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Abstract: A simplified nonlinear dispersive BOUSSINESQ system of the BENJAMIN–BONA–MAHONY

(BBM)-type, initially derived by MITSOTAKIS (2009), is employed here in order to model the
generation and propagation of surface water waves over variable bottom. The simplification consists
in prolongating the so-called BOUSSINESQ approximation to bathymetry terms, as well. Using the
finite element method and the FreeFem++ software, we solve this system numerically for three
different complexities for the bathymetry function: a flat bottom case, a variable bottom in space,
and a variable bottom both in space and in time. The last case is illustrated with the JAVA 2006
tsunami event. This article is designed to be a pedagogical paper presenting to tsunami wave
community a new technology and a novel adaptivity technique, along with all source codes necessary
to implement it.
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1. Introduction

Tsunami waves represent undeniably a complex natural process. Moreover, they represent a major
risk for exposed coastal areas, including the local populations, infrastructure, etc. The present work
(the present paper is also available as a preprint [1]) is devoted to the modeling tsunami generation
and propagation processes. Moreover, this article is designed as a tutorial paper in order to show to the
readers how easily these processes can be modeled in the framework of the FreeFem++, which is a free
software (under the LGPL license). FreeFem++ offers a large variety of triangular finite elements (linear
and quadratic LAGRANGIAN elements, discontinuous P1, RAVIART–THOMAS elements, etc.) to solve
Partial Differential Equations (PDEs). It is an integrated product with its own high level programming
language and a syntax close to mathematical formulations, making the implementation of numerical
algorithms very easy. Among the features making FreeFem++ an easy-to-use and highly adaptive
software, we recall the advanced automatic mesh generator, mesh adaptation, problem description by
its variational formulation, automatic interpolation of data, color display on line, postscript printouts,
etc. The FreeFem++ programming framework offers the advantage of hiding all technical issues related
to the implementation of the finite element method [2].
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Traditionally, tsunami waves are modeled using hydrostatic models [3–6]. In the present
manuscript, we employ a non-hydrostatic BOUSSINESQ-type system to be specified below. This class of
models is distinguished by the application of the so-called BOUSSINESQ approximation [7]. They can
be used to study a variety of water wave phenomena in harbors, coastal dynamics, and, of course,
tsunami generation and propagation problems [8–12].

In this study, we consider an simplified BENJAMIN–BONA–MAHONY (sBBM) system derived by
D. MITSOTAKIS (2009) in 2D over a variable bottom in space h(x, y) and in time ζ(x, y, t) [13]:

ηt +∇ · ((h + η)V) + ζt + Ã∇ ·
(

h2∇ζt

)
+∇ ·

{
Ah2 [∇ (∇h ·V) +∇h∇ ·V]− bh2∇ηt

}
= 0 ,

Vt + g∇η +
1
2
∇|V|2 + Bgh [∇ (∇h · ∇η) +∇h∆η]− dh2∆Vt − Bh∇ζtt = 0 ,

(1)

where

â =

(
θ − 1

2

)
, b̂ =

1
2

(
(θ − 1)2 − 1

3

)
, Ã = νâ− (1− ν)b̂, A = −b̂, B = 1− θ,

b =
1
2

(
θ2 − 1

3

)
(1− ν), d =

1
2

(
1− θ2

)
(1− µ).

Constants θ, µ, ν are real parameters and g is the acceleration due to gravity. System (1)
is an asymptotic approximation to the three-dimensional full EULER equations describing the
irrotational free surface flow of an ideal fluid Ω ⊂ R3 [14,15], which is bounded below by
−zb(x, y, t) = −h(x, y) − ζ(x, y, t) and above by the free surface elevation η(x, y, t) (cf. Figure 1).
The system (1) can be considered as a generalization of the classical BOUSSINESQ system put forward
by D. PEREGRINE [16,17].

Figure 1. The sketch of the physical domain Ω .

The variables in (1) are X = (x, y) ∈ Ω and t > 0 are proportional to position along the channel
and time, respectively. η = η(X, t) being proportional to the deviation of the free surface departing

from its rest position and V = V(X, t) =

(
u(X, t)
v(X, t)

)
= (u, v)> = (u; v) being proportional to the

horizontal velocity of the fluid at some height. In our study, we suppose that η = O(a), with the
characteristic wave amplitude a (in other words, η is the difference between the water free surface and
the still water level). In addition, we set λ = O(`) be the wave length. Moreover, we limit ourselves to
the case where η + zb > 0 (there are no dry zones in our computations).
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This paper is organized as follows. In Section 2, we present the space and time discretization of a
simplified version (4) of Equations (1). In Section 3, we present the new domain adaptation technique.
In Section 4, we establish the convergence of our numerical code, which validates the adequacy of
the chosen finite element discretization. Then, with this code, we simulate the propagation of a
tsunami-like wave generated by the moving bottom (e.g., an earthquake). We present several test cases
in various regions of the world. First, we take a MEDITERRANEAN sea-shaped computational domain
with flat bottom, and we solve the sBBM system (Please, notice that BBM–BBM (1) and sBBM (4)
systems coincide over flat bottoms.) (1) in it. The mesh in this study is generated from a space image.
Then, we consider the JAVA island region with real world bathymetry. Finally, we apply this solver to
simulate a realistic example of a tsunami wave near the JAVA island which took place in 2006. The main
conclusions of this study are outlined in Section 5.

2. Discretization of the sBBM System

In this section, we present the spatial discretization of (1) using Finite Element Method (FEM) with
P1 continuous piecewise linear elements. For the time marching scheme, we use an explicit second
order RUNGE–KUTTA method.

2.1. Spatial Discretization

We let Ω be a convex, plane domain, and Th be a regular, quasi-uniform triangulation of Ω
with triangles of maximum size h < 1. Setting Vh = {vh ∈ C0(Ω̄); vh

∣∣
T ∈ P1(T), ∀T ∈ Th} be a

finite-dimensional, where P1 is the set of all polynomials of degree ≤ 1 with real coefficients and
denoting by 〈·; ·〉 the standard L2 inner product on Ω, we consider the weak formulation of System (1):
find ηh, uh, vh ∈ Vh such that ∀φ

η
h , φu

h , φv
h ∈ Vh, we have:〈

ηht − b∇ ·
(
h2∇ηht

)
+∇ · ((h + ηh) (uh; vh)) + ζt; φ

η
h

〉
+
〈

Ã∇ ·
(
h2∇ζt

)
; φ

η
h

〉
+
〈
∇ ·

{
Ah2 [∇ (∇h · (uh; vh)) +∇h∇ · (uh; vh)]

}
; φ

η
h

〉
= 0,〈

uht − dh2∆uht + gηxh + uhuhx + vhvhx − Bhζxtt; φu
h
〉
+ Bg

〈
h
[
(∇h · ∇ηh)x + hx∆ηh

]
; φu

h

〉
= 0,〈

vht − dh2∆vht + gηyh + uhuhy + vhvhy − Bhζytt; φu
h

〉
+ Bg

〈
h
[
(∇h · ∇ηh)y + hy∆ηh

]
; φv

h

〉
= 0.

(2)

For simplicity, we set φ
η
h = Φη , φu

h = Φu, φv
h = Φv, ηh = E , uh = U , vh = V , so that System (2)

can be rewritten in the following way:



〈
∂tE − b∇ ·

(
h2∇∂tE

)
; Φη

〉
= −

〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt

+Ã∇ ·
(
h2∇ζt

)
+ A∇ ·

{
h2 [∇ (∇h · (U ;V)) +∇h∇ · (U ;V)]

}
; Φη

〉
= F (E ,U ,V , Φη) ,〈

(Id − dh2∆)∂tU ; Φu
〉

= −
〈

gEx + UUx + VVx + Bgh
[
(∇h · ∇E)x + hx∆E

]
− Bhζxtt; Φu

〉
= G (E ,U ,V , Φu) ,〈

(Id − dh2∆)∂tV ; Φv
〉

= −
〈

gEy + UUy + VVy + Bgh
[
(∇h · ∇E)y + hy∆E

]
− Bhζytt; Φv

〉
= H (E ,U ,V , Φu) .

(3)

However, the model presented above contains some drawbacks. In particular, when the
bathymetry function contains steep gradients, it causes instabilities in the numerical solution. We have
to mention that this problem is well-known in the framework of BOUSSINESQ-type equations [18].
In order to avoid this kind of problems and to have a robust numerical model, we take two measures.
First of all, we perform the smoothing of the bathymetry data which is fed into the model. In this way,
we avoid noise in the bathymetry gradient. As a second and more radical step, we neglect higher order
derivatives of the bathymetry function as it was proposed earlier in Reference [13]. Thus, from now on
we shall use the following system of equations:
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〈
∂tE ; Φη

〉
+ b

〈
h2∇∂tE ;∇(Φη)

〉
−
∫

Γn

bh2Φη ∂(∂tE)
∂n

∂γ = F (E ,U ,V , Φη)〈
∂tU ; Φu

〉
+ d

〈
h2∇∂tU ;∇Φu〉+ d 〈2h∇h · ∇∂tU ; Φu〉 −

∫
Γn

dh2Φu ∂(∂tU )
∂n

∂γ = G (E ,U ,V , Φu)〈
∂tV ; Φv

〉
+ d

〈
h2∇∂tV ;∇Φv〉+ d 〈2h∇h · ∇∂tV ; Φv〉 −

∫
Γn

dh2Φv ∂(∂tV)
∂n

∂γ = H (E ,U ,V , Φv)

(4)

with

F (E ,U ,V , Φη) = −
〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt; Φη

〉
−Ã

〈
2hhxζxt + 2hhyζyt; Φη

〉
− A

〈
−2hhxhyVx + 2hh2

xVy; Φη
〉
+ A

(〈
2h2hxUx + h2hyVx; Φη

x

〉
+
〈

h2hyUx

+h2hxUy + h2hxVx + 2h2hyVy; Φη
y

〉)
− A

∫
Γn

(
(3h2hx + h2hy)Φη ∂U

∂n
+ (h2hx + 3h2hy)Φη ∂V

∂n

)
∂γ,

G (E ,U ,V , Φu) = −
〈

g
(

Id − B
(

2h2
x + h2

y

))
Ex + UUx + VVx − BghxhyEy − Bhζxtt; Φu

〉
+ Bg 〈2hhxEx; Φu

x〉

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
−
∫

Γn

Bg(3hhx + hhy)Φu ∂E
∂n

∂γ,

and

H (E ,U ,V , Φv) = −
〈
−2BghxhyEx + UUy + VVy + g

(
Id − 2Bh2

y

)
Ey − Bhζytt; Φv

〉
+ Bg

〈
hhyEx; Φv

x
〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
−
∫

Γn

Bg(hhx + 3hhy)Φv ∂E
∂n

∂γ.

Several intermediate computations are reported in Appendix A. We would like to underline the
fact that the performed simplification allows us to gain in numerical model stability and robustness at
the price of some higher order bathymetry effects.

2.2. Time Marching Scheme

Our method is based on the explicit second order RUNGE–KUTTA scheme. For that, let us
denote by (En+1,Un+1,Vn+1) and (En,Un,Vn) the approximate values at time t = tn+1 and t = tn,
respectively and by δt the time step size. Then, owing to (4), the unknown fields at time t = tn+1 are
defined as the solution of the following system:

〈En+1; Φη〉 = 〈En +
E k1 + E k2

2
; Φη〉,

〈Un+1; Φu〉 = 〈Un +
U k1 + U k2

2
; Φu〉,

〈Vn+1; Φv〉 = 〈Vn +
V k1 + V k2

2
; Φv〉,

(5)

where

〈
E k1; Φη

〉
+ b

〈
h2∇E k1;∇(Φη)

〉
−
∫

Γn

bh2Φη ∂(E k1)

∂n
∂γ = δt · F (En,Un,Vn, Φη) ,〈

U k1 + 2dh∇h · ∇U k1; Φu
〉
+ d

〈
h2∇U k1;∇Φu

〉
−
∫

Γn

dh2Φu ∂(U k1)

∂n
∂γ = δt · G (En,Un,Vn, Φu) ,〈

V k1 + 2dh∇h · ∇V k1; Φv
〉
+ d

〈
h2∇V k1;∇Φv

〉
−
∫

Γn

dh2Φv ∂(V k1)

∂n
∂γ = δt · H (En,Un,Vn, Φv)

(6)
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and 〈
E k2; Φη

〉
+ b

〈
h2∇E k2;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(E k2)

∂n
∂γ = δt · F

(
En + E k1,Un + U k1,Vn + V k1, Φη

)
,〈

U k2 + 2dh∇h · ∇U k2; Φu〉+ d
〈

h2∇U k2;∇Φu〉−∫
Γn

dh2Φu ∂(U k2)

∂n
∂γ = δt · G

(
En + E k1,Un + U k1,Vn + V k1, Φu) ,〈

V k2 + 2dh∇h · ∇V k2; Φv〉+ d
〈

h2∇V k2;∇Φv〉−∫
Γn

dD2Φv ∂(V k2)

∂n
∂γ = δt · H

(
En + E k1,Un + U k1,Vn + V k1, Φv) .

(7)

3. New Domain Adaptation, Domains Computation and Initial Data

We present here the new domain adaptation technique that will be compared in the sequel with
the mesh adaptation used in FreeFem++. In order to complete the literature review, we would like to
mention that alternative approaches exist, see, e.g., Reference [19,20].

3.1. New Domain Adaptation Technique

Since some computation domains for many applications (here for tsunami waves [21]) may be
huge and the initial data is concentrated in a small domain, a circle C(O, R) or a rectangle [a, b]× [c, d],
before starting to propagate in the domain, we present here an idea to build a moving computation
domain around the solution only, as when we use a mesh adaptation. The difference between these
two methods is that the moving domain will be a cut from the initial one, i.e., all initial vertices,
edges, and boundary labels are conserved, and a new label is defined for the new boundary; since the
mesh adaptation technique does not conserve the initial vertices and edges, when we interpolate the
solution from the old to new mesh, we will lose some information in the mesh adaptation technique
but not with the moving domain.

Firstly, we cut from the initial mesh Thinit a circle or a rectangle zone Th where our initial
solution lives (using trunc in FreeFem++, see (a) in Figure 2), we let uadapt be the initial solution used
for the domain adaptation, and we follow this algorithm:

• We deduce the limit min max of Th on x and y direction (using boundingbox in FreeFem++).
• We increase the mesh from Th to Th1 by adding layers from the original mesh (using trunc in

FreeFem++), the added zone is a size of epsadapt from each side, and we mapped uadapt to unew
(using interpolate in FreeFem++, see (b) in Figure 2).

• We define a HEAVISIDE function unewadapt which have a 1 value if the absolute value of unew is
grater then or equal to a defined error (erradapt) by the user and 0 otherwise (see (c) in Figure 2).

• We smooth the function unewadapt (see (d) in Figure 2)) solving the following problem:

β usmadapt− ∆ usmadapt = β f, (8)

with zero DIRICHLET Boundary Condition (BC) only on the new boundary label of Th1 and
a NEUMANN BC in the other boundary label. Here β is the real coefficient that controls the
smoothness of the solution and f=unewadapt.

• We define a HEAVISIDE function ufinal which has a 1 value if the absolute value of usmadapt is
greater then or equal to a defined error (erradapt) by the user and 0 otherwise (see (c) in Figure 2).

• We cut from Th1, the region where ufinal is grater then a defined isoline isoadapt by the user
in order to obtain the final mesh Thnew (using trunc in FreeFem++), then we obtain the initial
solution mapped over the final mesh using interpolate in FreeFem++, see (f) in Figure 2).

We use a reflective Boundary Condition (BC) on the new boundary, i.e., homogeneous NEUMANN

BC for η and homogeneous DIRICHLET BC, for the velocity V. This choice is justified theoretically over
flat bottom case in Reference [22]. Moreover, the homogeneous NEUMANN BC for η can be shown to
hold exactly in the full EULER equations on solid vertical walls; see Reference [23] (Section §2.1.4) for
the proof.



Geosciences 2020, 10, 351 6 of 23

Figure 2. Domain adaptation technique step: (a): initial solution, (b): the solution unew mapped
from the initial solution over a mesh augmented by epsadapt, (c): the new HEAVISIDE function
unewadapt which have a value of 1 (the red part in the figure) if |unew| ≥ erradapt and 0 otherwise,
(d): the function usmadapt which is the smoothness of the unewadapt, (e): the new HEAVISIDE function
ufinal which have a value of 1 (the red part in the figure) if |usmadapt| ≥erradapt and 0 otherwise,
(f): mapped of the initial solution to the final domain adapted.

3.2. Domains Computation

For the BBM–BBM system over a flat bottom, we use a mesh generated through a photo of the
MEDITERRANEAN sea (a cut of the mesh around the CRETE island is shown in Figure 3 at left panel),
and, for the sBBM system over a variable bottom in space and in time, we use a mesh generated using
an imported bathymetry fxy for the sea near the JAVA island, which can be downloaded from the
National Oceanic and Atmospheric Administration (NOAA) (https://maps.ngdc.noaa.gov/viewers/
wcs-client/) website where, in this case, we remove the dry zone from our mesh and keep only the wet
zone. We can smooth the bathymetric data obtained from NOAA (cf. Figure 4, left panel) by solving (8)
with f = fxy. For all simulations with realistic bathymetry, we use β = 20 in (8) to smooth the initial
bathymetry after the generation of the mesh (cf. Figure 4, right panel) in order to ensure the stability
of the numerical method. We also mention that we change the depth close to the shoreline to 100 m in
order to avoid the run-up problem in this study. Finally, all types of meshes used in our computations
are depicted in Figure 5.

The bathymetry data downloaded from the NOAA website are in geographical degrees
coordinates and we need to convert them back to meters and a CARTESIAN system. So, on the
one hand, we must know the degree of Latitude (South and North) and of Longitude (West and East)
of our domain where we can deduce the Latitude lat0 = 0.5(latSouth + latNorth) and the Longitude
long0 = 0.5(longWest + longEast). On the other hand, we must take into account the spherical shape of
the EARTH, even if it does not play significant role because of the small spatial scale of the experiments.
So, we know that the radius of the EARTH near the equator is Requator = 6,378,137 km and near to the
pole Rpole = 6,356,752 km; thus, the radius of our domain equals to:

https://maps.ngdc.noaa.gov/viewers/wcs-client/
https://maps.ngdc.noaa.gov/viewers/wcs-client/
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R =

√√√√√(
R2

equator cos(lat0 · π/180)
)2

+
(

R2
pole sin(lat0 · π/180)

)2(
Requator cos(lat0 · π/180)

)2
+
(

Rpole sin(lat0 · π/180)
)2 .

(a) (b)

Figure 3. Left (a): the mesh around the CRETE island. Right (b): the place of �: wave gauge and
?: epicenter.

(a) (b)

Figure 4. Left (a): Bathymetry downloaded from the National Oceanic and Atmospheric Administration
(NOAA) website, (min = −7239 m and max = 3002 m). Right (b): smoothed bathymetry with β = 20
in (8), (min = −6207 m and max = −100 m).

(a) (b) (c)

Figure 5. The mesh and the numerical isoline of the solution at t = 1000 s, with the full method at the
left panel (a), the domain adaptive method at the center panel (b) and the FreeFem++ adaptation with
err=1.e-7 at the right panel (c).
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So, we move the mesh of our domain using the following translation (coefl0 = πR/180):

[x; y] −→ [(x− lon0) cos(πy/180)coefl0; (y− lat0)coefl0].

Finally, for the active generation case, since the fault plane is considered to be the rectangle
with vertices located at (109.20508◦ (Lon),−10.37387◦ (Lat)), (106.50434◦ (Lon),−9.45925◦ (Lat)),
(106.72382◦ (Lon),−8.82807◦ (Lat)) and (109.42455◦ (Lon),−9.74269◦ (Lat)), we will consider that
our bottom displacement is concentrated on the big rectangle which is equidistant of 1◦ from each side
of the initial fault plane, as in Figure 6 (left panel).

(a) (b)

Figure 6. Left panel (a): Surface projection of the fault’s plane and the mesh around, �: wave gauge,
?: epicenter. Right panel (b): the 14-th Okada solution (min = −0.09 m, max = 0.17 m ).

3.3. Initial Data

Tsunami waves considered in this study are generated by the co-seismic deformation of the
Ocean’s or sea’s bottom due to an earthquake. The adopted modeling of the tsunami wave generation
process is inspired by [10,13,24,25]. The co-seismic displacement is computed according to the
celebrated OKADA’s solution [26,27]. We assume the dip-slip dislocation process underlying the
earthquake. The vertical component of displacement vector O(x, y) is given by the following formulas
employing CHINNERY’s notation, cf. [24,25]:

f (ξ, η) ||= f (ξ, p)− f (ξ, p−W)− f (ξ − L, p) + f (ξ − L, p−W) ,

O(x, y) = − U
2π

(
d̃q

R(R + ξ)
+ sin δ arctan

ξη

qR
− I sin δ cos δ

)∣∣∣∣∣∣∣∣ ,

where
ξ = (x− x0) cos φ + (y− y0) sin φ, Y = −(x− x0) sin φ + (y− y0) cos φ,

p = Y cos δ + d sin δ, q = Y sin δ− d cos δ,

ỹ = η cos δ + q sin δ, d̃ = η sin δ− q cos δ,

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2, X2 = ξ2 + q2
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and

I =


µ

λ + µ

2
cos δ

arctan
η(X + q cos δ) + X(R + X) sin δ

ξ(R + X) cos δ
if cos δ 6= 0,

µ

λ + µ

ξ sin δ

R + d̃
if cos δ = 0.

Here, W and L are the width and the length of the rectangular fault, (x, y) are the points where we
computes displacements, (x0, y0) is the epicenter, d = fault depth(x0, y0) + W sin δ, δ is the dip angle,
θ is the rake angle, D is the BURGERS’s vector, U = |D| sin θ is the slip on the fault, φ is the strike angle
which is measured conventionally in the counter-clockwise direction from the North (cf. Figure 7 (left)),
µ, λ are the LAMÉ constants derived from elastic-wave velocities: λ = ρc

(
V2

P −V2
S
)

and µ = ρcV2
S ,

where ρc is the crust density, VP is the compressional-wave (P−wave) velocity, VS is the shear-wave
(S−wave) velocity. The Matlab script to compute the OKADA solution can be downloaded at the
following URL: https://mathworks.com/matlabcentral/fileexchange/39819-okada-solution/.

We shall distinguish here the two types of tsunami wave generation mechanisms [28,29]: active and
passive generation mechanisms.

(a) (b)

Figure 7. Geometry of the source model (a) and the initial solution for η ((b), min = −0.46 m,
max = 0.71 m).

3.3.1. Passive Generation

We remind that the passive generation approach consists in transposing the bottom deformation
on the free surface as an initial condition for tsunami propagation codes. In order to compute the initial
data for η(x, y, 0) = O(x, y) in meters (cf. Figure 7 (right)), V(x, y, 0) = 0 which is referred to as a passive
generation of a tsunami wave near the JAVA island, using our domain adaptive technique, we will use
the fact that the solution is concentrated in the small rectangle [x0− 3.2W; x0 + 1.2W]× [y0− L; y0 + L]
where L = 100 km, W = 50 km, δ = 10.35◦, φ = 288.94◦, θ = 95◦, U = 2 m, ρc = 2700 kg/m3,
VP = 6000 m/s, VS = 3400 m/s, (x0; y0) = (107.345◦,−9.295◦) and the fault depth 10 km. All these
geophysical parameters can be downloaded from this file hosted by United States Geological Survey
(USGS): https://Earthquake.usgs.gov/archive/product/finite-fault/usp000ensm/us/1486510367579/
web/p000ensm.param.

3.3.2. Active Generation

In contrast to passive generation, the active generation approach consists in generating a tsunami
waves by computing fluid layer interaction with moving bottom. For a more realistic case of the JAVA

2006 event, we use precisely this so-called active generation approach by following Reference [10,30].
In this case, we consider zero initial conditions for both the free surface elevation and the velocity field,
as well as assume that the bottom is moving in time. This case may be described by considering the
bottom motion formula: −zb(x, y, t) = −h(x, y)− ζ(x, y, t) with

ζ(x, y, t) =
Nx ·Ny

∑
i=1
H(t− ti) ·

(
1− e−α(t−ti)

)
· Oi(x, y),

https://mathworks.com/matlabcentral/fileexchange/39819-okada-solution/
https://Earthquake.usgs.gov/archive/product/finite-fault/usp000ensm/us/1486510367579/web/p000ensm.param
https://Earthquake.usgs.gov/archive/product/finite-fault/usp000ensm/us/1486510367579/web/p000ensm.param
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where Nx sub-faults along strike and Ny sub-faults down the dip angle,H(t) is the HEAVISIDE step
function and α = log(3)/tr, where tr = 8 s is the rise time. We choose here an exponential scenario,
but, in practice, various scenarios could be used (instantaneous, linear, trigonometric, etc.) and could
be found in Reference [10,24,25,30,31]. Parameters, such as sub-fault location (xi, yi), depth di, slip U,
and rake angle θ, for each segment are given in Reference [10] (Table 3). In this table, we notice that the
fault’s surface is conventionally divided into Nx = 21 sub-faults along strike and Ny = 7 sub-faults
down the dip angle, leading to a total number of Nx × Ny = 147 equal segments.

We compute each OKADA solution Oi on a circle of center (xi − 10m, yi − 10m) and of radius
6 max(L, W) and at the end all the OKADA solution will be interpolated on the big rectangle before
starting to compute the vertical displacement of the bottom ζ(x, y, t), in Figure 6 (right panel) we plot
O14. For the computation of ζ(x, y, t), we start the mesh by a circle of center (xc − 5m, yc − 5m) and of
radius 4 max(L, W) and we adapt the mesh every 3 iterations, i.e., every 6 s, by using the following
value for the domain adaptation uadapt = ζ, isoadapt= 5× 10−2, erradapt = 10−4, β = 5× 10−9,
epsadapt = 5× 104.

We show, in Figure 8, the bottom displacement ζ(x, y, t) at time t = 100 s and t = 270 s using
our domain adaptation technique. We note that, after building the OKADA solution O(x, y) in the
passive generation orOi(x, y) in the active generation, we can remark that this solution is non-local and
decays slowly to zero; that is why, in our domain adaptation technique, we put 0 where the absolute
value of the solution is less then min(|min (Oi(x, y))| , |max (Oi(x, y))|) < 9.2 m. We make the same
thing without adaptive mesh in order to compare the solution using the same initial data.

(a) (b)

Figure 8. Bottom displacement at t = 100 s ((a), min = −0.18 m, max = 0.38 m) and at t = 270 s;
((b), min = −0.18 m, max = 0.45 m).

4. Numerical Simulations

In this section, we study first the rate of convergence of our schemes for the sBBM System (4)
with non-dimensional and unscaled variables, i.e., with g = 1 over a variable bottom in space,
which establishes the adequacy of the chosen finite element discretization and the used time marching
scheme; for the flat bottom case, we refer to Reference [32], where we use the same technique as in
this paper. Then, we simulate the propagation of a wave, that is similar to a real-world tsunami wave
generated by an earthquake, in the MEDITERRANEAN sea with the BBM–BBM model over a flat bottom.
Then, we switch to the JAVA island region with real variable bottom in space. Finally, we study the
active tsunami generation scenario which took place in 2006 near the JAVA island. In all numerical
simulations, we used P1 continuous piecewise linear functions for η, u, v, h, and ζ.

4.1. Rate of Convergence

We present the evidence here, following the work done for the 1D case of the BBM–BBM system
in Reference [33], that the second order RUNGE–KUTTA time scheme considered for the sBBM variable
bottom in space is of order 2. We note that the function ζ(x, y, t) is only used for the generation of
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tsunami wave and, thus, will not be taken into account in the convergence rate test. In this example,
we take bi-periodic Boundary Conditions (BC) for ηh, uh, and vh on the whole boundary of the square
[0, 2L]× [0, 2L], where L = 50, and we consider the following exact solutions:

ηex = 0.2 cos(2πx/L− t) cos(2πy/L− t), uex = 0.5 sin(2πx/L− t) cos(2πy/L− t),

vex = 0.5 cos(2πx/L− t) sin(2πy/L− t), h(x, y) = 1− 0.5 cos(2πx/L) cos(2πy/L),

adding an appropriate function to the right-hand side to make these solutions exact. We measure at

time T = 1 and for θ2 =
2
3

, δt =
0.01
2n and δx =

2L
N

=
2L

2n+5 ∀n ∈ {0, 1, 2, 3, 4}, the following errors

NL2(η) = ‖ηh − ηex‖L2 ,

NH1(η) = ‖ηh − ηex‖H1 ,

NL2(V) = ‖uh − uex‖L2 + ‖vh − vex‖L2 ,

NH1(V) = ‖uh − uex‖H1 + ‖vh − vex‖H1 ,

and we end up with the results reported in Table 1. So, the L2 rates for η and V is of order ∼2 and the
H1 rates for η and V is of order ∼1, as shown in the Figure 9, which confirms the convergence of the
second-order RUNGE–KUTTA scheme in time for the sBBM system with variable bottom in space.

Table 1. L2 norm of the error for η and V.

N δt NL2(η) Rate NL2(V) Rate NH1(η) Rate NH1(V) Rate

25 0.01/20 0.24145 - 1.10773 - 0.60317 - 1.62575 -
26 0.01/21 0.06078 1.990 0.28016 1.983 0.30196 0.998 0.81276 1.000
27 0.01/22 0.01524 1.996 0.07038 1.993 0.15119 0.998 0.40696 0.999
28 0.01/23 0.00381 1.999 0.01760 1.999 0.07578 0.998 0.20355 0.999
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Figure 9. Rate of convergence for BENJAMIN–BONA–MAHONY (sBBM) system (4) with variable bottom
in space.

4.2. Propagation of a Tsunami Wave in the Mediterranean Sea with a Flat Bottom

We simulate here, the propagation of a wave that looks like a tsunami wave generated
by an earthquake in the MEDITERRANEAN sea with the sBBM System (4) with a flat bottom
−h(x, y) = −1.5 km which is the average depth of the MEDITERRANEAN sea. This wave was defined
above in the passive generation part of the Section 3 where, in this case, the initial solution is
concentrated in the small rectangle [x0 − 5W; x0 + 4W] × [y0 − 1.5L; y0 + 2.5L] and we take these
following values: L = 20 km, W = 10 km, δ = 7◦, φ = 0◦, θ = 90◦, E = 9.5 GPA is the YOUNG’s
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modulus, ν = 0.27 is the POISSON’s ratio, U = 2.5 m, (x0; y0) = (2390. ∗ scale, 590. ∗ scale) and the
fault depth 10 km. In this example, we will take the fact that the LAMÉ constants µ and λ are given by
the formulas µ = E/2(1 + ν) and λ = Eν/(1 + ν)(1− 2ν).

An efficient mesh adaptivity algorithm using metrics control adapts the mesh every 50 time steps;
we use the standard function (adaptmesh) which is an efficient tool offered by FreeFem++ to efficiently
adapt 2D meshes by metrics control [34]; see Reference [35] (Section §3.2) for more details. We also
use the following settings: for the step time δt = 0.1 s, a reflective BC for all the boundary, for the
adaptmesh of FreeFem++:

Th=adaptmesh ( Th , uadapt , e r r =1. e−7, errg =1. e−2,hmin=Dx , i s o =true , nbvx=1e8 ) ,

where err: is the interpolation error level inside the geometry, errg: is the interpolation error level on
the boundary, hmin: the minimum edge size, iso: forces the metric to be isotropic or not, and nbvx:
is the maximum number of vertices allowed in the mesh generator. Finally, for our domain adapt
technique: isoadapt = 5× 10−2, erradapt = 1× 10−7, β = 5× 10−3, epsadapt = 2× 10−2. We note
that we adapt the mesh around the solution every 100 iterations, i.e., every 10 s, by using uadapt
= η + u + v .

In order to compare the results between adaptive mesh generated by FreeFem++, our new domain
adaptation technique and without using mesh adaptation, we plot in addition to the free surface
elevation η in the Figures 5 and 10, the variation of η vs. time in Figure 11 at two wave ’gauges’
placed at the positions represented by � in Figure 3 at right and the mass of the water

∫
η . Specifically,

gauges were placed at the points (i) : (2350. ∗ scale, 550. ∗ scale), (ii) : (2104. ∗ scale, 665. ∗ scale).
In Figure 12, we represent the comparison between the three methods: full mesh, domain adaptation
and FreeFem++ internal mesh adaptivity of the maximum of the propagation of the solution at
time t = 6800 s. We also plot the computation time for each adapt mesh, the computation time
of the simulation, and the number of degree of freedom in Figure 13. We can see in Figures 11
and 13 that the adaptive mesh generated by FreeFem++ with err = 10−2 is the fastest method but

unfortunately it does not preserve the mass invariant
∫

η. On the other hand, our new domain

adaptation technique preserves the mass invariant throughout the simulation with an error of order
2.1× 10−3 and an important time computation difference with the one without mesh adaptation which
is very promising method for the tsunami wave propagation. For the adaptive mesh generated by
FreeFem++ with err=1.e-7 and errg = 10−2, we also almost get the mass conservation with an error
of order 9.5× 10−4, but we obtain some difference in wave gauge with the full method which is due to
the refinement mesh adaptation and the interpolation of the solution, although the computation time
is almost the double of the new domain adaptation technique. Thus, we can go faster with our new
domain adaptation technique if we can also deduce the mass matrix after cutting the mesh, of course,
if the mass matrix does not change along the simulation of the full mesh. This is an outgoing project.

(a) (b) (c)

Figure 10. The solution at t = 3000 s, with the full method at the left panel (a), the domain adaptive
method at the center panel (b) and the FreeFem++ adaptation with err = 10−7 at the right panel
(c) (min = −5.5× 10−2 m, max = 4.7× 10−2 m, for the three case).
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Figure 11. Comparison between the three methods: full, FreeFem++ adaption with err = 10−2 and
err = 10−7 and the domain adaptation of the free surface elevations (in meters) vs. time (in seconds),
computed numerically at two wave gauges (up and middle) and of the mass conservation (down).

(a)

(b)

(c)

Figure 12. Comparison between the three method full (a), domain adaptation (b) and adaptive mesh
generated by FreeFem++ with err = 10−7 (c) of the maximum of the propagation of the solution of a
tsunami wave in the MEDITERRANEAN sea for t = 6800 s (min = 0 m, max = 0.4 m, for three cases).
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Figure 13. Comparison between the three methods: full, FreeFem++ adaption with err = 10−2 and
err = 10−7 and domain adaptation of the computation time of each mesh/domain adaptation (left),
the number of degrees of freedom (middle), and the computation time of the simulation (right).

4.3. Propagation of a Tsunami Wave near the Java Island: Passive Generation

We will take here the same initial data as defined above in the passive generation part of
Section 3, we take δt = 1 s as the time step size and we note that, we adapt the mesh after
computing the initial data for η and then every 50 s by using the following value for the domain
adaptation uadapt = η + u + v, isoadapt = 3× 10−2, erradapt = 10−4, β = 5× 10−9, epsadapt
= 3× 104. We compare here the results between our new domain adaptation technique and without
using mesh adaptation. To this end, we plot the free surface elevation η in the Figures 14 and 15,
the variation of η vs. time (in Figure 16) at four numerical wave gauges placed at the following
locations: (i) (107.345◦,−9.295◦), (ii) (106.5◦,−8◦), (iii) (105.9◦,−10.35◦), and (iv) (107.7◦,−11◦)
(see Figure 6 (left)), where (i) is the position of the epicenter. However, because of the large variations
of the bottom, shorter waves were generated, especially around CHRISTMAS Island (southwest of
JAVA) and around the undersea canyon near the earthquake epicenter.

Finally, we present a comparison of the kinetic, potential and total energies with the full mesh
(in Figure 17, top left panel) and with the domain adaptivity method (in Figure 17, top right panel)
defined in Reference [36] as follows:

Ec =
1
2

ρw

∫
Ω

(∫ η

−h(x,y)
|V|2dz

)
dxdy, Ep =

1
2

ρw · g
∫

Ω
η2dxdy, (9)

where ρw = 1027 kg/m3 is the ocean water density, the number of degrees of freedom (in Figure 17,
down left panel), and the computation time of the simulation (in Figure 17, down right panel).
We obtain here an error of order 2.6× 10−4 between the total energy with domain adaptivity and
without any adaptation. We present in Figure 18 the comparison of the maximum of the propagation
of the solution between the full and domain adaptivity methods at t = 1750 s.
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(a) t = 250 s (b) t = 500 s (c) t = 1000 s

Figure 14. Passive generation: the bottom together with the free surface elevation at different instances
of time obtained with the proposed domain adaptivity method.

(a) Domain adaptivity (b) Full mesh

Figure 15. Passive generation: comparison between the bottom and the free surface elevation at
t = 1500 s between the domain adaptation method and the full mesh.
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Figure 16. Passive generation: comparison between the two methods the full one and domain
adaptivity of the free surface elevations (in meters) vs. time (in seconds), computed numerically
at four wave gauges where the gauge (i) corresponds to the epicenter.
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Figure 17. Passive generation: comparison between the two methods the full one and domain
adaptivity of the kinetic, potential and total energies, the number of degrees of freedom, and the
computation time of the simulation.
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(a) (b)

Figure 18. Passive generation: comparison between the maximum of the solution at t = 1750 s, with the
domain adaptivity method (left panel) and with the full one (right panel).

4.4. Propagation of a Tsunami Wave near the Java Island: Active Generation

For a more realistic case as in the JAVA 2006 event, we use the active generation in order to model
the generation of a tsunami wave as in Reference [10,30]. In this case, we consider zero initial conditions
for both the surface elevation and the velocity field, we take δt = 2 s as the time step size, we assume
that the bottom described in Section 3 is moving in time, and we note that we adapt the mesh before the
end of the generation time t = 270 s, every three iterations, i.e., every 6 s, by using the following value
for the domain adaptation: uadapt= η + u+ v, isoadapt= 5× 10−2, erradapt= 10−4, β = 5× 10−9,
epsadapt = 5× 104, and, then, for t > 270 s, every 25 iterations, i.e., every 50 s. We compare here
only the results between our new domain adaptation technique and without using mesh adaptation.
To this end, we plot the free surface elevation η in the Figures 19–21. However, as in the passive case,
because of the large variations of the bottom, shorter waves were generated, especially around the
CHRISTMAS Island (southwest of JAVA island) and around the undersea canyon near the earthquake
epicenter. We plot the variation of η vs time (in Figure 22) at four numerical wave gauges placed
at the following locations: (i) (107.345◦,−9.295◦), (ii) (106.5◦,−8◦), (iii) (105.9◦,−10.35◦), and (iv)
(107.7◦,−11◦) (see Figure 6 (left panel)) where (i) is the position of the epicenter. Finally, we present
a comparison of the kinetic, potential and total energies with the full mesh (in Figure 23, top left
panel) and with the domain adaptivity method (in Figure 23, top right) defined in (9), the number of
the degrees of freedom (in Figure 23, lower left panel) and the computation time of the simulation
(in Figure 23, lower right panel). We obtain here an error of order 2× 10−5 between the total energy
with domain adaptivity and without any adaptation. We present in Figure 24 the comparison of
the maximum of the propagation of the solution between the full and domain adaptivity method at
t = 1750 s.

(a) t = 100 s (b) t = 200 s (c) t = 270 s

Figure 19. Active generation: the bottom and the free surface elevation computed with the domain
adaptivity method.
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(a) t = 500 s (b) t = 1000 s

Figure 20. Active generation: the bottom and the free surface elevation computed with the domain
adaptivity method.

(a) Domain adaptivity (b) Full mesh

Figure 21. Active generation: comparison between the bottom and the free surface elevation at
t = 1500 s between the domain adaptivity method and the full mesh.
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Figure 22. Active generation: comparison between the two methods (the full one and domain
adaptivity) of the free surface elevations (in meters) vs. time (in seconds), computed numerically
at four wave gauges where the gauge (i) correspond to the epicenter.
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Figure 23. Active generation: comparison between the two methods (the full one and the domain
adaptivity) of the kinetic, potential and total energies, the number of degrees of freedom, and the
computation time of the simulation.

(a) (b)

Figure 24. Active generation: comparison between the maximum of the solution at t = 1750 s, with the
domain adaptivity method (a) and with the full one (b).

5. Conclusions and Outlook

In this manuscript, we demonstrated how to discretize a simplified version of the BBM–BBM
System (1) using the FEM and dedicated open-source software FreeFem++. The use of this numerical
technique was demonstrated in view of applications to tsunami wave modeling [25,37]. The concrete
cases of wave propagation in the MEDITERRANEAN sea and in JAVA island region (INDONESIA) were
considered. The digital computing environment that we developed allows the integration of realistic
data (bathymetry and geography) in a relatively simple software framework. The codes used in this
study are made freely available for all our readers. Moreover, a novel mesh and domain adaptation
technique was proposed to speed-up substantially the computations. The gain in terms of the CPU
time after applying this technique can be clearly seen in Figure 23. The accuracy of the ‘accelerated’
solution is more than acceptable to make this technique useful in a variety of tsunami propagation
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problems. It goes without saying that this technique can be applied to other events and other regions
of the world with minimal changes in the provided codes.

Regarding the perspectives of this study, we would like to develop also the parallel version of
this code together with the domain adaptation technique to make computations practically faster than
the real time tsunami wave propagation. However, we underline that even the current version can be
efficiently run even on a modest laptop personal computer. There is another direction that we can see
to improve the proposed method. Namely, the idea could be called the ’un-adaptivity’, which consists
of removing the portions of the mesh once the wave passed by. This would allow us to keep only the
portions of the computational domain where something is going on.
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PDE Partial Differential Equation
USGS United States Geological Survey

Appendix A. Simplified System Derivation

After integrating by parts, the left hand side of (3) becomes:

−
〈

b∇ ·
(

h2∇∂tE
)

; Φη
〉
= b

〈
h2∇∂tE ;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(∂tE)

∂n
∂γ,

−
〈

dh2∆∂tU ; Φu
〉
= d

〈
h2∇∂tU ;∇Φu

〉
+ d 〈2h∇h · ∇∂tU ; Φu〉 −

∫
Γn

dh2Φu ∂(∂tU )
∂n

∂γ,

and

−
〈

dh2∆∂tV ; Φv
〉
= d

〈
h2∇∂tV ;∇Φv

〉
+ d 〈2h∇h · ∇∂tV ; Φv〉 −

∫
Γn

dh2Φv ∂(∂tV)
∂n

∂γ,

where Γn is the boundary of the domain Ω. Dealing with the right-hand side F (E ,U ,V , Φη) of the first
equation in System (3), we expand the two complex terms which are multiplied by A and Ã such as:〈
∇ ·

(
h2∇ζt

)
; Φη

〉
=

〈(
h2ζxt

)
x
+
(

h2ζyt

)
y

; Φη

〉
=
〈

2hhxζxt + h2ζxxt + 2hhyζyt + h2ζyyt; Φη
〉

,
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and 〈
∇ ·

{
h2 [∇ (∇h · (U ;V)) +∇h∇ · (U ;V)]

}
; Φη

〉
=
〈
∇ ·

{
h2
[((

hxU + hyV
)

x ;
(
hxU + hyV

)
y

)
+
(
hx∇ · (U ;V); hy∇ · (U ;V)

)]}
; Φη

〉
=
〈
∇ ·

(
h2hxxU + h2hxUx + h2hxyV + h2hyVx + h2hx∇ · (U ;V); h2hxyU + h2hxUy

+h2hyyV + h2hyVy + h2hy∇ · (U ;V)
)

; Φη
〉

=
〈
(2hhxhxx + 2hhyhxy + h2hxyy + h2hxxx)U + (2hhxhxy + 2hhyhyy + h2hyyy

+h2hxxy)V + (4hh2
x + 3h2hxx + 2hh2

y + h2hyy)Ux + 2(h2hxy + hhxhy)Uy + (4hh2
y

+3h2hyy + 2hh2
x + h2hxx)Vy + 2(hhxhy + h2hxy)Vx; Φη

〉
+
(〈

2h2hxUxx; Φη
〉

+
〈

h2hyUxy; Φη
〉
+
〈

h2hxUyy; Φη
〉
+
〈

h2hyVxx; Φη
〉
+
〈

h2hxVxy; Φη
〉
+
〈

2h2hyVyy; Φη
〉)

.

On the other hand, we have:〈
2h2hxUxx; Φη

〉
= −

〈
2h2hxUx; Φη

x

〉
−
〈
(4hh2

x + 2h2hxx)Ux; Φη
〉
+
∫

Γn
2h2hxΦη ∂U

∂n
∂γ,

〈
h2hyUxy; Φη

〉
= −

〈
h2hyUx; Φη

y

〉
−
〈
(2hh2

y + h2hyy)Ux; Φη
〉
+
∫

Γn
h2hyΦη ∂U

∂n
∂γ,

〈
h2hxUyy; Φη

〉
= −

〈
h2hxUy; Φη

y

〉
−
〈
(2hhxhy + h2hxy)Uy; Φη

〉
+
∫

Γn
h2hxΦη ∂U

∂n
∂γ,

〈
h2hyVxx; Φη

〉
= −

〈
h2hyVx; Φη

x

〉
−
〈
(2hhxhy + h2hxy)Vx; Φη

〉
+
∫

Γn
h2hyΦη ∂V

∂n
∂γ,

〈
h2hxVxy; Φη

〉
= −

〈
h2hxVx; Φη

y

〉
−
〈
(2hhxhy + h2hxy)Vx; Φη

〉
+
∫

Γn
h2hxΦη ∂V

∂n
∂γ,

〈
2h2hyVyy; Φη

〉
= −

〈
2h2hyVy; Φη

y

〉
−
〈
(4hh2

y + 2h2hyy)Vy; Φη
〉
+
∫

Γn
2h2hyΦη ∂V

∂n
∂γ,

and, consequently, we deduce the final form of F (E ,U ,V , Φη) as follows:

F (E ,U ,V , Φη) = −
〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt; Φη

〉
−Ã

〈
2hhxζxt + h2ζxxt + 2hhyζyt + h2ζyyt; Φη

〉
− A

〈
(2hhxhxx + 2hhyhxy + h2hxyy

+h2hxxx)U + (2hhxhxy + 2hhyhyy + h2hyyy + h2hxxy)V + h2hxxUx + h2hxyUy − 2hhxhyVx

+(h2hyy + 2hh2
x + h2hxx)Vy; Φη

〉
+ A

(〈
2h2hxUx + h2hyVx; Φη

x

〉
+
〈

h2hyUx + h2hxUy

+h2hxVx + 2h2hyVy; Φη
y

〉)
− A

∫
Γn

(
(3h2hx + h2hy)Φη ∂U

∂n
+ (h2hx + 3h2hy)Φη ∂V

∂n

)
∂γ.

For the right-hand side G (E ,U ,V , Φu) of the second equation in System (3), we have:

G (E ,U ,V , Φu) = −
〈

gEx + UUx + VVx + Bgh
[(

hxEx + hyEy
)

x + hx(Exx + Eyy)
]
− Bhζxtt; Φu〉

= −
〈

gEx + UUx + VVx + Bg
(
hhxxEx + hhxyEy

)
− Bhζxtt; Φu〉− Bg

〈
2hhxExx + hhyExy + hhxEyy; Φu〉

= −
〈

gEx + UUx + VVx + Bg
(
hhxxEx + hhxyEy

)
− Bhζxtt; Φu〉+ Bg 〈2hhxEx; Φu

x〉+ Bg
〈
(2h2

x + 2hhxx)Ex; Φu
〉



Geosciences 2020, 10, 351 22 of 23

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
+ Bg

〈
(h2

y + hhyy)Ex + (hxhy + hhxy)Ey; Φu
〉
−
∫

Γn

Bg(3hhx + hhy)Φu ∂E
∂n

∂γ

= −
〈

g
(

Id − B
(

hhxx + 2h2
x + hhyy + h2

y

))
Ex + UUx + VVx − BghxhyEy − Bhζxtt; Φu

〉
+ Bg 〈2hhxEx; Φu

x〉

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
−
∫

Γn

Bg(3hhx + hhy)Φu ∂E
∂n

∂γ.

Finally, for the right-hand sideH (E ,U ,V , Φv) of the third equation in System 3, we have:

H (E ,U ,V , Φv) = −
〈

gEy + UUy + VVy + Bgh
[(

hxEx + hyEy
)

y + hy(Exx + Eyy)
]
− Bhζytt; Φv

〉
= −

〈
gEy + UUy + VVy + Bg

(
hhxyEx + hhyyEy

)
− Bhζytt; Φv〉− Bg

〈
hhyExx + hhxExy + 2hhyEyy); Φv〉

= −
〈

gEy + UUy + VVy + Bg
(
hhxyEx + hhyyEy

)
− Bhζytt; Φv〉+ Bg

〈
hhyEx; Φv

x
〉
+ Bg

〈
(hxhy + hhxy)Ex; Φv〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
+ Bg

〈
(hxhy + hhxy)Ex + (2h2

y + 2hhyy)Ey; Φv
〉
−
∫

Γn

Bg(hhx + 3hhy)Φv ∂E
∂n

∂γ

= −
〈
−Bg(2hxhy + hhxy)Ex + UUy + VVy + g

(
Id − B

(
hhyy − 2h2

y

))
Ey − Bhζytt; Φv

〉
+ Bg

〈
hhyEx; Φv

x
〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
−
∫

Γn

Bg(hhx + 3hhy)Φv ∂E
∂n

∂γ.
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