East, China (Hong Kong) and Argentina (Figure 2). Three of these localities are of early Paleocene age (Arkhara, Starostin and Sunchal) and one of them is late Paleocene (Menat). The age of Mirs Bay from Hong Kong, the Ping Chau Formation (China) is assumed to be Paleocene, however the stage is not specified [176].

Twenty seven species were described from the Paleocene (Figure 3). Additionally, 18 species were known from Starostin, Sunchal and Mirs based on isolated elytra, which are assigned to recent genera or placed in the formal genera *Otiorhynchites* and *Curculionites* that were established for elytra [131,134,158,159,161]. "*Cossonus*" devoratus and "Anthonomus" sunchalensis from the early Paleocene of Argentina are not only the earliest findings of the tribes Cossonini and Anthinomini but also the first appearance of the subfamilies Cossoninae and Curculioninae in the fossil record. The only early Paleocene beetle represented by an almost complete impression is *Archaralites zherichini* of the subfamily Molytinae (earliest record of this subfamily) from the Danian of Outer Manchuria.

Eight species represented as complete impressions are known from Selandian-Thanetian of France. The families Ithyceridae, Rhynchitidae, Attelabidae, Brentidae and Curculionidae are recorded. Ithyceridae is represented by one species of the subfamily Chilecarinae. This is the only representative of the family in the Paleocene and the last find in the Eastern Hemisphere. Records of Ithyceridae are common in Cretaceous of the Northern Hemisphere [29,30,48,49,51,177]. One species, the genus of which requires clarification, is from the subfamily Rhynchitinae of the family Rhynchitidae. The families Attelabidae and Brentidae are each represented by one species of the recent tribe Attelabini and the extinct species of the recent genus *Perapion* from the tribe Aplemonini (earliest record, 61.0–59.0 Ma).

Four species belong to the family Curculionidae. One species of the recent genus *Lixus* is from the subfamily Lixinae (earliest record, 61.0–59.0 Ma). Two species of the subfamily Curculioninae, one of which belongs to the extinct genus of the tribe Curculionini (earliest record, 61.0–59.0 Ma), and the systematic position of the second (*"Centrinus" longipes*) in the subfamily require clarification. One species, *"Hipporhinus" ventricosus* with an unclear generic position, is in the tribe Naupactini from the diverse subfamily Entiminae (earliest record, 61.0–59.0 Ma). Representatives of other families were not found in the Paleocene.

Most of the forms represented in the Paleocene belong to widespread groups (Attelabini, Aplemonini (Perapion), Lixini (Lixus), Cossonini (Cossonus), Curculionini, Anthonomini (Anthonomus)), are now found in the recent fauna. Two species show characters typical of the Paleocene fauna of Europe. Petropsis rostratus somehow links the fauna of Menat with recent relict fauna of the Chilean-Patagonian and Australian regions, where modern representatives of the tribe Chilecarini live [178,179]. The discovery of species of the tribe Naupactini similar to Neotropical forms provides additional evidence for the faunogenetic relationships of the Paleocene Europe, with Central and South America. The ecological composition of these beetles is homogeneous. Mostly they are forest forms. Petropsis rostratus, like the recent Ithyceridae of the subfamily Chilecarinae, could be associated with gymnosperms from the family Cupressaceae [178,179], which were found at the site [99]. "Phytonomus" *punctatus* (Attelabini) folded tubes from angiosperm leaves, for example, from oak known from the deposit [99], as recent representatives of this tribe [180]. Archaralites zherichini and "Cossonus" devoratus developed in wood. Menatorhis elegans, like modern Curculionini, developed in flower buds or fruits of angiosperms [181], for example, on oak, several species that are known from this locality [99]. "Anthonomus" sunchalensis could be connected with trees or shrubs. Two species were very probably associated with herbaceous vegetation, the recent species of the genus *Lixus* usually develop on herbaceous plants and, as an exception, with shrubby plants [182]. Lixus ligniticus could be associated with Atriplex (Amaranthaceae). Perapion menatensis, as well as recent representatives of the genus, probably developed on Polygonaceae [183]. Polygonaceae are not known from Menat but pollen of *Polygonum* was recorded in the late Paleocene of France [184]. Curculionoidea of Menat shows the presence of coniferous-deciduous forest and herbaceous near-water vegetation.

3.2. Eocene Weevil Fauna

As Many as 441 species of weevil-shaped beetles were described from Eocene deposits (Figure 4), which originated from 24 localities. Undescribed forms are known from Quilchena (Canada) [185], Romanian amber [186], Huitrera Formation (Argentina) [187] and Bitterfeld amber.

3.2.1. Review of Curculionoidea Families in the Eocene

Nemonychidae in the Eocene

Three species of the family Nemonychidae from the extinct subfamily Cretonemonychinae and recent Cimberidinae were found in the Eocene. The subfamily Cretonemonychinae is also known in the early and late Cretaceous [29,30,177].

Anthribidae in the Eocene

Nearly thirty species of Anthribidae were described from the early, middle and late Eocene of America and Europe. The subfamily Anthribinae is most represented. Twenty seven species from eight tribes are known in this subfamily from the Eocene. Twelve species from three genera of the tribes Mecocerini, Allandrini, Oiserhinini and Zygaenodini were described from European amber and 15 species from seven genera of the tribes Cratoparini, Anthribini, Ecelonerini and Tropiderini from North American localities. There are no common genera and tribes between the American and European deposits. The subfamily Choraginae is represented by two species from two tribes. "*Choragus*" fictilis

of the tribe Choragini was described from the Eocene of the United States and *Eduardoxenus unicus* of the tribe Valenfriesiini from Rovno amber.

Ithyceridae in the Eocene

Two American genera *Eoceneithycerus* and *Ithyceroides* close to the recent American genus *Ithycerus* were found in North America.

Belidae in the Eocene

Nine species from the subfamily Oxycoryninae belong to the family Belidae. Several species of the tribe Oxycraspedini were found in Baltic amber, one of which was described. The tribe Metrioxenini is found both in American deposits and the middle Eocene amber. The extinct tribe Palaeorhopalotriini, close to the recent Central American tribe Allocorynin, was found in the Eocene of France.

Rhynchitidae in the Eocene

The family Rhynchitidae is found in American and European deposits and is represented by 34 described species. Five species of the genus *Baltocar* of the tribe Sanyrevilleini from the subfamily Sayrevilleinae are known only from Baltic amber. The subfamily Rhynchitinae is represented by species of the tribes Auletini, Rhynchitini and Eugnamptini. Thirteen species from subtribes Auletina, Pseudauletina and Pseudomesauletina were described in the tribe Auletini. Most species (nine) are known from the terminal Eocene of Florissant. Finds of Auletini are rare in the Green River deposits as well as in Baltic and Rovno amber. The tribe Rhynchitini is represented by 12 species, with nine of them recorded in the late Eocene of the United States and their affiliation to the subtribes has not yet been established. Two species from Baltic amber belong to the archaic subtribes Temnocerina and Perrhynchitina. One genus with three species of the tribe Eugnamptini is described from the Florissant beds.

Attelabidae in the Eocene

One or two extinct genera, *Palaeoalatorostrum* of the subtribe Attelabini from the tribe Attelabini and *Paleoclinolabus* of the subtribe Clinolabina from the tribe Euscelini, belonging to the subfamily Attelabinae of the Attelabidae, are known from the middle Eocene of Germany and the Late Eocene of the United States.

Brentidae in the Eocene

The family Brentidae is represented in the Eocene by three subfamilies, the Apioninae, Nanophyinae and Brentinae. Thirty six species belong to this family. The subfamily Apioninae is the most species-rich. The primitive tribes Tanaini, Rhadinocybini, Notapionini and Palaeotanaini each have one monotypic genus in the early Eocene of Europe and Asia, as well as in the end of the middle Eocene of Europe. The supertribes Aspidapiitae and Apionitae include representatives of recent (*Pseudaspidapion, Melanapion, Conapium, Perapion, Apionion* and *Toxorhynchus*) and extinct genera (*Baltoapion, Succinapion, Baltoconapium, Electrapion*). A third of the species of the latter groups belong to the extinct genera and two-thirds to the recent ones. Both known tribes (Nanophyini and Corimaliini) of the subfamily Nanophyinae were found in the Eocene. Three extinct genera of the Nanophyini were described from the middle Eocene of the USA and Baltic amber. One species placed in the genus *Corimalia* is known from the middle Eocene of France. The subfamily Brentinae is recorded only in the middle Eocene of Germany, where the extinct genus *Eckfelderolispa* with three species and extinct representative of the recent genus *Cerobates*, belonging to the tribe Trachelizini, were described.

Curculionidae in the Eocene

The Curculionidae is the Main group of Eocene Curculionoidea numbering 290 described species. All known subfamilies (Erirhininae, Molytinae, Lixinae, Dryophthorinae, Cossoninae, Conoderinae, Curculioninae, Cyclominae and Entiminae) are represented in the Eocene (Figure 5).

The most primitive subfamily Erirhininae is represented by species from the tribes Erirhinini and Dorytomini. Several species from different genera of the former tribe were recorded in the early Eocene of England, the middle and the late Eocene of the USA. The genus *Dorytomus* from the Dorytomini includes nine extinct species from Baltic and Rovno amber, as well as species from the terminal Eocene of North America.

The subfamily Molytinae is one of the most diverse groups of Curculionidae [39,188]. The tribes Molytini, Plinthini, Acicnemidini, Magdalini, Cleogonini, Sciabregmini, Camptorhinini, Aedemonini and Cryptorhynchini were found in Eocene deposits. Two extinct genera, Furhylobius—with one species from the early Eocene of Denmark—and Archaeoheilus—with five species from the early-middle and terminal Eocene of the USA—belong to the tribe Molytini. One species of the recent genus Leiosoma of the tribe Plinthini was described from Baltic amber. One extinct genus Electrotribus of the tribe Acicnemidini is known from Baltic amber, where its species are one of the most common Curculionidae. In other Eocene localities, neither the tribe Acicnemidini, nor this genus were found. "Magdalis" sedimentorum of the tribe Magdalini is recorded from the Eocene of the United States. The American tribe Cleogonini is represented in the Eocene of the United States by two species of the extinct genus *Rhysosternum* and one species of the genus *Conotrachelus*. The extinct tribe Sciabregmini with one genus is known from three species, one from the early Eocene of France and two from the early-middle Eocene of North America. Two fossil genera from the early Eocene of England belong to the tribe Camptorhinini. The Afrotropical tribe Aedemonini was recently discovered in Baltic amber. Eleven species from six genera (five of which are extinct) of the tribe Cryptorhynchini are known from the Eocene.

The subfamily Lixinae is represented in the Eocene by only the tribe Cleonini. The extinct genus *Eocleonus* with one species and five species formally placed in the genus *Cleonus* were described from the late Eocene of the United States.

Eleven Eocene species belong to the subfamily Dryophthorinae. Most species (seven) are from the tribes Stromboscerini and Dryophthorini living in the forest litter. The former tribe is noted in Baltic and Rovno amber and the latter is in early Eocene Oise amber and late Eocene Florissant deposits. Four species of the tribe Sphenophorini were described from the late Eocene of the United States.

The subfamily Cossoninae is represented by the tribe Dryotribini in middle Eocene amber and Cossonini in early-middle and late Eocene deposits of the United States.

The diverse subfamily Conoderinae is divided into four supertribes [40], three of which are found in Eocene. Thirty species belong to the supertribe Bariditae of which twenty nine were described from early-middle and late Eocene of the USA and one from the middle Eocene of England. Most North American species belong to the subtribe Coelonertina of the tribe Apostasimerini. They were described both in recent (*Geraeus, Pachybaris, Nicentrus*) and extinct (*Miogeraeus, Lithogeraeus, Steganus*) genera. Six species belong to the tribe Baridini. These are four representatives of the recent genus *Baris* and one of the extinct genus *Catobaris* (Baridina), as well as one species of the recent genus *Eurhinus* (Eurhinina). Two monotypic extinct genera of the recent tribe Conoderini and the extinct tribe Palaeomallerini are from the early Eocene of France and the early-middle Eocene of the United States belong to the tribe Cuetorhynchitae is represented by ten species of the tribe Cuetorhynchini and one species of the tribe Cnemogonini, which was noted in the late Eocene of the United States. Two genera, the recent genus *Ceutorhynchus* Marked from the early to late Eocene of Europe and the USA and extinct *Baltocoeliodes* from Baltic amber, belong to the tribe Ceutorhynchini.

The subfamily Curculioninae is the second largest group by species of Eocene Curculionidae. Nine tribes with 53 species are known from the Eocene. The tribe Acalyptini is represented by an extinct monotypic genus in early Eocene Oise amber. Two species from Baltic amber belong to the tribe Ellescini. The monotypic tribe Palaeoanoplini is known only from the middle Eocene of Europe. Fifteen species were described in the tribe Curculionini. Representatives of the subtribes Erganiina and Timolina are found only in Baltic amber. The most common group in the modern fauna on all continents is the subtribe Curculionina. In the Eocene, all (without *Curculio havighorstensis*) species of this subtribe were described from the terminal Eocene of the USA and one species from the early Eocene of Germany. The situation is similar with the tribe Anthonomini. All Eocene species of this tribe are known only from North America. The tribe Eugnomini is represented by five species from four genera found in Baltic amber. The extinct subtribe Palaeorhamphina with three species from Baltic amber and the recent subtribe Rhamphina with species of the USA belong to the tribe Rhamphini. The tribe Tychiini is noted in Baltic amber and the late Eocene of the USA, where it is represented by five species from the recent genera *Sibinia, Tychius, Macrorhoptus* and the extinct genus *Eocenesibinia*. The tribe Camarotini is noted in the middle Eocene of Europe and the late Eocene of North America.

The subfamily Cyclominae is known only from the Eocene of the USA, where species of the recent genera Listronotus and Listroderes were described. Бицыерlace of the numberrous species among the Eocene Curculionidae are in the subfamily Entiminae. Ninety species were described from the tribes Tropiphorini, Entimini, Eudiagogini, Hyperini, Hormorini, Sciaphilini, Trachyphloeini, Sitonini, Anypotactini, Naupactini, Geonemini, Psallidiini, Eustylini, Polydrusini, Brachyderini and Tanymecini. Twenty four species belong to the tribe Tropiphorini. All but one representative of this tribe were found in the Eocene of North America and only one species of the genus *Limalophus* has recently been described from middle Eocene Baltic (Polish) amber. The Neotropical tribe Entimini is known from the early-middle Eocene Green River deposits by one extinct species of the recent genus Entimus. The tribe Eudiagogini is now distributed only in the Western Hemisphere [26]. Tolstonosik oisensis was found in the early Eocene of France, *Eudiagogus vossi* from the early-middle Eocene, *Oligocryptus sectus* and the genus *Eudomus* with two species from the late Eocene of the United States. Three species of the tribe Hyperini from the subtribe Cepurina have been described since the end of the middle Eocene of Europe, the late Eocene of the USA and the Far East of Russia. One species, "Hormorus" saxorum Scudder, 1893 from the late Eocene of the USA was described in the American tribe Hormorini. The tribe Sciaphilini with a contemporary centre of diversity in the Western Palaearctic [26] was found only in the early-middle Eocene of North America. The tribe Trachyphloeini is represented by the extinct genus Archaeocallirhopalus with two species belonging to the subtribe Pseudocneorrhinina, which is now distributed in East Asia. One species of the extinct genus *Sitonitellus* from the middle Eocene of Germany was assigned to the tribe Sitonini. The Neotropical tribe Anypotactini was found in the middle Eocene of Europe. In Baltic amber, this is one of the most common groups. It is interesting to note that this tribe was not found in the Eocene deposits of North America. The tribe Naupactini is noted in Baltic and Rovno amber and in the late Eocene of the Florissant. Thirteen species of the tribe Geonemini are found in the Eocene of the United States. The tribe Psallidiini is represented by one species of the genus Trigonoscuta from the terminal Eocene of North America. The extinct genus *Pseudophaops* of the tribe Eustylini was described from the early-middle Eocene of Green River. Two species of the genus *Polydrusus* and one species of the extinct genus *Archaeosciaphilus* of the tribe Polydrusini were found in Baltic amber. Three species from extinct genera Palaeocrassirhinus and Palaeocneorhinus from the Lutetian of Germany and one species placed in the genus Brachyderes from the Bartonian of the Czech Republic belong to the tribe Brachyderini. Only one species of the tribe Tanymecini was described in the recent genus Pandeleteinus from the late Eocene of North America.

Platypodidae in the Eocene

The family Platypodidae, with two species of the tribe Tesserocerini, were described from Baltic and Romanian amber [71,167,186,189].

Scolytidae in the Eocene

Scolytidae is represented by 35 species, 24 of which were described from Baltic and Rovno amber. Twenty six species belong to the subfamily Hylesininae and four to Scolytinae. The systematic position of five species requires clarification. Three genera are extinct, known only from the late Eocene and nine genera are recent. The genera *Hylurgops* and *Phloeosinus* are the richest in species with 8 species in each. The largest number of species (21) of bark beetles was described from Baltic amber.

3.2.2. Early Eocene Weevil Fauna

Early Eocene (Ypresian) localities (Figure 6) are in the USA, England (Peckham, London Clay), France (Oise amber), Denmark (Mors), Germany (Havighorst) and the south of the Russian Far East (Tadushi). Twenty one species of Curculionoidea were described from these localities (Figure 7). The families Anthribidae, Ithyceridae, Brentidae, Curculionidae and Scolytidae were recorded for Oise amber [190] from the early Eocene. Unfortunately, the fauna of Oise amber and the London clays include only 7-8 described species, with 1-2 species known (Figure 8) from other localities. The USA contains representatives of the subfamily Ithycerinae now living in North America and has a fundamentally different biota from the rest of the Eocene faunas. Common species and genera intermediate between the early Eocene faunas are absent. Representatives of the tribes Oiserhinini, Palaeotanaini, Sciabregmini, Cryptorhynchini, Dryophthorini, Conoderini, Acalyptini, Eudiagogini are found in Oise amber, Ceutorhynchini in Peckham, Curculionini in Havighorst, Erirhinini, Camptorhinini and Cryptorhynchini in London Clay, Molytini in Mors and Tanaini in Tadushi. Here are found some of the earliest records of representatives of the tribes Sciabregmini (53.0 Ma), Cryptorhynchini (54.0-50.0 Ma), Dryophthorini (53.0 Ma), Eudiagogini (53.0 Ma), Ceutorhynchini and Camptorhinini (54.0–50.0 Ma) and the latest find of the tribe Tanaini in the fossil record. The tribes Oiserhinini, Palaeotanaini, Conoderini and Acalyptini are noted only in the early Eocene. The Oise amber fauna is the most diverse in taxonomic composition and includes four families Anthribidae, Brentidae, Curculionidae and Scolytidae. Only Curculionidae were described from Peckham, London Clay, Havighorst and Mors.

Figure 7. Composition of species of Curculionoidea in the Early Eocene fauna.

Figure 8. Composition of Curculionoidea species between Early Eocene localities.

The connections between the Paleocene and the early Eocene faunas are in a similar fauna structure with a dominance of Curculionidae and the presence of Ithyceridae. Common genera are not found. Almost all of the early Eocene Curculionidae were associated with trees. The only species which could develop on herbs was "*Ceutorhynchus*" eocenicus.

3.2.3. Bridgerian Weevil Fauna

Within the American localities Green River and Roan Mountain of the Green River Formation (Figure 9), dating from the end of the early to the beginning of middle Eocene, 75 weevil species were described, with six being common to both localities. Two species of the family Nemonychidae, six species of the family Anthribidae, one species of the family Belidae, one species of the family Rhynchitidae, three species of the family Brentidae, 58 species of the family Curculionidae and four species of the family Scolytidae were described (Figure 10). Entiminae dominate the Curculionidae (Figure 11).

Figure 9. Lutetian Curculionoidea deposits: octagon—Roan Mountain and Green River; square—Corfe and Bournemouth; circle—Messel and Eckfelder Maar, rhombus—Geiseltal.

20 18 18 16 14 12 10 10 8 6 Δ 2 0 Erirhininae Molytinae Cossoninae Conoderinae Curculioninae Cyclominae Entiminae

Figure 10. Composition of species of Curculionoidea in the Green River Formation.

Figure 11. Composition of species of Curculionidae in the Green River Formation.

Here are the earliest records (53.5–48.5 Ma) of the subfamilies Nanophyinae, Conoderinae and Cyclominae, tribes Eocaenonemonychini, Cratoparini, Anthribini, Tropiderini, Choragini, Metrioxenini, Apionini, Apostasimerini, Listroderini, Tropiphorini, Entimini, Sciaphilini, Geonemini, Eustylini and Dryocoetini in the fossil record. The faunas of Green River (51 species) and Roan Mountain (30 species) are very similar. In addition to common species, the generic composition is similar also. Five genera (*Sciabregma, Lithogeraeus, Anthonomus, Mitostylus* and *Epicaerus*) are shared by both localities. More samples were collected from the Green River and accordingly more described species. Roan Mountain has a depleted version of the Green River but representatives of the tribes Metrioxenini, Apionini, Erirhinini, Cossonini, Ceutorhynchini and the extinct genus *Steganus* are known only from this locality. Representatives of Nemonychidae, Anthribidae, Rhynchitidae, Aplemonini, Nanophyinae, Molytini, Cryptorhynchini, Conoderintae, *Primocentron, Limalophus*, Entimini, Eudiagogini, Eustylini and Dryocoetini are found in the Green River.

The early-middle Eocene faunas of the Green River Formation are quite isolated and do not show obvious connections with other weevil faunas. The genus *Perapion* connects the Green River fauna with the Paleocene of Menat, the tribe Molytini with the Paleocene of Arkhara, the genera *Cossonus* and *Anthonomus* with the Paleocene of Argentina but these widespread groups do not show specificity of the faunogenetic relationships. Two taxa, the genus *Sciabregma* and the tribe Eudiagogini, show specific relationships between the early Eocene of France and the early-middle Eocene of North America. Most of the Curculionoidea of the Green River were associated with forests. It can be assumed that

Aplemonini, Nanophyini, Ceutorhynchini, Apostasimerini, Listroderini and possibly some Entiminae lived on riverine meadows.

3.2.4. Middle Eocene Weevil Fauna

The middle Eocene consists of two stages, Lutetian and Bartonian. Lutetian localities (Figure 9) are Corfe with one described Curculionoid beetle species, Bournemouth with five species (England), Messel with four species, Geiseltal with six species and Eckfelder Maar with four species (Germany). The systematic position of nine species requires clarification. Here are the earliest records of the subfamily Brentinae ($48.27 \pm 0.22-47.0$ Ma) and the tribes Baridini (50.0-42.0 Ma), Brachyderini ($48.27 \pm 0.22-47.0$ Ma) and Sitonini (47.5-42.5 Ma) in the fossil record. Comparison of the fauna of the Lutheian localities among themselves is impossible due to the small number of described forms. I note that the genera *Palaeoalatorostrum*, *Eckfelderolispa*, *Cryptorrhynchites*, *Palaeocrassirhinus*, *Palaeocneorhinus* and *Sitonitellus* are known only from Lutetian. The richest fauna of Messel and Eckfelder Maar have not yet been described.

Bartonian localities (Figure 12) are Kutschlin (Czech Republic) with one species of the subfamily Molytinae and middle Eocene amber (with 140 species). Specimens in Baltic and Rovno amber are usually separate but an attempt has been Made to compare Baltic amber from individual localities, namely, from Scandinavia, Poland and the Kaliningrad Region. There are very few samples of weevis in Polish and Scandinavian amber. Five species (Baltocyba electrinus, Toxorhynchus michalskii, Baltonanophyes crassirostre, Tachyerges hyperoche and Limalophus poinari) were described from Polish and four species (Archinvolvulus liquidus, Baltoconapium anderseni, Electrotribus henningseni and Ampharthropelma decipiens) from Scandinavian amber were not found in Kaliningrad amber. The tribes Rhadinocybini and Notapionini from the Rhadinocybitae were found only in these ambers, respectively. However, there is no reason to consider these amber separate, since the common species (*Electrotribus theryi* and Paonaupactus sitonitoides) in Kaliningrad amber were found in Scandinavian and Polish ambers. The absence of species in Kaliningrad amber can be explained by their rarity. Together, 124 species from the families Nemonychidae, Anthribidae, Belidae, Rhynchitidae, Brentidae, Curculionidae, Platypodidae and Scolytidae are recorded fromBaltic amber. The fauna of Rovno amber with 16 species of Curculionoidea has no common species with other amber localities and the two most common species, *Electrotribus theryi* and *Paonaupactus sitonitoides*, were not found in Rovno amber. At the generic level, the fauna of Rovno amber is also quite separate since from 13 genera, only 7 genera are common with Baltic amber. All tribes (except Valenfriesiini) recorded in Rovno amber were also found in Baltic amber. Representatives of eight families were found in Rovno and Baltic amber (Figure 13). A detailed analysis of the faunas of Eocene ambers was carried out in other articles [71,191]. In Eocene amber are the first records of the subfamily Tesserocerinae, the supertribes Rhadinocybitae and Aspidapiitae, the tribes Mecocerini, Allandrini, Zygaenodini, Oxycraspedini, Piezotrachelini, Dorytomini, Plinthini, Acicnemidini, Stromboscerini, Dryotribini, Ellescini, Eugnomini, Rhamphini, Camarotini, Hyperini, Trachyphloeini, Anypotactini, Polydrusini, Hylastini, Hylurgini, Phloeosinini and Polygraphini and the last find of the Sayrevilleinae subfamily in the fossil record. The faunas of Bartonian are very different from the fauna of Lutetian. Common genera are absent.

Figure 12. Bartonian Curculionoidea deposits: red circle—Baltic amber (Kaliningrad region); blue circle—Polish amber; yellow circle—Scandinavian amber; pink circle—Bitterfeld amber; ring—Romanian amber; circle—Rovno amber; square—Kutschlin.

Figure 13. Composition of species of Curculionoidea in the Baltic amber.

In general, the weevil fauna of the middle Eocene of Europe is very distinct from earlier faunas. The connections between it and the North American Ypresian-Luthean faunas include the subtribe Zherichinixenina of the tribe Metrioxenini and the genus *Limalophus*, in both of them. The similarity with the Ypresian and Paleocene faunas of Europe lies only in the presence of widespread groups at the level of tribes (Cryptorhynchini, Ceutorhynchini, Curculionini and Naupactini) and subfamilies (Anthribinae, Apioninae, Molytinae, Dryophthorinae, Cossoninae, Curculioninae).

3.2.5. Late Eocene Weevil Fauna

The Priabonian faunas are described from five localities (Figure 14), two in France (Celas and Ales-Monteils), one in the USA (Florissant), one in the south of the Russian Far East (Biamo) and one in Brazil (Fonseca). Some 184 species were described from these localities. One species of the tribe Hyperini was described from Biamo. The genus *Duartia*, probably related to Scolytidae, is known from Fonseca. *Palaeorhopalotria neli* was described from Ales-Monteils. This species belongs to the extinct tribe Palaeorhopalotriini belonging to the supertribe Allocorynitae now distributed in Central America [192] and also noted in the Miocene [193]. The three representatives of Entiminae and species from the tribe Corimaliini (earliest record) are known from Celas.

Figure 14. Priabonian Curculionoidea deposits: Circle—Celas and Ales-Monteils; octagon—Florissant; square—Biamo; rhombus—Fonseca.

The Florissant fauna, from which 177 species are known (Figure 15), is of great interest as being the richest of the Paleogene fauna. However, families Nemonychidae, Ithyceridae and Platypodidae are absent in this fauna. Representatives of the tribes Cratoparini, Anthribini, Ecelonerini, Tropiderini, Metrioxenini, Auletini, Rhynchitini, Eugnamptini (earliest record), Euscelini (earliest record), Apionini, Erirhinini, Dorytomini, Molytini, Magdalini (earliest record), Cryptorhynchini, Cleonini (earliest record), Dryophthorini, Sphenophorini (earliest record), Cossonini, Apostasimerini, Baridini, Ceutorhynchini, Cnemogonini (earliest record), Curculionini, Anthonomini, Rhamphini, Tychiini, Camarotini, Listroderini, Tropiphorini, Eudiagogini, Hyperini, Hormorini (earliest record), Naupactini, Geonemini, Psallidiini (earliest record), Tanymecini (earliest record), Hylastini and Phloeotribini (earliest record) are found in Florissant deposits (34.07 ± 0.10 Ma).

Figure 15. Composition of species of Curculionoidea in the Florissant.

About half (52%) of the genera are recent. This fauna of Florissant is very different from the fauna of Barton amber, where 70% of genera are extinct. The structure of the fauna is rather unusual (Figure 15). Curculionidae dominates but Rhynchitidae and Brentidae also play an important role. Three subfamilies (Curculioninae, Conoderinae and Entiminae) of the weevils form the basis of the fauna (Figure 16), while Curculioninae and Entiminae and Conoderinae do not play a significant role (Figure 17) in Baltic amber. It differs from the fauna of the Green River, where only Curculionidae

dominates and at the subfamily level of this family, the fauna is formed by Entiminae and Conoderinae. However, due to the presence of common groups (genera and tribes, usually found only in these localities), the Florissant fauna shows similarities primarily with the Green River (15 common genera and tribes) and Baltic and Rovno amber (11 common genera and tribes) faunas.

Figure 16. Composition of species of Curculionidae in the Florissant.

Figure 17. Composition of species of Curculionidae in the Baltic amber.

3.2.6. Comparison of the Eocene Weevil Faunas

In the Eocene, weevil diversity occurs from early to late (Figures 18 and 19). A small number of species in the Lutetian is due to poorly studied fauna. The number of representatives of modern genera increases towards the late Eocene.

Figure 18. Change in the number of Curculionoidea species in the Eocene.

Figure 19. Change in the number of Curculionoidea species in the Eocene.

3.3. Oligocene Weevil Fauna

The Oligocene fauna of Curculionoid beetles is represented by 94 described species from six families. Ten localities related to the early (White River Badlands from USA, Brunnstatt and Corent from France), middle (border between early and late) (Sieblos and Kleinkembs from Germany, Gaube and Puy-Saint-Jean from France) and late Oligocene (Luzice from Czech Republic, Aix-en-Provance from France, Rott from Germany) (Figures 20 and 21), contain the remains of Curculionoidea that were described. The Greenland locality of Kap Dalton, where representative of the Nemonychidae family was described, dates from the Oligocene without specifying the stage [194]. Curculionoidea are also represented in the Rupelian Quilchena (Canada), Cereste (France), Seifhennersdorf (Germany), Ahuehuetes (Mexico), Kundratice (Czech Republic), Hutt Enspel (Germany), Ashutas (Kazakhstan), Perekishkyul' (Azerbaijan) localities [30,195–199].

Figure 20. Rupelian Curculionoidea deposits: octagon—White River Badlands; circle—Brunnstatt; square—Corent; ring—Cereste; rhombus—Seifhennersdorf; red circle—Ahuehuetes; triangle—Kundratice; yellow circle—Kap Dalton; pink circle—Kenderlyk II.

Figure 21. Middle and late Oligocene Curculionoidea deposits: circle—Luzice; rhombus—Rott and Enspel; octagon—Aix-en-Provance; pink circle—Ashutas; ring—Perekishkyul'; triangle—Sieblos; square—Kleinkembs; blue circle—Gaube and Puy-Saint-Jean.

Representatives of the family Curculionidae and a few species of the subfamily Apioninae from the family Brentidae were found in these localities.

3.3.1. Review of Curculionoidea Families in the Oligocene

Nemonychidae in the Oligocene

The family Nemonychidae in the Oligocene is represented by one species assigned to the tribe Eocaenonemonychini from the subfamily Cretonemonychinae. This is the latest find of the family in the fossil record.

Anthribidae in the Oligocene

The family Anthribidae is very poorly represented in Oligocene deposits (Figure 22). No representatives of the subfamily Anthribinae were found. One species of the tribe Choragini was described from the late Oligocene. Choraginae were very rare in the Eocene, so this find shows a greater abundance of this subfamily in the Oligocene. Three species of the genus *Bruchela* of the subfamily Urodontinae were described from the Oligocene of France and Germany. This is the first reliable indication of Urodontinae in the fossil record.

Figure 22. Composition of species of Curculionoidea in the Oligocene.

Rhynchitidae in the Oligocene

Six species of the family Rhynchitidae occur in the late Oligocene. The extinct genus of the tribe Vossicartini, now distributed only in tropical Africa and Madagascar [60], is the only find of this tribe in the fossil record. The tribe Rhynchitini is represented by extinct species of recent genera belonging to both the primitive subtribe Perrhynchitina and the advanced subtribe Rhynchitina.

Attelabidae in the Oligocene

The Attelabidae family was not found in the Oligocene.

Brentidae in the Oligocene

The family Brentidae is found in the Oligocene of Europe. Eight species belong to the subfamily Apioninae and one to the subfamily Nanophyinae (tribe Nanophyini). The systematic position of most species in the tribes and genera requires clarification. One species can be assigned to the genus *Perapion* of the tribe Aplemonini. Previously, this genus was discovered in the Paleocene of Europe and the Eocene of North America.

Curculionidae in the Oligocene

The Curculionidae family is represented by 72 species from the subfamilies Erirhininae, Molytinae, Lixinae, Dryophthorinae, Cossoninae, Conoderinae, Curculioninae and Entiminae (Figure 23). Only the subfamily Cyclominae was not encountered in Oligocene deposits. Two species from the tribes Erirhinini and Bagoini of the subfamily Erirhininae are noted in the Oligocene. Representatives of the tribes Molytini, Pissodini, Magdalini and Cryptorhynchini belonging to the subfamily Molytinae were described from different Oligocene localities. Lithopissodes luschitzensis is the only Pissodini in the fossil record. Two species of the genus Larinus of the tribe Lixini and two species formally assigned to the genus Cleonis belong to the subfamily Lixinae. The subfamily Dryophthorinae with one species of the tribe Dryophthorini and one species of the tribe Sphenophorini is known from the late Oligocene. Here is the only record of the tribe Sphenophorini in the Paleogene of Europe. Only two species from the tribes Rhyncolini and Cossonini of the subfamily Cossoninae were found in the late Oligocene. It is important to note that the tribe Dryotribini common in the middle Eocene amber are not found in the Oligocene. The diverse subfamily Conoderinae is poorly represented in the Oligocene. Two species of Bariditae are noted. Lithogeraeus comminute from the tribe Apostasimerini was described from the early Oligocene of the United States. One species placed in the genus Baris of the tribe Baridini is known from the early Oligocene of Europe. The supertribe Conoderintae is not found in the

Oligocene. The supertribe Ceutorhynchitae is represented by the tribes Ceutorhynchini and Phytobiini. The tribes Smicronychini, Anthonomini and Tychiini from the subfamily Curculioninae are found in the Oligocene. "*Smicronyx*" antiquus is the only species of the tribe Smicronychini in the fossil record. "*Anthonomus*" soporus from the tribe Anthonomini is Marked for the early Oligocene of the United States. The Oligocene species of the genera *Sibinia* and *Tychius* belong to the tribe Tychiini. Twenty three species from six tribes belong to the subfamily Entiminae. The most diverse tribes are Tropiphorini with 7 species and Tanymecini with 6 species. One or two species belong to the tribes Sciaphilini, Sitonini, Geonemini and Brachyderini. The position of four species in these tribes requires clarification. The family Platypodidae is not found in the Oligocene. Two species of the genus *Hylesinus* of the tribe Hylesinini from the family Scolytidae are known from the late Oligocene of France.

Figure 23. Composition of species of Curculionidae in the Oligocene.

Localities with the described fauna are divided into those located in North America and Europe. Curculionidae from the only Asian locality in Kazakhstan have not yet been described. Species were described from the White River Badlands and Kap Dalton in Greenland. Their fauna is radically different from the fauna of the Old World. At least 13 species of the family Curculionidae are known from the White River Badlands. These are representatives of the genera *Procas, Archaeoheilus, Lithogeraeus, Anthonomus, Limalophus, Mitostylus* and *Epicaerus*. None of these genera were found in the Oligocene of Europe. The fauna of this locality shows a close similarity with the fauna of the middle Eocene, Green River and Road Mountain. Moreover, three species from the White River are found in these faunas. At the level of genera and tribes, the similarity between them is complete. One can consider White River as a reduced version of the Eocene American faunas. The only Curculionoidea from the Oligocene of Greenland belongs to the North American tribe Eocaenonemonychini and possibly to a genus described from the Green River.

3.3.2. Early Oligocene Weevil Fauna

Twenty one species are found in the early Oligocene of Europe (France), 13 species in Brunnstatt and 8 species in Corent. There is one species of the subfamily Urodintinae (Anthribidae), three species of the subfamily Apioninae (Brentidae), 17 species of Curculionidae (one species of the subfamily Erirhininae, five species of the subfamily Molytinae, three species of the subfamily Lixinae, four species of the subfamily Conoderinae, two species of the subfamily Curculioninae, one species of the subfamily Entiminae and one species of the subfamily insertae sedis). The faunas of Brunnstatt and Corent are very different. No species and genera occur in both localities. Three species in Corent can be attributed to the meadow complex (*Anisorhynchus* and Cleonini) and three to the forest complex (representatives of Molytinae). The fauna of Brunnstatt is much more diverse. Most species noted there belong to the meadow-steppe complex (11 species from the genera *Bruchela, Larinus, Baris, Ceutrhynchus, Smicronyx,* *Tychius* and the subfamily Apioninae) while Molytinae probably belonged to the forest complex and *Bagous* to the near-water habitat.

3.3.3. Middle Oligocene Weevil Fauna

Only ten weevil species were described from the middle Oligocene (boundaries are of the early and late Oligocene) and six of them belong to Curculionidae insertae sedis. The rest belong to the subfamilies Molytinae, Conoderinae and Curculioninae of the family Curculionidae.

3.3.4. Late Oligocene Weevil Fauna

Thirty four species were described from the late Oligocene. One species is known from Luzice, 22 from Aix-en-Provance and 27 from Rott. The fauna of Aix-en-Provance is represented by the three families, Brentidae, Curculionidae and Scolytidae (Figure 24). They involveforest species (Dryophthorus incertus, Cossonus robustus, Rhytidoderes spp., Hylesinus spp.) and open space species (Apioninae, "Sibinia" whitneyi), Protainophthalmus spp. Extinct species belong to widespread groups. Noteworthy are six species of the extinct genus Protainophthalmus known only from this locality. This genus belongs to the subtribe Tainophthalmina that is distributed in Central and East Asia and is also found in the Mediterranean. Three extinct species of the recent genus Rhytideres from the Mediterranean are also only found in Aix-en-Provance. The families Anthribidae, Rhynchitidae, Brentidae and Curculionidae form the Rott fauna (Figure 25). Species of the family Curculionidae dominate. Most species belong to widespread genera (Choragus, Perapion, Nanophyes, Hylobius, Magdalis, Acalles, Larinus, Sphenophorus, Rhyncolus, Ceutorhynchus and Tychius). Three species belong to the West Palaearctic genera Bruchela and Tatianaerhynchites. Representatives of the oriental genera Cartorhynchites and Opacoinvolvulus are also present. The two genera Germanocartus and Brachymycterus are endemic to this locality. The Rott fauna consisted of approximately half forest and meadow species. It is obvious that the Rott fauna is much more diverse than that of Aix-en-Provance. Common genera are absent.

Figure 24. Composition of species of Curculionoidea in Aix-en-Provance.

Figure 25. Composition of species of Curculionoidea in Rott.

3.3.5. Comparing of the Oligocene Weevil Faunas

Comparing the faunas of the early and late Oligocene, it is noted that the Chattian faunas are more diverse. They contain not only representatives of widespread or West Palaearctic genera but also oriental forms. Relationships with the African fauna are indicated the presence of a representative of the tribe Vossicartini. In general, the Oligocene fauna was formed by forest and meadow-steppe species, which indicates the presence of open spaces.

4. Discussion

In total, 564 species of Curculionoidea from nine families were described from the Paleogene. They occur in seven localities in North America (four from Eocene and three from Oligocene), three in South America (one from the Paleocene and two from the Eocene), 34 in Europe (two from the Paleocene, 18 from the Eocene and 14 from the Oligocene) and six in North and East Asia (two from each of the Paleocene, the Eocene and the Oligocene). They have not yet been found in African, South Asian and Australian Paleogene localities. An increase in the number of species is observed from the Paleocene to the Eocene (end of the Eocene) and then decreases in the Oligocene (Figure 26). The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from the terminal Eocene of Florissant (177 species), the middle Eocene Baltic amber (124 species) and the early-middle Eocene Green River formation (75 species). Discovery of relict groups with a local distribution in the contemporary fauna, such as Ithyceridae—Chilecarinae and Ithycerinae, Belidae-Metrioxenini, Rhynchitinae-Sayrevilleinae, were Made in the Eocene of America and the Eocene and Oligocene of Europe. The most numerous group of all the Paleogene Coleoptera faunas is the superfamily Curculionoidea [200]. The family Curculionidae dominates in all localities of the Paleogene. Anthribidae, Rhynchitidae, Brentidae and Scolytidae are sometimes subdominant in Eocene localities. For example, Anthribidae, Brentidae and Scolytidae account for 40% of the Baltic amber fauna (weevils 47%) and Rhynchitidae comprise 13% of the Florissant fauna (weevils 72%). In all localities, species associated with woody vegetation dominate. Species associated with herbaceous vegetation are present in most localities since the middle Paleocene. Their proportion is increasing in the Oligocene. Further study of the Curculionoidea from Paleogene localities May clarify the picture somewhat.

Figure 26. Change in number of Curculionoidea species in the Paleogene subepochs. The fauna of the Green River Formation is included in the Early Eocene.

Funding: The study was partially supported by the Russian Foundation for Basic Research (project nos. 18-04-00243-a and 19-04-00465-a) and the Federal Fundamental Scientific Research Program for 2013–2020 (project no. AAAA-A16-116121410121-7).

Acknowledgments: The author thanks Many colleagues for their assistance throughout his studies: V.I. Alekseev, A.R. Manukyan and A.V. Smirnova (Kaliningrad Regional Amber Museum, Russia: Kaliningrad), A. Allen (USA: Boise), A. Bukejs (Institute of Life Sciences and Technologies, Daugavpils University, Latvia: Daugavpils), D. Berthet (Centre de Conservation du musée des confluences, France, Lyon), J. Damzen (Lithuania: Vilnius), F. Eichmann (Germany: Hannover), A. Górski (Poland: Bielsko-Biaùa), C. Gröhn (Germany: Glinde), V.A. Gusakov (Russia: Moscow), A.G. Kirejtshuk (Zoological Institute RAS, Russia: St. Petersburg), U. Kotthoff (Center of Natural History, Germany: Hamburg), N.V. Martynovich (Museum of the World Ocean, Russia: Kaliningrad), A. Nel (Muséum national d'histoire naturelle, France: Paris), E.E. Perkovsky and V.Y. Nazarenko (Schmalhausen Institute of Zoology, NASU, Ukraine: Kiev), A.G. Ponomarenko, A.P. Rasnitsyn, E.D. Lukashevich, D.E. Shcherbakov, I.D. Sukatsheva, D.V. Vassilenko (Borissiak Paleontological Institute RAS, Russia: Moscow), E. Yu. Shevnin (Russia: Novosibirsk), L.B. Vilhelmsen (Zoological Museum, University of Copenhagen, Denmark: Copenhagen), K. Szczepaniak (Earth Institute, Poland: Warsaw), T. Wappler (Hessisches Landesmuseum Darmstadt, Germany: Darmstadt), Ch. R. Scotese (Northwestern University, USA: Evanston) allowing me to use his paleomaps and G.O. Poinar, Jr (Oregon State University, USA: Corvallis) for improving the Manuscript. The two reviewers are also acknowledged for the valuable comments that improved the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References

- Scotese, C.R. Atlas of Paleogene Paleogeographic Maps (Mollweide Projection), Maps 8–15, Volume 1, The Cenozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL. 2014. Available online: https://www.researchgate.net/publication/267569784_Atlas_of_Paleogene_ Paleogeographic_Maps_Mollweide_Projection_Maps_8-15_Volume_1_The_Cenozoic_PALEOMAP_ Atlas_for_ArcGIS_PALEOMAP_Project_Evanston_IL (accessed on 6 September 2020).
- 2. Blythe, A.E.; Kleinspehn, K.L. Tectonically versus climatically driven Cenozoic exhumation of the Eurasian plate Margin, Svalbard: Fission track analyses. *Tectonics* **1998**, *17*, 621–639. [CrossRef]
- 3. Nel, A. The oldest bee fly in the French Paleocene (Diptera: Bombyliidae). *C.R.Palevol* **2008**, *7*, 401–405. [CrossRef]
- 4. Wappler, T.; Currano, E.D.; Wilf, P.; Rust, J.; Labandeira, C.C. No post-Cretaceous ecosystem depression in European forests? Rich insect feeding damage on diverse middle Palaeocene plants, Menat, France. *Proc. R. Soc. B: Biol. Sci.* **2009**, 276, 4271–4277. [CrossRef] [PubMed]

- 5. Dyke, G.; Lindow, B. Taphonomy and abundance of birds from the Lower Eocene Fur Formation of Denmark. *Geol. J.* **2009**, *44*, 365–373. [CrossRef]
- 6. Friedman, M.; Beckett, H.T.; Close, R.A.; Johanson, Z. The English Chalk and London Clay: Two remarkable British bony fish Lagerstätten. *Geolog. Soc., London, Special Publ.* **2015**, *430*, 165–200. [CrossRef]
- Smith, M.E.; Singer, B.; Carroll, A. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. GSA Bull. 2003, 115, 549–565. [CrossRef]
- 8. Kirejtshuk, A.G.; Legalov, A.A.; Nel, A. A new genus of the subfamily Apioninae (Coleoptera: Brentidae) from the Lower Eocene Oise amber. *Paleontol. J.* **2015**, *49*, 1436–1441. [CrossRef]
- Wilf, P.; Singer, B.S.; Zamaloa, M.C.; Johnson, K.R.; Cúneo, N.R. Early Eocene 40Ar/39Ar age for the Pampa de Jones plant, frog and insect biota (Huitrera Formation, Neuquén Province, Patagonia, Argentina). *Ameghiniana* 2010, 47, 207–216. [CrossRef]
- 10. Mathewes, R.W.; Greenwood, D.R.; Archibald, S.B. Paleoenvironment of the Quilchena flora, British Columbia, during the Early Eocene Climatic Optimum. *Can. J. Earth Sci.* **2016**, *53*, 1–17. [CrossRef]
- Mustoe, G.E. Geologic history of Eocene Stonerose Fossil Beds, Republic, Washington, USA. *Geosciences* 2015, 5, 243–263. [CrossRef]
- 12. Lenz, O.K.; Wilde, M.; Mertz, D.F.; Riegel, W. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene Maar lake of Messel (Germany). *Int. J. Earth. Sci.* **2015**, *104*, 873–889. [CrossRef]
- West, I.M. The Eocene Cliffs of Bournemouth Dorset. Geology of the Wessex Coast. Available online: www.southampton.ac.uk/~{}imw/Bournemouth-Geology.htm (accessed on 9 July 2016).
- 14. Ring, S.J.; Bocherens, H.; Wings, O.; Rabi, M. Divergent Mammalian body size in a stable Eocene greenhouse climate. *Sci. Rep.* **2020**, *10*, 3987. [CrossRef] [PubMed]
- 15. Sachse, M. A remarkable fossiliferous Mass flow deposit in the Eocene Eckfeld Maar (Germany)—Sedimentological, taphonomical and palaeoecological considerations. *Facies* **2005**, *51*, 173–184. [CrossRef]
- 16. Evanoff, E.; McIntosh, W.C.; Murphey, P.C. Stratigraphic summary and 40Ar/39Ar geochronology of the Florissant Formation, Colorado. *Denver Mus. Nat. Sci. Proc.* **2001**, *4*, 1–16.
- 17. Scott, J.W.; Bowring, S.A. High Precision U/Pb Geochronology of Oligocene Tuffs from the White River Formation, Douglas, Wyoming. *J. Vertebr. Paleontol.* **2000**, *20*, 69A.
- Walther, H.; Kvaček, Z. Early Oligocene flora of Seifhennersdorf (Saxony). Acta Mus. Nat. Pragae, B, Hist. Nat. 2007, 63, 85–174.
- 19. Schindler, T.; Wuttke, M. Geology and limnology of the Enspel Formation (Chattian, Oligocene; Westerwald, Germany). *Palaeobiodiversity Palaeoenvironments* **2010**, *90*, 21–27. [CrossRef]
- 20. Petrulevičius, J.F.; Wappler, T.; Nel, A.; Rust, J. The diversity of Odonata and their endophytic ovipositions from the Upper Oligocene Fossillagerstätte of Rott (Rhineland, Germany). *ZooKeys* **2011**, *130*, 67–89. [CrossRef]
- Gaudant, J.; Nel, A.; Nury, D.; Véran, M.; Carnevale, G. The uppermost Oligocene of Aix-en-Provence (Bouches-du-Rhône, Southern France): A Cenozoic brackish subtropical Konservat-Lagerstätte, with fishes, insects and plants. *C.R.Palevol* 2018, *17*, 460–478. [CrossRef]
- 22. Seyfullah, L.J.; Beimforde, C.; Dal Corso, J.; Perrichot, V.; Rikkinen, J.; Schmidt, A.R. Production and preservation of resins—Past and present. *Biol. Rev.* **2018**, *93*, 1684–1714. [CrossRef]
- 23. Bukejs, A.; Alekseev, V.I.; Pollock, D.A. Waidelotinae, a new subfamily of Pyrochroidae (Coleoptera: Tenebrionoidea) fromBaltic amber of the Sambian peninsula and the interpretation of Sambian amber stratigraphy, age and location. *Zootaxa* **2019**, *4664*, 261–273. [CrossRef] [PubMed]
- 24. Thompson, R.T. Observations on the morphology and classification of weevils (Coleoptera, Curculionoidea) with a key to Major groups. *J. Nat. Hist.* **1992**, *26*, 835–891. [CrossRef]
- 25. Kuschel, G. A phylogenetic classification of Curculionoidea to families and subfamilies. *Mem. Entomol. Soc. Wash.* **1995**, *14*, 5–33.
- 26. Alonso-Zarazaga, M.A.; Lyal, C.H.C. A world catalogue of families and genera Curculionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae); Entomopraxis: Barcelona, Spain, 1999; p. 315.
- 27. Oberprieler, R.G.; Marvaldi, A.E.; Anderson, R.S. Weevils, weevils, weevils everywhere. *Zootaxa* 2007, *1668*, 491–520. [CrossRef]

- Oberprieler, R.G.; Anderson, R.S.; Marvaldi, A.E. Curculionoidea Latreille, 1802: Introduction, Phylogeny. In *Handbook of Zoology. Arthropoda: Insecta*; Coleoptera, Beetles. Volume 3: Morphology and Systematics (Phytophaga); Leschen, R.A.B., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2014; pp. 285–300.
- 29. Gratshev, V.G.; Legalov, A.A. The Mesozoic stage of evolution of the family Nemonychidae (Coleoptera, Curculionoidea). *Paleontol. J.* **2014**, *48*, 851–944. [CrossRef]
- Legalov, A.A. Fossil Mesozoic and Cenozoic weevils (Coleoptera, Obrienioidea, Curculionoidea). *Paleontol. J.* 2015, 49, 1442–1513. [CrossRef]
- 31. Zherichin, V.V.; Gratshev, V.G. Obrieniidae, fam. nov., the oldest Mesozoic weevils (Coleoptera, Curculionoidea). *Paleontol. J.* **1993**, 27, 50–69.
- 32. Bouchard, P.; Bousquet, Y.; Davies, A.E.; Alonso-Zarazaga, M.A.; Lawrence, J.F.; Lyal, C.H.C.; Newton, A.F.; Reid, C.A.M.; Schmitt, M.; Slipiński, S.A.; et al. Family group names in Coleoptera (Insecta). *Zookeys* **2001**, *88*, 1–972. [CrossRef]
- Legalov, A.A. New Obrieniidae from the Jurassic of Kazakhstan (Coleoptera, Obrienioidea). *Paleontol. J.* 2012, 46, 73–78. [CrossRef]
- 34. Wood, S.L. A reclasification of the genera of Scolytidae (Coleoptera). Great Basin Nat. Mem. 1986, 10, 1–126.
- 35. Sanborne, M. Biology of *Ithycerus noveboracensis* (Forster) (Coleoptera) and weevil phylogeny. *Evol. Monogr.* **1981**, *4*, 1–80.
- 36. Marvaldi, A.E.; Sequeira, A.S.; O'Brien, C.W.; Farrell, B.D. Molecular and morphological phylogenetics of weevils (Coleoptera: Curculionoidea): Do niche shifts accompany diversification? *Syst. biol.* **2002**, *51*, 761–785. [CrossRef] [PubMed]
- 37. Legalov, A.A. Contribution to the knowledge of the family Nemonychidae (Coleoptera) with descriptions of new taxa. *Ukr. J. Ecol.* 2017, *7*, 64–87. [CrossRef]
- 38. Legalov, A.A. Annotated key to weevils of the world. Part 1. Families Nemonychidae, Anthribidae, Belidae, Ithyceridae, Rhynchitidae, Brachyceridae and Brentidae. *Ukr. J. Ecol.* **2018**, *8*, 780–831. [CrossRef]
- 39. Legalov, A.A. Annotated key to weevils of the world. Part 2. Subfamily Molytinae (Coleoptera, Curculionidae). *Ukr. J. Ecol.* **2018**, *8*, 340–350.
- 40. Legalov, A.A. Annotated key to weevils of the world. Part 3. Subfamily Conoderinae (Coleoptera, Curculionidae). *Ukr. J. Ecol.* **2018**, *8*, 494–503.
- 41. Legalov, A.A. Annotated key to weevils of the world. Part 4. Subfamilies Erirhininae, Dryophthorinae and Cossoninae (Curculionidae). *Ukr. J. Ecol.* **2020**, *10*, 319–331. [CrossRef]
- 42. Legalov, A.A. Annotated key to weevils of the world. Part 5. Subfamily Entiminae (Curculionidae). *Ukr. J. Ecol.* **2020**, *10*, 332–346. [CrossRef]
- 43. Kuschel, G. The Nearctic Nemonychidae (Coleoptera, Curculionoidea). *Entomol. Scand.* **1989**, 20, 121–171. [CrossRef]
- 44. Seunggwan, S.; Clarke, D.J.; Lemmon, A.R.; Lemmon, E.M.; Aitken, A.L.; Haddad, S.; Farrell, B.D.; Marvaldi, A.E.; Oberprieler, R.G.; McKenna, D.D. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. *Mol. Biol. Evol.* **2018**, *35*, 823–836. [CrossRef]
- 45. Rheinheimer, J. Illustrierter Katalog und Bibliographie der Anthribidae der Welt (Insecta: Coleoptera). *Mitt. Entomol. Ver. Stuttg.* **2004**, *39*, 1–288.
- 46. Gratshev, V.G.; Legalov, A.A. New Mesozoic Ithyceridae beetles (Coleoptera). *Paleontol. J.* 2011, 45, 76–81. [CrossRef]
- 47. Legalov, A.A. New and little known weevils (Coleoptera: Curculionoidea) from the Paleogene and Neogene. *Hist. Biol.* **2013**, 25, 59–80. [CrossRef]
- 48. Legalov, A.A.; Poinar, G., Jr. New tribes of the superfamily Curculionoidea (Coleoptera) in Burmese amber. *Hist. Biol.* **2015**, *27*, 558–564. [CrossRef]
- 49. Poinar, G., Jr.; Brown, A.E.; Legalov, A.A. A new weevil tribe, Mekorhamphini trib. nov. (Coleoptera, Ithyceridae) with two new genera in Burmese amber. *Ukr. J. Ecol.* **2016**, *6*, 157–163. [CrossRef]
- 50. Legalov, A.A.; Nel, A.; Kirejtshuk, A.G. New and little known weevils (Coleoptera: Curculionoidea) from the Paleocene of Menat (France). *C.R. Palevol.* **2017**, *16*, 248–256. [CrossRef]
- 51. Poinar, G.O., Jr.; Brown, A.E.; Legalov, A.A. A new weevil, *Periosomerus tanyorhynchus* gen. et sp. nov. (Coleoptera; Ithyceridae) in mid-Cretaceous Burmese amber. *Cret. Res.* **2019**, *104*, 104195. [CrossRef]

- 52. Zimmerman, E.C. Australian Weevils (Coleoptera. Curculionoidea). I. Anthribidae to Attelabidae; CSIRO Publishing: Melbourne, Australia, 1994.
- Hamilton, R.W. Taxanomic use of endophallic structures in some Attelabidae and Rhynchitidae of America, North of Mexico (Coleoptera: Curculionoidea), with notes on nomenclature. *Ann. Entomol. Soc. America*. 1979, 72, 29–34. [CrossRef]
- Sawada, Y. A systematic study of the family Rhynchitidae of Japan (Coleoptera, Curculionoidea). *Hum. Nat.* 1993, 2, 1–93.
- 55. Legalov, A.A. Taxonomy, classification and phylogeny of the leaf-rolling weevils (Coleoptera: Rhynchitidae, Attelabidae) of the world fauna. *Novosib. CD-R* **2003**. № 0320301200.
- 56. Legalov, A.A. Reconstruction of phylogeny in leaf-rolling weevils (Coleoptera, Rhynchitidae, Attelabidae) using the Synap method. Report 1. *Zool. Zhurnal.* **2004**, *83*, 1427–1432.
- 57. Legalov, A.A. Reconstruction of phylogeny in leaf-rolling weevils (Coleoptera, Rhynchitidae, Attelabidae) using the SYNAP method. Report 2. *Zool. Zhurnal.* **2005**, *84*, 190–194.
- Legalov, A.A. Trophic relations of leaf-rolling weevils (Coleoptera, Rhynchitidae, Attelabidae). Zool. Zhurnal. 2005, 84, 352–361.
- 59. Legalov, A.A. Phylogenetic reconstruction of weevils superfamily Curculionoidea (Coleoptera) using the SYNAP method. *Biol. Bull.* **2006**, *33*, 127–134. [CrossRef]
- 60. Legalov, A.A. *Leaf-Rolling Weevils (Coleoptera: Rhynchitidae, Attelabidae) of the World Fauna;* Agro-Siberia: Novosibirsk, Russia, 2007.
- 61. Legalov, A.A. The family Rhynchitidae (Insecta: Coleoptera) in the Himalayas. *Biodiversitäd und Nat. im Himalaya* **2015**, *5*, 479–486.
- 62. Zimmerman, E.C. Australian Weevils (Coleoptera. Curculionoidea). III. Nanophyidae, Rhynchophoridae, Erirhinidae, Curculionidae: Amycterinae, Literature Consulted; CSIRO Publications: Melbourne, Australia, 1993.
- 63. Zimmerman, E.C. Australian Weevils (Coleoptera. Curculionoidea). II. Brentidae, Eurhynchidae, Apionidae and a Chapter on Immature Stages by Brenda May; CSIRO Publications: Melbourne, Australia, 1994.
- 64. Wanat, M. Genera of Australo-Pacific Rhadinocybinae and Myrmacicelinae, with Biogeography of the Apionidae (Coleoptera: Curculionoidea) and Phylogeny of the Brentidae (s. lato); Mantis: Olsztyn, Poland, 2001.
- 65. Zherikhin, V.V.; Egorov, A.B. *Weevils (Coleoptera, Curculionidae) from Russian Far East*; Institute Biology Soil Science: Vladivostok, Russia, 1991.
- 66. Morimoto, K.; Kojima, H. Systematic position of the tribe Phylloplatypodini, with remarks on the definitions of the families Scolytidae, Platypodidae, Dryophthoridae and Curculionidae (Coleoptera: Curculionoidea). *Esakia* **2004**, *44*, 153–168.
- 67. Legalov, A.A. New and little known Apioninae (Coleoptera, Brentidae) in Eocene Baltic amber. *Evraz. Entomol. Zhurn.* **2012**, *11*, 219–222.
- 68. Legalov, A.A. A review of the tribe Auletini (Coleoptera, Rhynchitidae) from the Russian fauna. 2. Subtribe Pseudomesauletina. *Zool. Zhurnal* **2011**, *90*, 149–155. [CrossRef]
- 69. Legalov, A.A. New weevils (Coleoptera, Curculionoidea) from the Eocene of the Green River, United States: Part 1. *Paleontol. J.* **2018**, *52*, 294–302. [CrossRef]
- 70. Legalov, A.A. New weevils (Coleoptera, Curculionoidea) from the Eocene of the Green River, United States: Part 2. *Paleontol. J.* **2018**, *52*, 421–428. [CrossRef]
- 71. Legalov, A.A. A review of the Curculionoidea (Coleoptera) from European Eocene ambers. *Geosciences* **2020**, *10*, 16. [CrossRef]
- 72. Legalov, A.A. A new tribe of the subfamily Cretonemonychinae (Coleoptera, Nemonychidae) from the Middle Eocene of the Green River. *Paleontol. J.* **2013**, 47, 410–413. [CrossRef]
- 73. Scudder, S.H. Fossil Coleoptera from the Rocky mountain tertiaries. *Bull. US Geol. Geogr. Surv. Terr.* **1876**, 2, 77–87.
- 74. Scudder, S.H. The fossil insects of the Green River shales. Bull. US Geol. Geogr. Surv. Terr. 1878, 4, 747–776.
- 75. Riedel, A. A new tribe, genus and species of Nemonychidae from Baltic amber (Coleoptera: Curculionoidea: Nemonychidae: Cimberidinae). *Insect Syst. Evol.* **2010**, *41*, 29–38. [CrossRef]
- 76. Wickham, H.F. Fossil Coleoptera from Florissant, with descriptions of several new species. *Bull. Am. Mus. Nat. Hist.* **1911**, *30*, 53–69.
- 77. Scudder, S.H. Tertiary rhynchophorus Coleoptera of the United States. *Monogr. US Geol. Surv. Tert.* **1893**, *21*, 1–206. [CrossRef]

- 78. Scudder, S.H. The Tertiary insects of North America. US Geol. Surv. Terr. 1890, 13, 1–734.
- Zherikhin, V.V. On weevils (Insecta, Coleoptera) from the Baltic amber. *Tr. Paleontol. Inst. Akad. Nauk. SSSR*. 1971, 130, 197–209.
- 80. Voss, E. Einige Rhynchophoren der Bernsteinfauna (Col.). *Mitt. aus dem Geol. Staatsinst. Hambg.* **1953**, 22, 119–140.
- 81. Legalov, A.A.; Kirejtshuk, A.G.; Nel, A. New weevils (Coleoptera, Curculionoidea) from the earlymost Eocene Oise amber. *Paleontol. J.* **2019**, *53*, 729–751. [CrossRef]
- 82. Legalov, A.A. New Curculionoid beetles (Coleoptera: Curculionoidea) from the Baltic amber. *Paleontol. J.* **2012**, *46*, 262–272. [CrossRef]
- 83. Gratshev, V.G.; Perkovsky, E.E. New species of the genus *Glaesotropis* (Insecta: Coleoptera: Anthribidae) from Rovno amber. *Paleontol. J.* **2008**, *42*, 60–63.
- 84. Gratshev, V.G.; Zherikhin, V.V. A new anthribid genus from the Baltic amber (Insecta: Coleoptera: Anthribidae). *Mitt. aus dem Geol. -Paläontologischen Intitut der Univ. Hambg.* **1995**, *78*, 149–157.
- 85. Heyden, C.; Heyden, L. Käfer und Polypen aus der Braunkohle des Siebengebirges, XXII–XXIV. *Palaeontographica* **1866**, *15*, 131–156.
- 86. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. A new genus of fungus weevils (Coleoptera: Anthribidae) in Rovno amber. *Foss. Rec.* **2018**, *21*, 207–212. [CrossRef]
- 87. Foerster, B. Die Insekten des 'Plattigen Steinmergels' von Brunstatt, XI–XVI. *Abh. Geol. Spec. Elsass Lotheringen* **1891**, *3*, 333–594.
- 88. Heyden, C.H.G. Gliederthiere aus der Braunkohle des Niederrhein's, der Wetterau und der Röhn. *Palaeontographica* **1862**, *10*, 62–82.
- 89. Schlechtendal, D.H.R. Beiträge zur Kenntnis Fossiler Insekten aus dem Braunkohlengebirge von Rott am Sie bengebirge, XII–XIV. *Abh. Nat. Gesellsch. Halle* **1894**, *20*, 197–228.
- 90. Legalov, A.A. Two new genera and four new species of fossil weevils (Coleoptera: Curculionoidea) in Baltic amber. *Entomol. Fenn.* **2016**, *27*, 57–69. [CrossRef]
- 91. Legalov, A.A.; Poinar, G.O., Jr. Two new species and new findings of Curculionoidea (Insecta: Coleoptera) in Baltic amber. *Ukr. J. Ecol.* **2020**, *10*, 357–364. [CrossRef]
- 92. Legalov, A.A. A new weevil genus of the tribe Metrioxenini (Coleoptera: Belidae) in Eocene Baltic amber. *Hist. Biol.* **2012**, *24*, 213–217. [CrossRef]
- 93. Riedel, A.; dos Santos Rolo, T.; Cecilia, A.; van de Kamp, T. Sayrevilleinae Legalov, a newly recognised subfamily of fossil weevils (Coleoptera, Curculionoidea, Attelabidae) and the use of synchrotron microtomography to examine inclusions in amber. *Zool. J. Linn. Soc.* **2012**, *165*, 773–794. [CrossRef]
- 94. Kania, J.; Legalov, A.A. A new genus of tooth-nosed snout weevils (Coleoptera: Rhynchitidae) in Baltic amber. *Paleontol. J.* 2019, *53*, 1040–1044. [CrossRef]
- 95. Bukejs, A.; Legalov, A.A. The first record of Rhynchitidae (Coleoptera) from Rovno amber. *Entomol. Fenn.* **2019**, *30*, 168–172. [CrossRef]
- 96. Wickham, H.F. A report on some recent of fossil Coleoptera from the Miocene Shales of Florissant, I–VIII. *Bull. Lab. Nat. Hist. St. Univ. Iowa* **1912**, *6*, 3–38.
- 97. Wickham, H.F. Fossil Coleoptera from the Wilson Ranch near Florissant, Colorado, I–VII. *Bull. Lab. Nat. Hist. State. Univ. Iowa.* **1913**, *6*, 3–29.
- 98. Zherikhin, V.V. Tertiary weevils (Insecta, Coleoptera: Curculionoidea), identified from the collections of the Senckenberg Museum, Senckenberg. *Lethaea* **1992**, *72*, 169–178.
- 99. Piton, L. Paléontologie du gisement Éocène de Menat (PuydeDôme) (Flore et faune); Imprim. Paul Vallier: ClermontFerrand, France, 1940.
- 100. Wickham, H.F. New fossil Coleoptera from the Florissant beds Bull. *Lab. Nat. Hist. St. Univ. Iowa* **1916**, 7, 3–19, pls. I–IV.
- 101. Wickham, H.F. On some fossil Rhynchophorus Coleoptera from Florissant Colorado, I–IV. *Bull. Am. Mus. Nat. Hist.* **1912**, *31*, 41–55.
- 102. Rheinheimer, J. Neue fossile Rüsselkäfer (Coleoptera: Curculionidae) aus dem Eozän des Baltischen Bernsteins und der Grube Messel bei Darmstadt. *Staatliches. Mus. Nat.* **2007**, *365*, 1–24.
- 103. Legalov, A.A. The oldest Brentidae and Curculionidae (Coleoptera: Curculionoidea) from the Aptian of Bon-Tsagaan. *Hist. Biol.* **2014**, *26*, 6–15. [CrossRef]

- 104. Legalov, A.A. Two new weevil genera of the family Brentidae (Coleoptera) in Baltic amber. *Entomol. Fennica* **2018**, *29*, 161–168. [CrossRef]
- 105. Voss, E. Einige Rüsselkäfer der Tertiärzeit aus baltischen Bernstein (Coleoptera, Curculionidea). *Steenstupia* 1972, 2, 167–181.
- 106. Legalov, A.A.; Bukejs, A. *Succinapion telnovi* n. gen. et n. sp. of the tribe Kalcapiini (Coleoptera: Brentidae: Apioninae) in Baltic amber. *Hist. Biol.* **2014**, *26*, 603–607. [CrossRef]
- Wagner, H. Ein neues *Apion* aus dem baltischen Bernstein (Coleoptera, Curculionidae). *Deut. Entomol. Zeitsch.* 1924, 1924, 134–136.
- 108. Bukejs, A.; Legalov, A.A. The first record of Brentidae (Coleoptera) in Eocene Rovno amber with description of a new fossil species of *Toxorhynchus* Scudder, 1893. *Fossil Record* **2020**, *23*, 169–177. [CrossRef]
- 109. Legalov, A.A. New weevils of the family Brentidae (Coleoptera) in Baltic amber. Paleontol. J.. (In Press).
- 110. Oustalet, M.E. Recherches sur les insectes fossiles des terraines tertiaires de la France. 2me partie. Insectes fossiles d'Aix en Provence. *Ann. Sci. Géol. Paris* **1874**, *5*, 1–347.
- 111. Legalov, A.A. First record of the weevil subfamily Nanophyinae (Coleoptera, Brentidae) from the Eocene of the Green River, United States. *Paleontol. J.* **2015**, *49*, 399–401. [CrossRef]
- 112. Théobald, N. Les insectes fossiles des terrains oligocènes de France. *Bull. Mensuel. Soc. Sci. Nancy* **1937**, *1*, 1–473.
- 113. Legalov, A.A.; Wappler, T. The oldest record of straight-snouted weevils (Coleoptera: Curculionoidea: Brentidae: Brentinae) from the Eocene of Germany. *Hist. Biol.* **2019**, 1–9. [CrossRef]
- 114. Britton, E.B. Beetles from the London clay (Eocene) of Bognor regis, Sussex. *Bull. Br. Mus. Nat. Hist. Geol.* **1960**, *4*, 27–50.
- 115. Legalov, A.A. New weevils (Curculionidae) in Baltic amber. Paleontol. J. 2016, 50, 970–985. [CrossRef]
- 116. Bukejs, A.; Legalov, A.A. A new species of the genus *Dorytomus* Germar, 1817 (Coleoptera, Curculionidae) from Baltic amber. *Entomol. Fenn.* **2019**, *30*, 173–178. [CrossRef]
- 117. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. New weevils (Coleoptera: Curculionidae) from Rovno amber. *Paleontol. J.* **2019**, *53*, 1045–1059. [CrossRef]
- 118. Legalov, A.A. Checklist of Mesozoic Curculionoidea (Coleoptera) with description of new taxa. *Balt. J. Col.* **2010**, *10*, 71–101.
- Oustalet, F.E. Recherches sur les insectes fossiles des terraines tertiaires de la France. Ann. Sci. Géol. Paris 1870, 2, 1–178.
- 120. Beier, M. Miozäne und oligozäne Insekten aus Österreich und den unmitulbar angrenzenden Gebieten. Sitzungsberichte Österreichische Akademie der Wissenschaften, Mathe MatischenNaturwissensschaftliche Klasse, Abteilung 1: Biologie, Mineralogie, Erdkunde und vewandte Wissenschaften **1952**, 161, 129–134.
- 121. Hustache, A. Un curculionide de l'ambre de la Baltique. *Bull. Mens. Soc. Lin. Lyon.* **1942**, *11*, 108–109. [CrossRef]
- 122. Ulke, T. A new genus and species of Curculionidae (Coleoptera) in Baltic amber. Not. Nat. 1947, 19, 1–5.
- 123. Cockerell, T.D.A. Some Eocene insects from Colorado and Wyoming. *Proc. Unit. Stat. Nat. Mus.* **1921**, *59*, 29–39. [CrossRef]
- 124. Haupt, H. Die Käfer (Coleoptera) aus der Eozänen Braunkohle des Geiseltales. Geologica 1950, 6, 1–168.
- 125. Bukejs, A.; Alekseev, V.I.; Legalov, A.A. A new Eocene genus of the subtribe Tylodina (Coleoptera: Curculionidae) and notes concerning local differences of Baltic amber in the Kaliningrad Region. *Foss. Rec.* 2020, 23, 75–81. [CrossRef]
- 126. Deichmueller, J.V. Fossile Insecten aus dem Diatomeenschiefir von Kutschlin bei Bilin, Böhmen. *Nova Acta Leopold. Verh. Kais. Leopold.Carol. Dtsch. Akad. Nat.* **1881**, *42*, 293–331.
- 127. Meunier, F. Sur quelques nouveaux insectes des lignites oligocenès (Aquitanien) de Rott, Siebengebirge (Rhénanie). *Konin. Akad. Wetensch. Amst.* **1924**, *26*, 605–612.
- 128. Heyden, C.H.G. Fossile Insekten aus der Braunkohle der Sieblos. Palaeontographica 1858, 5, 115–120.
- 129. Nazarenko, V.Y.; Perkovsky, E.E. A new genus and species of Dryophthorid weevils (Coleoptera, Dryophthoridae: Stromboscerinae) from the Rovno amber. *Paleontol. J.* **2009**, *43*, 1097–1100. [CrossRef]
- Piton, L.; Theobald, N. La faune entomologique des gisements miopliocènes du Massif Central. *Rev. Sci. Nat. Auvergne* 1935, 2, 1–81.
- 131. Cockerell, T.D.A. Some tertiary fossil insects. An. Mag. Nat. Hist. 1926, 18, 313–324. [CrossRef]

- 132. Kuska, A. Three new species of beetles (Coleoptera: Cantharidae, Anobiidae, Curculionidae) from the Baltic amber. *Ann. Up. Sil. Mus. Bytom Entomol.* **1992**, *3*, 107–113.
- 133. Nazarenko, V.Y.; Legalov, A.A.; Perkovsky, E.E. A new species of the genus *Caulophilus* Woll. (Coleoptera: Curculionidae: Cossoninae) from the Rovno amber. *Paleontol. J.* **2011**, *45*, 287–290. [CrossRef]
- 134. Cockerell, T.D.A. Tertiary insects from Argentina, I. Proc. Unit. Stat. Nat. Mus. 1925, 68, 1–5. [CrossRef]
- Meunier, F. Über einige fossile Insekten aus den Braunkohlenschichten (Aquitanien) von Rott (Siebengebirge).
 Z. Deut. Geol. Gesellsch. 1916, 67, 205–225.
- Wickham, H.F. New species of fossil beetles from Floris sant, Colorado. Proc. US Nat. Mus. 1917, 52, 463–472. [CrossRef]
- 137. Cockerell, T.D.A. Fossil arthropods in the British Museum. II. An. Mag. Nat. Hist. 1920, 9, 273–279. [CrossRef]
- 138. Legalov, A.A.; Bukejs, A. A new genus of the tribe Ceutorhynchini (Coleoptera: Curculionidae) in Baltic amber. *Entomol. Fenn.* **2018**, *29*, 185–190. [CrossRef]
- 139. Kuska, A. New beetle species (Coleoptera, Cantharidae, Curculionidae) from the Baltic amber. *Pr. Muz. Ziemi* **1996**, *44*, 13–23.
- 140. Legalov, A.A. A new tribe Palaeoanoplini trib. nov. (Coleoptera: Curculionidae) in Baltic amber. *Paleontol. J.*. (in press).
- 141. Legalov, A.A. A new genus of the tribe Curculionini (Coleoptera: Curculionidae) from Baltic amber. *Paleontol. J.* **2019**, *53*, 1036–1039. [CrossRef]
- 142. Zherikhin, V.V. A weevil of the tribe Curculionini (Insecta: Coleoptera, Curculionidae) from the Paleogene of Havighorst, Germany. *Mitt. Geol.–Paläontol. Inst. Hambg.* **1995**, *78*, 145–148.
- 143. Cockerell, T.D.A. New species of North American fossil beetles, cockroaches and tsetse flies. *Proc. Unit. Stat. Nat. Mus.* **1918**, *54*, 301–311, pls. 54–55. [CrossRef]
- 144. Bukejs, A.; Legalov, A.A. *Groehnius*, a new genus of Eugnomini (Coleoptera: Curculionidae) from Eocene Baltic amber. *Foss. Rec.* **2019**, *22*, 45–49. [CrossRef]
- 145. Nazarenko, V.Y.; Perkovsky, E.E. A new species of derelomine weevils (Coleoptera, Curculionidae, Curculioninae: Acalyptini) from the Rovno amber. *Paleontol. J.* **2016**, *50*, 991–996. [CrossRef]
- 146. Heer, O. Ueber die fossilen Insecten von Aix in der Provence. *Vierteljahr. Naturforsch. Gesllschaft. Zürich* **1856**, 5, 1–40.
- 147. Germar, E.F. Ueber einige Insekten aus Tertiärgebildungen. Z. Deut. Geol. Gesellsch. 1849, 1, 52–66. [CrossRef]
- Nicolas, M. Insectes fossiles d'Aix (Provence). Descriptions de Quelques Nouvelles Espèces (Collection de M. Matheron). Assoc. Fr. pour l'Avancement Sci. 1891, 2, 425–438.
- Giebel, C.G.A. Fauna der Vorwelt mit steter Berücksichtigung der lebenden Thiere. Insecten und Spinnen. Monogr. Dargestellt 1856, 2, 1–511.
- 150. Zherikhin, V.V. Oligocene seed beetles and weevils (Coleoptera: Bruchidae, Curculionidae) from Bol'shaya Svetlovodnaja River (northern Primorie). In *Kainozoi Dal'nego Vost. (Cenozoic of the Far East)*; Institute Biology Soil Science: Vladivostok, Russia, 1989; pp. 145–150.
- 151. Legalov, A.A.; Bukejs, A. A new species of the genus *Archaeocallirhopalus* (Coleoptera: Curculionidae) in Baltic amber. *Entomol. Fenn.* **2015**, *26*, 25–29. [CrossRef]
- 152. Haupt, H. Beitrag zur Kenntnis der Eozänen Arthropodenfauna des Gieseltales. *Nova Acta Leopoldiana* **1956**, *18*, 1–90.
- 153. Wanat, M.; Borovec, L. New genus of weevil (Coleoptera, Curculionidae) from Baltic amber. *Pol. Pismo Entomol.* **1986**, *56*, 243–247.
- 154. Yunakov, N.N.; Kirejtshuk, A.G. New genus and species of broad-nosed weevils from Baltic amber and notes on fossils of the subfamily Entiminae (Coleoptera, Curculionidae). ZooKeys 2011, 160, 73–96. [CrossRef] [PubMed]
- 155. Bukejs, A.; Legalov, A.A. First record of the tribe Naupactini (Coleoptera: Curculionidae) in Rovno amber. *Foss. Rec.* **2019**, *22*, 25–30. [CrossRef]
- 156. Wickham, H.F. New Miocene Coleoptera from Florissant. *Bull. Mus. Compar. Zool.* 1914, 58, 423–494, pls. 1–16.
- 157. Germar, E.F. Fauna Insectorum europae. 19. Insectorum Protogaea Specimen Systems Insecta Carbonum Fossilum; Kuemmelii: Halae, Germany, 1837; Available online: http://dl.ub.uni-freiburg.de/diglit/germar1837 (accessed on 6 September 2020).

- 158. Williams, M.Y. The stratigraphy and palaeontology of Hong Kong and the new territories. *Trans. Royal. Soc. Can.* **1943**, *3*, 93–116.
- Cockerell, T.D.A. The fauna of the Sunchal (or Margas Verdes) Formation, Northern Argentina. *Am. Mus. Nov.* 1936, 886, 1–9.
- 160. Wickham, H.F. Coleoptera from the Lower Eocene (Wilcox) clays. J. Wash. Acad. Sci. 1929, 19, 148–150.
- 161. Heer, O. Die miocene Flora and Fauna Spitsbergens, I-XVI. Kongl. Sven. Vetensk.-Akad. Handl. 1870, 8, 1-98.
- 162. Cockerell, T.D.A. Fossil arthropods in the British Museum. III. An. Mag. Nat. Hist. 1920, 9, 65–72. [CrossRef]
- 163. Cockerell, T.D.A. Some American fossil Insects. Proc. Unit. Stat. Nat. Mus. 1917, 51, 89–106. [CrossRef]
- 164. Piton, L.; Rudel, M.A. Sur de nouveaux gisemente d'Insectes fossiles dans l'Oligocene de la Limagne. *Bull. Mens. Soc. Linn. Lyon* 1936, 5, 78–81.
- 165. Cockerell, T.D.A. Eocene fossils from Green River, Wioming. Am. J. Sci. 1909, 28, 447–448. [CrossRef]
- Piton, L.; Theobald, N. Les insectes fossiles du PuydeMur (Limagne). Bull. Menseul. Soc. Sci. Nancy 1937, 9, 202–214.
- 167. Peris, D.; Solórzano Kraemer, M.M.; Smith, S.M.; Cognato, A.I. *Eoplatypus jordali* gen.n. et sp.n., the first described Platypodinae (Coleoptera: Curculionidae) from Baltic amber. *Arthropod Syst. Phyl.* 2017, 75, 85–194.
- 168. Schedl, K. Die Borkenkäfer des baltischen Bernsteins. Zent. Ges. Entomol. 1947, 2, 12–45.
- 169. Hagedorn, M. Borkenkäfer des baltischen Bersteins. *Schr. Phys.-Ökonom. Gesell. König. Prus.* **1906**, 47, 115–121.
- 170. Germar, E.F. Insekten in Bernstein eingeschlossen, beschrieben aus dem academischen Mineralien Cabinet zu Halle. *Mag. Entomol.* **1813**, *1*, 11–18.
- 171. Petrov, A.V.; Zherikhin, V.V. A new species of bark beetles of the genus *Hylesinus* (Insecta: Coleoptera: Scolytidae) from the Oligocene of France. *Paleontol. J.* **2004**, *38*, 187–189.
- 172. Petrov, A.V.; Perkovsky, E.E. New species of bark beetles from the Rovno amber (Insecta: Coleoptera: Scolytidae). *Paleontol. J.* 2008, 42, 406–408. [CrossRef]
- 173. Petrov, A.V.; Perkovsky, E.E. A new genus and species of Scolytinae (Coleoptera: Curculionidae) from the Rovno amber. *Paleontol. J.* **2018**, *52*, 164–167. [CrossRef]
- 174. Martins-Neto, R.G. Review of some Insecta from Mesozoic and Cenozoic Brazilian deposits with descriptions of new taxa. *Acta Geol. Leop.* **2001**, *24*, 115–124.
- 175. Motschulsky, V. Voyages. Lettres de M. de Motschulsky a M. Ménétriés, 4. Étud. Entomol. 1857, 5, 21–38.
- 176. Lin, Q.B.; Lee, C.M. Early Tertiary insects from Peng Chau, Hong Kong. *Palaeontol. Strat. Hong Kong* **1997**, *1*, 185–199.
- 177. Legalov, A.A. Fossil history of Mesozoic weevils (Coleoptera: Curculionoidea). Insect Sci. 2012, 19, 683–698. [CrossRef]
- 178. Kuschel, G. Reappraisal of the Baltic Amber Curculionoidea described by E. Voss. *Mitt. Geol.-Paläontol. Inst. Hambg.* **1992**, *73*, 191–215.
- 179. Legalov, A.A. A review of fossil and recent species of the family Ithyceridae (Coleoptera) from the world fauna, I–IV. *Amur. Zool. Zh.* **2009**, *1*, 117–131.
- 180. Legalov, A.A. A new classification of ecological groups of the leaf-rolling weevils (Coleoptera: Rhynchitidae, Attelabidae). *Evraz. Entomol. Zhur.* **2004**, *3*, 43–45.
- 181. Caldara, R.; Franz, N.M.; Oberprieler, R.G. Chapter 2. Curculioninae Latreille 1802. In *Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles*; Volume 3: Morphology and systematics (Phytophaga); Kristensen, N.P., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2014; Volume 3, pp. 589–628.
- 182. Meregalli, M. 3.7.6. Lixinae Schoenherr 1823. In *Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles;* Volume 3: Morphology and Systematics (Phytophaga); Kristensen, N.P., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2014; Volume 3, pp. 523–528.
- Alonso-Zarazaga, M.A. Revision of the supraspecific taxa in the Palaearctic Apionidae Schoenherr 1823 (Coleoptera, Curculionoidea).
 Subfamily Apioninae Schoenherr, 1823: Introduction, keys and descriptions. *Graellsia* 1990, 46, 19–156.
- Gruas-Cavagnetto, C. Etude palynologique del'Eocene du Bassin Anglo-Parisien. Mem. Soc. Geol. Fr. 1978, 56, 1–64.
- Archibald, S.B.; Mathewes, R.W. Early Eocene insects from Quilchena, British Columbia and their paleoclimatic implications. *Can. J. Zool.* 2000, 78, 1441–1462. [CrossRef]

- 186. Gratshev, V.G.; Zherikhin, V.V. The fossil record of weevils and related beetle families (Coleoptera, Curculionoidea). *Acta Zool. Cracov.* **2003**, *46*, 129–138.
- 187. Wilf, P.; Donovan, M.P.; Cúneo, N.R.; Gandolfo, M.A. The fossil flip-leaves (Retrophyllum, Podocarpaceae) of southern South America. *Am. J. Bot.* **2017**, *104*, 1344–1369. [CrossRef] [PubMed]
- Lyal, C.H.C. 3.7.7. Molytinae Schoenherr 1823. In *Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles;* Volume 3: Morphology and Systematics (Phytophaga); Kristensen, N.P., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2014; Volume 3, pp. 529–569.
- 189. Klebs, R. Über Bernsteinschlüsse im allgemein und die Coleopteren meiner Bernsteinsammlung. Schr. Phys.-ökonom. Gesellsch. Königsberg in Pr. 1910, 51, 217–242.
- 190. Kirejtshuk, A.G.; Nel, A. Current knowledge of Coleoptera (Insecta) from the lowermost Eocene Oise amber. *Insect Syst. Evol.* **2013**, *44*, 175–201. [CrossRef]
- 191. Alekseev, V.I. Coleoptera from the middle-upper Eocene European ambers: Generic composition, zoogeography and climatic implications. *Zootaxa* **2017**, *4290*, 401–443. [CrossRef]
- 192. O'Brien, C.W.; Tang, W. Revision of the New World cycad weevils of the subtribe Allocorynina, with description of two new genera and three new subgenera (Coleoptera: Belidae: Oxycoryninae). Zootaxa 2015, 3970, 1–87. [CrossRef] [PubMed]
- 193. Poinar, G.J.; Legalov, A.A. *Pleurambus strongylus* n. gen., n. sp. (Coleoptera: Belidae) in Dominican amber. *Hist. Biol.* **2014**, *26*, 670–674. [CrossRef]
- 194. Hassan, M.Y. Tertiary faunas from Kap Brewster, East Greenland. Medd. om Grønland 1953, 111, 1–42.
- Lutz, H. Beitrag zur Kenntnis der unteroligozänen Insektenfauna von Cereste (Süd-Frankreich). Doc. Nat. 1984, 21, 1–26.
- 196. Prokop, J.; Fikacek, M. Early Oligocene insect fauna from Seifhennersdorf (Saxony, Germany). *Acta Mus. Nat. Pragae* **2007**, *63*, 205–213.
- 197. Cifuentes-Ruiz, P.; Vega, F.J.; Cevallos Ferriz, S.R.S.; Gonzalez-Soriano, E.; Zaragoza Caballero, S.; Garibayromero, L. Oligocene Scorpion and insects (Plecoptera and Coleoptera) from the Los Ahuehuetes Locality, Puebla, Mexico. *Ameghiniana* **2007**, *44*, 673–679.
- 198. Prokop, J. Remarks on palaeoenviromental changes based on reviewed Tertiary insect associations from the Krušnéhory piedmont basins and the Ěeské støedohoøí Mts in northwestern Bohemia (Czech Republic). Acta Zool. Cracov. 2003, 46, 329–344.
- Wedmann, S.; Poschmann, M.; Hörnschemeyer, T. Fossil insects from the Late Oligocene Enspel Lagerstätte and their palaeobiogeographic and palaeoclimatic significance. *Palaeobio. Palaeoenv.* 2010, 90, 49–58. [CrossRef]
- 200. Kirejtshuk, A.G.; Ponomarenko, A.G.; Kurochkin, A.S.; Alexeev, A.V.; Gratshev, V.G.; Solodovnikov, A.V.; Krell, F.-T.; Soriano, C. The beetle (Coleoptera) fauna of the Insect Limestone (late Eocene), Isle of Wight, southern England. *Earth Env. Sci. Trans. R. Soc. Edinb.* 2019, 110, 405–492. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).