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Abstract: In this study, 110 tidewater glaciers from Spitsbergen were studied to characterize the
frontal zone using morphometric indicators. In addition, their time variability was also determined
based on features of the active phase of glacier surges. Landsat satellite imagery and topographic
maps were used for digitalization of the ice-cliffs line. In recent years (2014–2017) all the glaciers
studied can be thus classified as: stagnant (33%), retreating and deeply recessing (33%), starting to
move forward/fulfilling the frontal zone (23%), and surging (11%). Indicators of the glacier frontal
zone (CfD and CfE) allow to identify the beginning and the end of the active phase through changes
in their values by ca. 0.05–0.06 by the year and get even bigger for large glaciers as opposed to
typical interannual differences within the limits of ±0.01 to 0.02. The active phase lasted an average
of 6–10 years. The presence of a “glacier buttress system” and the “pointed arch” structure of the
ice-cliff seem to be an important factor regulating the tidewater glacier stability.
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1. Introduction

Spitsbergen glaciers are in rapid recession. This is observed in both land-based glaciers [1–5]
and those terminating at sea [6–8] and is regarded as a manifestation of the Arctic amplification effect,
whereby changes in the net radiation balance tend to produce a larger increase in temperature near
the pole than the planetary average [9,10]. This process contributes to the expansion of low-albedo,
ice-free sea surfaces with positive feedback (e.g., [11–13]).

In Spitsbergen (Svalbard Archipelago), surging glaciers represent a significant proportion of the
glacier cover [6,14–22]. They operate within the so-called “climate envelope” [23], i.e., in optimal thermal
and humidity conditions. Their behavior is mainly driven through snow mass supply in the glacier
reservoir area (e.g., [24,25]) and glacier enthalpy disorder, mainly at the ice-cliff area [22,26]. The surging
tidewater glaciers behave differently than the land-based glaciers. On land, the increased stress mainly
propagates through the glacier surface from the accumulation area to the ablation zone where the
maximum ice flow velocities are also measured. This sometimes manifests as an ice bulge [19,27,28].
For tidewater glaciers, on the other hand, the properties of the active phase are often more obvious at
the glacier ice-cliff. This phenomenon tends to be seen as an expanding crevassed zone [22], as a result
of the steep slope on the glacier surface propagating due to ablation of its lowermost part—the frontal
zone. These features have been observed in Aavatsmarkbreen, for example. Other glaciers also show a
characteristic lowering of the frontal zone due to ablation, and consequently intensive calving and
retreat into deeper water from the pinning point. This is, for example, the case of Wahlenbergbreen,
Mendeleevbreen, or Paierlbreenn [6]. Meltwater and precipitation entering the glacier also enhances
crevasse propagation towards the top of the glacier [22,29,30]. The presence of crevasses in the frontal
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zone is important for determining tidewater glacier dynamics. In particular, crevasse formation
increases the susceptibility of the glacier to mechanical ablation by calving [6,7,20,31,32], facilitates
the distribution of meltwater through en- and subglacial drainage systems [22,33–35], particularly
at low inclinations, crevasse allows penetration of direct radiation into deeper parts (also through
multiple reflection of radiation from the crevasse ice walls [36]) and facilitates ice-atmosphere and
ice-ground/sea thermal conductivity. The length of the ice-cliff [20] also influences thermal conductivity
processes at the common ice–water–atmosphere boundary. As such, the ice-cliff wall also represents an
additional heat and energy exchange zone. The glacier behavior is also influenced by the depth of the
fjord into which the glacier flows [37–39]. Thus, glaciers terminating in deeper parts of fjords are more
susceptible to form a dense network of crevasses, further supplying heat to the underwater sections of
the ice-cliff. This effect is particularly pronounced in areas where warmer West Spitsbergen Current
waters penetrate deeply into the fjord [40].

Regardless of the mechanisms determining the surging behaviour, a common sign of the active
phase from all surging glaciers is the quick and constant change in geometry of the glacier frontal zone.
If the ice-cliff bent towards the sea (convex), it is indicative of an advancing phase, whilst a bending
towards the land (concave) is a sign of glacier retreat through intensive calving. This geometry is
indeed representative of its dynamic state.

The purpose of this study is to analyze Spitsbergen tidewater glaciers using selected morphometric
parameters of the frontal zone. This study combines data from 110 tidewater glaciers, including
surging glaciers. Here, data from 1936 to 2017, both from recessive and advancing fronts is analyzed.
In particular, the study focuses on annual geometrical changes of glaciers surging in the 1985–2017
period. Frontal morphometry was thus assessed as potential indicator to determine the initiation and
termination of the active phase of the glacier surge. These data was used to forecast the initiation
of active phases in 2017 and later, based on frontal morphology data from the 2014–2017 period.
The results suggest that the “glacier buttresses system” of the frontal zone anchored on land plays a
potential role on ice-cliff stabilization.

2. Materials and Methods

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite images with 30 m × 30 m resolution
(543 bands) were collected from the summer seasons in year 2000 supplemented with a few in 2002.
Landsat 8 Operational Land Imager/Thermal InfraRed Sensor (OLI/TIRS) imagery (654 bands) were
collected for the 2014, 2017, 2018, and 2019 seasons (Table S1: Emblems of topographic maps and IDs
and acquisition dates of Landsat satellite images used in the research). These images were downloaded
using the EarthExplorer browser [41]. They were published by the United States Geological Survey
(USGS) and the National Aeronautics and Space Administration (NASA) in the public domain.
The selected data cover the ablation season. Topographic maps at 1:100,000 scale published by
Norwegian Polar Institute (old and new editions [42]) were used to define the ice-cliff edges for
the years 1936, for the 1960s and 1970s, and partly for the 1990s. The maps from the older edition
were georeferenced to the UTM 33 coordinate system using the ED50 ellipsoid (EPSG:23033) and
then transformed into ETRS89 (EPSG:25833). Older Landsat 5 Thematic Mapper (TM) (543 bands)
images from the period 1985–1998 and data described earlier were used to track yearly changes in
the morphometry of 15 selected glaciers (1985–2017) (Table S2. IDs and acquisition dates of Landsat
satellite images for selected tidewater glaciers in Spitsbergen in the period 1985–2019). For a few cases
Terra ASTER © NASA satellite scenes were used. Collected satellite images were also used to digitize
the surface area of glaciers on available imagery in the year (max. 5 years) before the occurrence of the
active phase of the glacier surge (see Table S2—data pointed by red color of font). The vector layers
(polygons) were used to calculate the basic morphometric parameters of a given glacier in order to
examine the relationship between them and morphometry of the frontal zone. The average glacier
slope is determined as the ratio between the elevation difference (maximum and minimum altitudes of
the glacier found using the TopoSvalbard portal [43]) and the length of the glacier measured along the
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central line. The compactness coefficient was calculated as the ratio of the glacier perimeter to the
circle perimeter of area equal to the glacier area.

The data were analyzed using QGIS software (different versions). The ice-cliff line was delineated
(vector layers) manually in a 1:20,000 scale. The composition of 543 (654) spectral bands clearly
highlights the glacier ice area (blue), the non-glaciated area on land (brown, red) and sea water area
(black, dark navy blue). For maps, the glacier front delineated in the original study was used as the
cliff line.

The length of the ice-cliff line may vary between seasons, particularly depending on whether the
image was taken at the beginning or the end of the ablation season. Uniform quality images from the
whole of Spitsbergen are not available from the same day, due to variable cloud cover, different glacier
exposure (shading), or other variables such as the presence of pack ice. The glacier range defined in
the maps used were also based on aerial photographs and satellite images taken on different days for
the same reasons.

This study assumes that the glacier frontal zone reacts clearest and fastest to changes in glacier
dynamics than any other glacier sections. The following definition of the frontal zone (Figure 1) was
used here as standard: the “frontal zone Ag” of tidewater glaciers is defined as the section contained
within the Ac circle with a diameter Dc equal to the distance between the parts of the glacier ice-cliff Lc
anchored on land.
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Following the definition of the glacier frontal zone, the morphometric indicators—”glacier front
dynamics indicator CfD” and “ice-cliff balance indicator CfE”—were defined. Thus, CfD represents the
ratio of glacier frontal zone area Ag to circle area Ac:

C f D =
Ag
Ac

. (1)

A CfD close to 1 or higher represents a convex frontal zone typical of advancing glaciers (Figure 2a).
The highest absolute value of CfD = 1.11 was found for Negribreen in 1969. A value of CfD above 1
(extreme cases) usually means that the frontal zone has spilled out and moved far out into the sea,
beyond the outlet of the valley that limits it, and in consequence beyond the perimeter of the theoretical
circle Ac. A CfD of approximately 0.5 represents a semi-circular frontal zone with a cliff line closely
following the diameter of the circle and usually presenting very little variability (Figure 2b). Finally,
a CfD close to or below 0 is indicative of a clearly concave glacier front in deep recession, where the
inflexion point(s) of the ice-cliff line is often at a long distance from the line between the anchor points
(Figure 2c). A negative value appears when the greater part of the frontal zone is outside the circle area
Ac. Then this “minus” area needs to be subtracted from the value of the frontal zone area lying inside
the circle (usually lateral part anchored on land). The lowest CfD = −1.15 was found for Samarinbreen
in 1961.
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on the dynamic state of a tidewater glacier: (a) Advancing glacier; (b) Glacier in the momentary
equilibrium state; and (c) Glacier undergoing recession. An arrow points the glacier flow direction.

The ice-cliff balance indicator, CfE, is the ratio of the circle diameter length Dc to the ice-cliff length Lc:

C f E =
Dc
Lc

. (2)

The absolute value (a.v., modulus), used to compared among different glaciers, represents the
degree of curving of the ice-cliff. Thus, an absolute of 1 indicates a straight line; that is, that the length
of the ice-cliff Lc is equal to the circle diameter Dc. This can be achieved by any glacier during the
evolution between the concave and convex shape of its frontal zone (and vice versa). Ice-cliff bending
level increases as the absolute values approach 0, with the number of inflexion points increasing
concomitantly. The greatest curvature of the ice-cliff was found for Sefströmbreen in 1990 (|CfE| = 0.21).
The symbols + and − are used to distinguish between convex (+) and concave (−) glaciers. A negative
sign is when most of the measured ice-cliff length Lc is located between the circle diameter Dc and the
part of the frontal zone closer to the glacier body. In turn, when most of the cliff line exceeds the circle
diameter Dc towards the sea, the sign for CfE is positive (cf. Figure 2).
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3. Results

3.1. Geometric Parameters of the Glacier Ice-Cliffs in Spitsbergen (1936–2017)

Ice geometry data from Spitsbergen glaciers (Table 1) were compiled for the year 1936 (28 glaciers;
no data available from the NW and N parts of Spitsbergen), the period 1961–1966 (35 glaciers; no data
available from the N and NE parts of Spitsbergen), 1969–1977 (17 glaciers; no data available from
S Spitsbergen), 1990 (73 glaciers), 2000, 2014, and 2017 (110 glaciers each year). The different periods
include different combinations of glacier systems (their complexity). For example, Strongbreen was
configured as one glacier system in 1936 while it is currently shaped as several separate land-terminated
(e.g., Karlbreen) and tidewater glaciers (e.g., the Kvalbreen–Indrebøbreen system, Moršnevbreen,
the Sokkelbreen–Naglebren–Nuddbreen system⇒ Strongbreen, the Vindeggbreen–Persejbreen system),
as a result of recession.

Due to the asymmetrical distribution of morphometric parameters of the glaciers in terms of their
area and their frontal zones, the calculation of average values for the glaciers population from each
period took into account the median and interquartile range (IQR) values. Glaciers between 19.5 km2

and 110.4 km2 analyzed here (within the IQR; based on data by Błaszczyk et al. [20]) can be considered
as typical in terms of surface area.

Table 1. Median values of morphometric parameters of glacier frontal zones of Spitsbergen tidewater
glaciers (the interquartile range IQR is given in brackets).

Year Lc
[km]

Dc
[km]

Ag
[km2]

Ac
[km2] CfD CfE

(a.v.)

1936
(28 glaciers)

4.24
(3.43–5.74)

3.35
(2.31–4.10)

3.62
(1.01–6.24)

8.82
(4.18–13.26)

0.40
(0.35–0.45)

0.79
(0.71–0.87)

1960–1966
(35)

2.47
(1.93–4.71)

1.85
(1.43–3.05)

0.91
(0.43–1.92)

2.67
(1.60–7.24)

0.37
(0.30–0.43)

0.75
(0.63–0.81)

1969–1977
(17)

5.58
(4.38–6.61)

3.03
(2.39–3.43)

2.71
(–0.87–4.57)

7.21
(4.47–9.19)

0.38
(–0.20–0.48)

0.61
(0.40–0.81)

1990
(73)

3.16
(2.28–5.09)

2.24
(1.44–3.12)

0.93
(0.11–2.46)

3.93
(1.62–7.69)

0.30
(0.16–0.40)

0.60
(0.30–0.80)

2000
(110)

2.71
(1.17–3.73)

1.71
(1.00–2.66)

0.74
(0.20–1.92)

2.30
(0.79–5.55)

0.39
(0.27–0.47)

0.79
(0.66–0.87)

2014
(110)

2.78
(1.39–4.38)

1.72
(1.00–2.89)

0.59
(0.19–1.89)

2.34
(0.78–6.59)

0.30
(0.18–0.40)

0.71
(0.57–0.79)

2017
(110)

2.61
(1.46–4.23)

1.86
(1.04–3.01)

0.69
(0.08–1.95)

2.70
(0.85–7.12)

0.29
(0.13–0.44)

0.70
(0.57–0.80)

For the following parameters—Lc, Dc, Ag, and Ac—the results show that the highest median
appeared in 1936. The values subsequently decreased until the year 2000. Thus, the median ice-cliff
length (Lc) decrease by 1.6-fold, the median valley width at the glacier front anchoring points (Dc)
showed a 2-fold decrease, the frontal zone area (Ag) decreased by 4.9-fold, and the median value of
area of the circle surrounding the glacier frontal zone (Ac) decreased by 3.8-fold. However, the period
1969–1977, when the values were slightly higher, was an exception. In addition, an increase in Lc was
observed between 2000 and 2014 followed by a 1.1-fold decrease. Ag, on the other hand, showed a
1.3-fold decrease first followed by a 1.2-fold increase measured in 2017. The CfD and CfE indicators
also show a general downward trend, suggesting that ice-cliffs are presenting an increasingly recessive
nature. The exception was the year 2000, when these indicators increased.

If the interaction between CfD and CfE for each glacier is considered, then most of the glaciers
were in a state of recession throughout all the periods discussed here (negative CfE values and CfD
values below 0.5) (Figure 3). However, there is always a group of advancing glaciers (or shortly after
the active phase of the glacier surge), representing 10.5% (1990) to 18.2% (2000) of the population of
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tidewater glaciers. These glaciers are characterized by a positive CfE value and a CfD value often above
0.5.Geosciences 2020, 10, x FOR PEER REVIEW 6 of 21 
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1961–1977; (c) 1990; (d) 2000; (e) 2014; and (f) 2017.

3.2. Frontal Zone Morphometry of the Retreating Glaciers

The values of morphometric indicators of the glacier frontal zones during recession phase were
plotted against the mean annual air temperature (MAAT) measured at the Svalbard Airport for each
of the different periods considered (Figure 4). Glaciers showed a less intense recession following the
minimum temperatures recorded at the beginning of the 20th century, presenting the highest median
CfD and CfE (specifically, CfD = 0.39 and CfE = 0.81 a.v. in 1936). In contrast, the same glaciers showed
their strongest recession episode over 30–40 years later, where the median values for both indicators
dropped to CfD = 0.24 and CfE = 0.63 a.v., (median from 1969–1977). Until the end of the 20th century,
the median values increased reaching CfD = 0.36 and CfE = 0.78 a.v. in 2000. The recession process
further intensified over the first 17 years of the 21st century, accompanied by a decrease in CfD and
CfE, down to 0.26 and 0.69 a.v., respectively, in 2017. Both values were close to the levels observed in
the 1990s, which was followed by the largest number of surging tidewater glaciers in Spitsbergen.
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In relation to ice-cliff exposure in 1990, south-east and north-west facing glaciers showed the
strongest recessive nature (Figure 5). These glaciers showed a median CfD of 0.11 and a relatively low
CfE (a.v.) compared to the other glacier groups.
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diameter also shortened, presenting median CfE (a.v.) of approximately 0.80. 

More recessive stage was also observed for the 2014–2017 period, apparent as a clearly visible 
melting of the most dynamic part of the glacier frontal zones, particularly obvious for ice-cliffs facing 
to the southern sector. At this stage, ice-cliffs withdraw considerably with the CfD reaching its lowest 
recorded value at −0.06. This curving is also reflected in the lowest median CfE reaching 0.46 (a.v.). A 
significant decrease in CfD and CfE was also observed from north-facing glaciers, and to a lesser 
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and south west-facing glaciers. 
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Figure 5. Median values of CfD (a) and CfE (a.v.) (b) indicators relative to the exposition of the
Spitsbergen tidewater glaciers during the recession phase in years: 1990, 2000, 2014, and 2017.

In the year 2000, a clear growing trend was observed for the dynamically active of most glacier
fronts, apart from those from the southern sector. This was most noticeable for ice-cliffs facing the
south-east sector, with CfD values reaching over 0.44. The ice-cliff lengths in relation to the circle
diameter also shortened, presenting median CfE (a.v.) of approximately 0.80.

More recessive stage was also observed for the 2014–2017 period, apparent as a clearly visible
melting of the most dynamic part of the glacier frontal zones, particularly obvious for ice-cliffs facing
to the southern sector. At this stage, ice-cliffs withdraw considerably with the CfD reaching its lowest
recorded value at −0.06. This curving is also reflected in the lowest median CfE reaching 0.46 (a.v.).
A significant decrease in CfD and CfE was also observed from north-facing glaciers, and to a lesser
extent, for west- and north west-facing fronts. The fluctuation in CfD and CfE was smaller for east- and
south west-facing glaciers.

3.3. Frontal Zone Morphometry of the Advancing Glaciers

Over the years 1990–2017, advancing ice-cliffs were found in glaciers from all geographical aspects,
and roughly around the same number of cases (up to 5% difference). This pattern was particularly obvious
for all north-, east-, or south west-facing tidewater glaciers from Spitsbergen, with fewer cases found from
north-east (8% difference), south, and west. However, the proportion of cases changed over this period. Thus,
in 1990–2000 the most active glacier fronts were found particularly in the N–S axis (e.g., Petermannbreen,
Monacobreen, Waggonwaybreen, Paierlbreen, and Storbreen) and with north-east exposure (e.g., Davisbreen,
and Inglefieldbreen-Nordsysselbreen). In turn, in 2014–2017, active ice-cliffs dominate in the E–W axis
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(e.g., Vindeggbreen-Persejbreen, Sjettebreen, Arnesenbreen, and Strongbreen) and from south west-facing
glaciers (e.g., Blomstrandbreen, Kollerbreen, and Marstrandbreen).

Annual variations in the frontal zone geometrical indicators were analyzed for 15 glaciers.
These glaciers experienced an active phase of the glacier surge at some point during 1985–2017
(based on: Murray et al. [45]; Błaszczyk et al. [20]; Sund et al. [19]), or/and the advance could be directly
observed from data analyzed in this study (Figure 6, Table 2). As the glaciers advance, their CfD values
changed from 0.33 (0.18 to 0.40 of IQR) during the quiescent phase to 0.61 (0.54 to 0.71 of IQR) during
the active phase. The median CfE changed from −0.72 (−0.81 to −0.56 of IQR) during the quiescent
phase to 0.78 (0.69 to 0.88 of IQR) during the active phase of the glacier surge.
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Figure 6. CfD (left Y axis; blue circles) and CfE (right Y axis; red rhombs) values for
selected tidewater Spitsbergen glaciers, which experienced an episode of the active phase of
the glacier surge in 1985–2017 (X axis–years): (a) the Nathorstbreen–Zawadzkibreen system;
(b) Monacobreen; (c) the Strongbreen–Moršnevbreen system; (d) the Osbornebreen–Vintervegen
system; (e) Tunabreen; (f) Wahlenbergbreen; (g) Paierlbreen; (h) Blomstrandbreen; (i) Richardsbreen;
(j) the Persejbreen–Vindeggbreen system; (k) Esmarkbreen; (l) Fridtjovbreen; (m) Mendelejeevbreen;
(n) Arnesenbreen; and (o) Chauveauxbreen. An arrow indicates the moment of the glacier
movement forward.

Table 2. The beginning and the end of the active phase of the glacier surge for selected Spitsbergen
tidewater glaciers based on publications and morphometric indicators of the glacier frontal zone.

Surging
Glaciers

Source of Data
(Published)

According to Published Data According to the Ice-Cliff
Morphometry

Start of the
Active
Phase

End (and
Duration—in

Brackets) of the
Active Phase

Start of the
Active
Phase

End (and
Duration—in

Brackets) of the
Active Phase

Nathorstbreen
system Sund et al. [46] 2003–stage 1

2008–stage 2
2013 (?)

(~5–10 years) 2006–2008 2014–2015
(6–9 years)

Monacobreen Murray et al. [45]
Mansell et al. [27]

1990–1992
1993–1995

1997
(2–7 years) 1991–1992 2001–2002

(9–10 years)

Osbornebreen Dowdeswell et al. [14];
Rolstad et al. [47] 1986–1987 ? 1986–1987 1990–1991

(3–5 years)

Tunabreen Flink et al. [48];
Sevestre et al. [49]

2002–2003
2003

2004–2005
2005

(1–3 years)
2002–2004 2006–2010

(2–8 years)

Wahlenbergbreen Sevestre at al. [22] 2009 – 2012–2013 –

Paierlbreen Błaszczyk et al. [6] 1993 (?) 1999 (?)
(6 years?) 1990–1992 2004–2006

(12–16 years)

Blomstrandbreen Mansell et al. [27];
Burton et al. [50]

2007
2009

2010 (?)
2013

(1–6 years)
2007–2010 2016–2017

(6–10 years)

Persejbreen Dowdeswell and
Benham [51] 2000–2001 ? 1999–2000 2015–2016

(5–17 years)

Fridtjovbreen
Murray et al. [45];
Murray et al. [52];

Lønne [53]

1994–1995
and

re-advance
in 1998–1999

1997
(2–3 years

or 3–5 years)
1995–1996 1998–1999

(2–4 years)

Mendeleevbreen Błaszczyk et al. [6] between
1995–2002

between 2002–2010
(up to 15 years?) 1996–1997 2006–2010

(9–14 years)
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The comparison presented in Table 2 allows assessing how the timing of the initiation and end
of the active phase can be determined based on CfD and CfE. This relation differed slightly for the
published data: by ±0 to 4 years for the beginning and ±1 to 6 years for the end of the active phase.
The average duration of the active phase based on data published for 10 glaciers was approximately
3–10 years, while the CfD and CfE indicators showed an average active phase of 6–10 years. Some of
the published results, however, appeared in print during the active phase and the glacier could have
continued surging afterwards.

The increase in CfD and CfE was nearly concomitant to the glacier movement for larger glaciers
(e.g., Nathorstbreen, Monacobreen, and Paierlbreen). However, a delay of few years was also observed
(e.g., Mendeleevbreen and Wahlenbergbreen). A correlation analysis between the values of both
indicators also show a delay of up to five years before the indicator values jump (Table 3). The largest
significant correlation of indicators at the significance level of 0.05 took place one year and five years
before the active phase. In all cases, the active phase ended with an obvious decrease in CfD and CfE;
thus, entering a quiescent phase characterized by small interannual changes in these values.

Table 3. The relationship between CfD and CfE up to 5 years before the active phase of the glacier surge
expressed as a correlation coefficient.

Year Before Surge 1 2 3 4 5

Coeff. of corr. −0.84 −0.73 −0.76 −0.77 * −0.80

* Not statistically significant.

Preliminary analysis indicates that the length of the ice-cliff just before the active phase of the
glacier surge is well correlated with the glacier surface slope and the glacier compactness. The gentler
the slope of the glacier surface and more complex the glacier in terms of its geometry, the longer its
ice-cliff. This is because the glaciers that are most complex in shape are usually large valley glacier
systems with numerous tributaries. These studies will be continued.

3.4. Application of CfD and CfE Indicators in the Classification of Spitsbergen Tidewater Glaciers in Terms
of Dynamics

Interannual changes in indicator values were presented to describe the dynamic state of
five Spitsbergen tidewater glaciers with the most complete data sets for the period 1985–2017:
Monacobreen (to 2019; N part of Spitsbergen), the Vindeggbreen–Persejbreen system (E part of the
island), the Osbornebreen–Vintervegen system and Blomstrandbreen (both in W part of Spitsbergen),
and Paierlbreen (S part of the island) (Figure 7; see Table S2). The data indicates that most of the time
the ice-cliffs are characterized by slight interannual changes in indicator values. The situation changes
significantly with the beginning of the active phase of the glacier surge when the increase in values
appears as a clear deviation in the I quadrant of the graph (advance), and this is also recorded in
Figure 6. A similar clear deviation occurs in the III quadrant during the transition of the active phase
to the quiescent phase. Then in Figure 6 the CfE values go negative (retreat).
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Figure 7. Interannual changes in the values of CfD and CfE indicators for five selected tidewaters
glaciers surging between 1985 and 2017.

The analysis of the interannual variation in the CfD and CfE indicators allows describing the
following dynamic models for tidewater surging glaciers in Spitsbergen:

1. At the beginning of “the active phase of the glacier surge” both CfD and CfE indicators increase
rapidly by 3–5 times during approximately 1–5 years. For larger glaciers, the rate of increase can
reach a maximum of a 10× increase (I quadrant in Figures 7 and 8). In this phase, the frontal zone
protrudes (convex shape) and the glacier moves forward. Then the ice-cliff position is marked
by slight fluctuations or “stagnates”, and numerous inflexion points associated with intensive
calving appear in the cliff line.

2. After the active phase, the glacier first loses its frontal zone convexity, mainly as a result of intensive
calving, and it is subject to “recession” (including the quiescent phase of the glacier surge). At this
point, CfD and CfE values decrease interannually to an average of 0.05–0.06 (for CfE the sign
changes to negative; III quadrant).

3. Subsequently, the glacier can enter a “deep recession phase”, when its frontal zone is strongly
concave, especially for the largest glaciers (IV quadrant). “Glacier buttresses” are also observed,
i.e., parts of the glacier front anchored on land, from which the ice-cliff bends into an arch. During
the quiescent phase, CfD and CfE values change very little interannually and are ca. 0.015–0.025.
The value of CfD decreases the most (it can even be negative), with the CfE value slowly increasing
from −1 to approximately −0.5.

4. The glacier begins to lose its maximum ice-cliff concavity at the end of the recession with
“the frontal zone filling and the slow forward movement” beginning (II quadrant). At this
point, the CfD value slowly increases and CfE value slowly decreases (from −0.5 to −1) until the
protrusion of the glacier front and the value changes to plus sign.

The presented model was adopted for Monacobreen for the 1985–2019 period (Table 4). Based on
the indicators, the beginning of the active phase (I) of the glacier surge was determined in 1991–1992.
For the first 2 years, the frontal zone was getting convex and the glacier advanced about 1100 m in
western part to about 1500 m in eastern part of the cliff line compared to 1991. Then it entered a
period of stagnation/minor fluctuations in the position of its ice-cliff, rising slightly in the western part
and about 700 m in the eastern part of the cliff. At the end of the active phase (2000–2001), retreat
began with the still convex frontal zone. The active phase lasted until 2001–2002 (10 years). After this
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period, the glacier entered the quiescent phase of the glacier surge (negative CfE). Slow withdrawal of
the ice-cliff position was accompanied by ablation by calving and melting (concave shape). By 2007,
the glacier withdrew from about 700 m in the eastern part of the ice-cliff to about 800–900 m in the
western part. The appearance of inflexion points (2005) indicates probably an important role of the
outflow of subglacial waters. After 2008, the quiescent phase was marked by some recovery in glacier
behaviour, reflected in changes in the indicators values from year to year up to 2018. The glacier
retreated by 500–600 m. The quiescent phase lasted 17 years. In 2018–2019, a new active phase (II) of
the glacier surge began (positive CfE), as before, from the bending of the ice-cliff line towards the sea
and an advance of about 800–900 m on the central line of the glacier.

Table 4. Characteristics of Monacobreen dynamics based on CfD and CfE indicators and their interannual
changes in 1985–2019.

Year The Ice-Cliff Shape
Indicators Interannual Changes in

Indicators Value Dynamics
CfD CfE Ch. of CfD Ch. of CfE

1985

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.367 −0.713 ? ? ? ?

1986

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.428 −0.711 0.061 0.002

Frontal zone
filling/stagnation1987

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.402 −0.711 −0.026 0.000

1988

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.454 −0.799 0.052 −0.088

1989

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.437 −0.729 −0.017 0.070

Deep recession
stage—strongly concave

ice-cliff shape
1990

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.244 −0.641 −0.193 0.088

1991

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.448 −0.770 0.204 −0.129

Entering the active phase (I)
of the glacier phase—an

advance, convex shape of
the ice-cliff

1992

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.532 0.738 0.084 1.508

1993

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.663 0.758 0.131 0.020

1994

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.691 0.789 0.028 0.031

Stagnation—convex
ice-cliff, many inflexion

points

1995

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.646 0.783 −0.045 −0.006

1996

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.670 0.724 0.024 −0.059

1997

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.675 0.732 0.005 0.008

1998

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 

0.640 0.759 −0.035 0.027

1999
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period of stagnation/minor fluctuations in the position of its ice-cliff, rising slightly in the western 
part and about 700 m in the eastern part of the cliff. At the end of the active phase (2000–2001), retreat 
began with the still convex frontal zone. The active phase lasted until 2001–2002 (10 years). After this 
period, the glacier entered the quiescent phase of the glacier surge (negative CfE). Slow withdrawal 
of the ice-cliff position was accompanied by ablation by calving and melting (concave shape). By 
2007, the glacier withdrew from about 700 m in the eastern part of the ice-cliff to about 800–900 m in 
the western part. The appearance of inflexion points (2005) indicates probably an important role of 
the outflow of subglacial waters. After 2008, the quiescent phase was marked by some recovery in 
glacier behaviour, reflected in changes in the indicators values from year to year up to 2018. The 
glacier retreated by 500–600 m. The quiescent phase lasted 17 years. In 2018–2019, a new active phase 
(II) of the glacier surge began (positive CfE), as before, from the bending of the ice-cliff line towards 
the sea and an advance of about 800–900 m on the central line of the glacier. 

Table 4. Characteristics of Monacobreen dynamics based on CfD and CfE indicators and their 
interannual changes in 1985–2019. 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  
Entering the active phase 

(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  0.641 0.750 0.001 −0.009
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Table 4. Cont.

Year The Ice-Cliff Shape
Indicators Interannual Changes in

Indicators Value Dynamics
CfD CfE Ch. of CfD Ch. of CfE

2000

1 
 

Year The Ice-Cliff 
Shape 

Indicators 
Interannual 
Changes in 

Indicators Value Dynamics 

CfD CfE 
Ch. of 
CfD 

Ch. of 
CfE 

1985 
 

0.367 −0.713 ? ? ? ? 

1986 
 

0.428 −0.711 0.061 0.002  

Frontal zone 
filling/stagnation 1987 

 
0.402 −0.711 −0.026 0.000  

1988 
 

0.454 −0.799 0.052 −0.088  

1989 
 

0.437 −0.729 −0.017 0.070  
Deep recession stage—

strongly concave ice-cliff 
shape 1990 

 

0.244 −0.641 −0.193 0.088  

1991 
 

0.448 −0.770 0.204 −0.129  

Entering the active phase 
(I) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 

1992 
 

0.532 0.738 0.084 1.508  

1993 
 

0.663 0.758 0.131 0.020  

1994  0.691 0.789 0.028 0.031  

Stagnation—convex ice-
cliff, many inflexion points 

1995  0.646 0.783 −0.045 −0.006  

1996 
 

0.670 0.724 0.024 −0.059  

1997 
 

0.675 0.732 0.005 0.008  

1998  0.640 0.759 −0.035 0.027  

1999  0.641 0.750 0.001 −0.009  

2000  0.575 0.753 −0.066 0.003  Deep recession by calving 
and melting 0.575 0.753 −0.066 0.003

Deep recession by calving
and melting2001

 

2 

2001  0.570 0.885 −0.005 0.132  

2002 
 

0.475 −0.794 −0.095 −1.679  

Entering the quiescent 
phase of the glacier stage—
retreat, few inflexion points 

on the ice-cliff line 

2003  0.463 −0.837 −0.012 −0.043  

2004 – – – – – – 

2005 
 

0.466 −0.695 ? ? ? 

2006 
 

0.375 −0.722 –0.091 −0.027  

2007 
 

0.375 −0.770 0.000 −0.048  

2008 – – – – – – 

2009 
 

0.420 −0.839 ? ? ? 

2010 
 

0.402 −0.801 −0.018 0.038  

2011  0.488 −0.870 0.086 −0.069  

Small interannual 
fluctuations and 

stagnation—filling the 
frontal zone balanced by 

the ice-cliff retreating 

2012 – – – – – – 

2013 
 

0.427 −0.809 ? ? ? 

2014 
 

0.474 −0.845 0.047 −0.036  

2015 
 

0.388 −0.804 −0.086 0.041  

2016 
 

0.431 −0.835 0.043 −0.031  

2017 
 

0.390 −0.858 −0.041 −0.023  

2018  0.473 −0.823 0.083 0.035  Entering the active phase 
(II) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 2019 
 

0.653 0.743 0.180 1.566  

 

0.570 0.885 −0.005 0.132

2002

 

2 

2001  0.570 0.885 −0.005 0.132  

2002 
 

0.475 −0.794 −0.095 −1.679  

Entering the quiescent 
phase of the glacier stage—
retreat, few inflexion points 

on the ice-cliff line 

2003  0.463 −0.837 −0.012 −0.043  

2004 – – – – – – 

2005 
 

0.466 −0.695 ? ? ? 

2006 
 

0.375 −0.722 –0.091 −0.027  

2007 
 

0.375 −0.770 0.000 −0.048  

2008 – – – – – – 

2009 
 

0.420 −0.839 ? ? ? 

2010 
 

0.402 −0.801 −0.018 0.038  

2011  0.488 −0.870 0.086 −0.069  

Small interannual 
fluctuations and 

stagnation—filling the 
frontal zone balanced by 

the ice-cliff retreating 

2012 – – – – – – 

2013 
 

0.427 −0.809 ? ? ? 

2014 
 

0.474 −0.845 0.047 −0.036  

2015 
 

0.388 −0.804 −0.086 0.041  

2016 
 

0.431 −0.835 0.043 −0.031  

2017 
 

0.390 −0.858 −0.041 −0.023  

2018  0.473 −0.823 0.083 0.035  Entering the active phase 
(II) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 2019 
 

0.653 0.743 0.180 1.566  

 

0.475 −0.794 −0.095 −1.679

Entering the quiescent
phase of the glacier
stage—retreat, few

inflexion points on the
ice-cliff line

2003

 

2 

2001  0.570 0.885 −0.005 0.132  

2002 
 

0.475 −0.794 −0.095 −1.679  

Entering the quiescent 
phase of the glacier stage—
retreat, few inflexion points 

on the ice-cliff line 

2003  0.463 −0.837 −0.012 −0.043  

2004 – – – – – – 

2005 
 

0.466 −0.695 ? ? ? 

2006 
 

0.375 −0.722 –0.091 −0.027  

2007 
 

0.375 −0.770 0.000 −0.048  

2008 – – – – – – 

2009 
 

0.420 −0.839 ? ? ? 

2010 
 

0.402 −0.801 −0.018 0.038  

2011  0.488 −0.870 0.086 −0.069  

Small interannual 
fluctuations and 

stagnation—filling the 
frontal zone balanced by 

the ice-cliff retreating 

2012 – – – – – – 

2013 
 

0.427 −0.809 ? ? ? 

2014 
 

0.474 −0.845 0.047 −0.036  

2015 
 

0.388 −0.804 −0.086 0.041  

2016 
 

0.431 −0.835 0.043 −0.031  

2017 
 

0.390 −0.858 −0.041 −0.023  

2018  0.473 −0.823 0.083 0.035  Entering the active phase 
(II) of the glacier phase—an 
advance, convex shape of 

the ice-cliff 2019 
 

0.653 0.743 0.180 1.566  

 

0.463 −0.837 −0.012 −0.043

2004 – – – – – –

2005

 

2 

2001  0.570 0.885 −0.005 0.132  

2002 
 

0.475 −0.794 −0.095 −1.679  

Entering the quiescent 
phase of the glacier stage—
retreat, few inflexion points 

on the ice-cliff line 
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Explanation: “The ice-cliff shape” column: solid line—Lc; dashed line—Dc; the “Indicators” column: pink
colour—active phase; blue colour—quiescent phase; colors in the “Dynamics” column—see Figure 8; and
stagnation—values centered around 0 of interannual changes within the IQR: from −0.037 to 0.054 for CfD
and from −0.038 to 0.037 for CfE).

Interannual variations in CfD and CfE estimated on the basis of the data from 2014 and 2017
were also analyzed including all glaciers (Figure 8) to determine which of them may experience an
active phase of glacier surge in 2017 and later according to the model proposed. In addition, a class
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represented stagnant glaciers has been specified based on the IQR of interannual variations of CfD and
CfE. In this class CfD varied from −0.02 to 0.01 per year and CfE from −0.01 to 0.02 per year during the
analyzed period.Geosciences 2020, 10, x FOR PEER REVIEW 14 of 21 
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Figure 8. Classification of Spitsbergen tidewater glaciers according to the criterion of the glacier frontal
zone dynamics, based on the state in the years 2014 and 2017—the relation of interannual changes of
CfD and CfE and percentage representation (a pie chart inset).

A total of 28% of the 110 tidewater glaciers were in deep recession. In the 2014–2017 period,
one-third were stagnant glaciers with an uncertain future behavior, although this might be a sign of an
impending active phase of the glacier surge. For example, Nathorsbreen, Tunabreen, and Persejbreen
showed interannual differences for CfD and CfE close to 0 about 4 years before the active phase of the
glacier surge. Eleven percent of glaciers should have already been experiencing an active phase of
the surge.

This classification was further compared with other information from these glaciers, particularly
whether a clear advance was observed on Landsat satellite scenes in 2017 (6 glaciers), in 2018 (additional
7 glaciers), and in 2019 (additional 11 glaciers) (Figure 9). The advance was identified as a forward
shift of the ice-cliff in relation to previous years, and based on the presence of a crevassed zone within
the glacier frontal zone Ag, both characteristic of rapid glacier movement during the surge [7]. Eleven
of the glaciers showed overlapping classifications as those clearly advancing and showing movement
forward (Aavatsmarkbreen, Midtbreen, Vaigattbreen, Wahlenbergbreen, Arnesenbreen, Strongbreen
→ Moršneevbreen, Svalisbreen, Emmabreen, Tunabreen, Allfarvegen, and Moltkebreen), 7 as
stagnant (Marstrandbreen, Nordenskiöldbreen, Kvalbreen, Sonklarbreen, Crollbreen, Markhambreen,
and Recherchebreen), 5 as deeply withdrawn, ready for advance (Negribreen, Thomsonbreen, ve
Osbornebreen, Fjortende Julibreen, and Lilliehöökbreen→ Bjørlykkebreen), and 1—Monacobreen—as
retreating. Five glaciers, classified as advancing, were still (2019) in recession/quiescent
phase (Fjerdebreen, Chauveaubreen, the Heuglinbreen–Hayesbreen–Königsbergbreen system, and
Nansenbreen) or stagnant (Kollerbreen). In the case of Johansenbreen, classified in Figures 8 and 9
as a stagnant glacier, an ice bulge is observed on satellite imagery (Landsat 8—2019) moving down
glacier, while the medial moraine has been bent, both of which are typical first characteristics of glacier
surge [19].
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Figure 9. Classification of tidewater glaciers based on interannual changes of CfD and CfE between
2014 and 2017. Circles indicate glaciers with the characteristics of the active phase observed on satellite
imagery in 2017, 2018, and 2019.

4. Discussion

4.1. The Role of the Ice-Cliffs Morphometry in the Glacier Surge Triggering

The recession of Spitsbergen tidewater glaciers is reflected in the morphometry of their ice-cliffs.
The vast majority of them showed a retreating nature for the 1936–2017 period. This was reflected in
the concave shape of the ice-cliff, which increases with the size of the glacier, as demonstrated by the
CfD and CfE indicators. Approximately 10–18% of the tidewater glaciers have been experiencing the
active phase at any given time, as manifested by the pronounced glacier front curving in the direction
of flow (convex shape).

The most pressing question is at which critical point the forward glacier movement turns from
normal flow to glacier surge. The preliminary analysis suggests that larger, complex glaciers (with many
tributaries), with low average surface slopes and long ice-cliffs have a bigger tendency to surge. These
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results also coincide with previous observations (e.g., [17,23,54–56]). The analysis also indicates that
the bending of the ice-cliff will rapidly follow the initiation of the glacier surge in the case of large
glaciers. However, this response tends to be delayed for smaller glaciers, up to five years, as the initial
phase of the surge is characterized by a forward movement followed by a slow filling of the glacier
frontal zone making a protrusion.

The frontal zone Ag of tidewater glaciers during the active phase usually fits into the Ac circle and
the CfD indicator ranges from 0.5 to 1.0. The closer the ice-cliff is anchored at the valley mouth and the
wider the valley, the more the CfD approaches 1. In extreme cases CfD even exceeds this value and the
frontal zone “spills out” into the open sea (e.g., Negribreen in 1969). The median CfD in 1936 was the
highest (cf. Table 1). At that time, tidewater glaciers had a greater range [4] and greater complexity of
their glacial system. The high median CfD in 2000, in turn, was mainly the result of there being the
largest number of cases of surging glaciers (18.2%).

The part of the glacier front that anchors the ice-cliff on land in an ice-wedge-like form can play an
important role in the dynamics of tidewater glaciers. Their significance can be compared to buttresses
like those found in Gothic cathedrals, designed to spread the force and support the weight. For glaciers,
not normal forces (perpendicular to the glacier front line) are of particular importance for the stability
of the strongly bending ice-cliff, but the bending moment and a cutting force follows a transverse to
the glacier axis. Thicker and wider glacier buttress systems give the support and stabilization for the
concave part of the glacier frontal zone (analogous to a parabolic arch, especially pointed arches in
building structures [57]). Thus, larger glaciers also show a larger linear recession and greater ice-cliff
bending, compared to smaller ones, before reaching the inflexion point (node) when, according to the
catastrophe theory [58], the moment of the internal stresses is destabilized and the node (inflexion point)
jumps. Therefore, larger glaciers are characterized by a rapid curving of the ice-cliff line following the
glacier movement at the beginning of the active phase. Many glaciers, e.g., Nathorstbreen, Strongbreen,
Storbreen, Mendelejeevbreen, Negribreen (cf. Figure 1), Selfströmbreen, Monacobreen (cf. Table 4),
and Olsokbreen, showed a characteristic cliff indentation point(s) during deep recession, which could
give rise to the stability node jump (e.g., by earthquakes, tides, waves or by the distribution of inner
stresses etc.), initiating a hysteresis loop. The role of the “buttresses” in stabilizing ice-cliffs will increase
as glaciers retreat into a shallower, sediment-covered valley bottoms, which may also contribute to
extending the glacier surge cycle.

Smaller glaciers without buttresses only achieve a reduced front curving during recession,
a so-called flat arch in terms of the ice-cliff shape. This arc is “structurally” less stable because it is
more susceptible to normal forces [57]. Consequently, glacier dynamics appear to adapt faster to the
interaction of the combined factors affecting the glacier–atmosphere–sea boundaries. The movement
of the ice mass from the glacier top to the cliff [24,25] could be the prevailing force initiating the active
phase in the case of smaller glaciers. This seems to be applicable to the approaching glacier surge of
Johansenbreen, whose signs were seen on the Landsat 8 satellite image from 2019.

The model of glacier behavior before the glacier surge (mechanics of the structure) can be
associated with the results of observations of the propagation of crevasses up the glacier from the
ice-cliff [22,29,30]. The node jump of the ice-cliff line will also be favored by an asymmetry in the mass
balance distribution, especially noticeable in meridionally located glaciers [59]. A disproportionate
snow accumulation caused by prevailing winds and an uneven supply of direct radiation in summer
(e.g., fog and shading) will also be reflected indirectly in the stress distribution throughout the entire
glacier profile. Tidal amplitude [60] and fjord depth in front of the ice-cliff [37–39] also play important
roles, especially in cases of anchoring the ice-cliff closer to the valley mouth. Thus, the greater the
depth (hydrostatic support), the greater the impact on the cliff destabilization.

The glacier buttress system loses its function following surface ablation of land-based ice.
The glacier surface altitude has been decreasing over the recent years, especially in the ablation
area [61,62]. In turn, a thick layer of mineral deposits can work as an isolating layer protecting the ice
beneath [63].
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4.2. Duration of the Active Phase During the Glacier Surge

In the light of the observed Arctic amplification, the number of surging tidewater glaciers is
expected to increase. Both, glacier coverage studies (e.g., [4–8]) and their CfD and CfE coefficients,
indicate a deepening recession, including especially large glacial systems with the glacier buttresses
and an extensive network of tributaries with a relatively narrow and flat receiving zone. One third
of the glaciers are stagnant, and therefore potentially ready for an advance. The situation for 2017
morphometrically was similar to the situation in 1990 (cf. Table 1, Figure 4), which was followed by
the culmination of cases of the active phase of the surge.

The beginning and end of the active phases of the glacier surge are the most difficult ones to
determine through observation. This analysis shows that morphometric indicators can be a simple and
accurate method to measure the duration of the active phase, as proven using published observational
data. The active phase is estimated to last on average 3–10 years in Svalbard [14], based on published
data, while the results presented here from 10 glaciers suggest an average duration of 6–10 years
(see Table 2). The beginning and end of the active phase remains to be defined. A clear yearly jump in
the value of the CfD and CfE coefficients and the positive sign in the CfE value are directly related to a
sudden glacier forward movement, whose acceleration characterizes the active phase of the glacier
surge. Therefore, this rapid increase and decrease in CfD and CfE coefficients (cf. Figures 6 and 7,
Table 4) can be taken as a determinant of the beginning and end of the glacier surge.

The Monacobreen case study (cf. Table 4) shows that the proposed classification based on both
indicators can be a useful tool for finding dynamic patterns of surging tidewater glaciers. These data
refer to the results of Murray et al. [45], where the authors indicated three phases in the glacier surge
cycle: acceleration, deceleration, and quiescence. Classification according to CfD and CfE indicates
that both the active phase and the quiescent phase can show more variation in terms of the dynamic
reaction of the glacier. The method requires further analysis to exclude overlapping of mid-seasonal
fluctuations on interannual glacial dynamics. In this analysis, due to availability and quality, the data
came from different parts of the ablation season.

5. Conclusions

The morphometric indicators used here, the frontal zone dynamics indicator CfD and the ice-cliff
balance indicator CfE, allow determining of the dynamic state of tidewater glaciers and classifying them
as: deeply receding glaciers, glaciers fulfilling the frontal zone/showing a forward movement, glaciers
clearly advancing (active phase of the glacier surge), those showing signs of recession (quiescent phase),
and stagnant glaciers. In addition, they allow forecasting future glacier behavior using remote sensing
methods (e.g., satellite imagery, aerial photographs, laser scanning data, etc.).

The value of these indicators just before the surge is related to the size of the glacier and the
complexity of the glacier system, the length of the ice-cliff and the average slope of its surface.
The beginning and end of the active phase of the glacier surge can be identified as a sudden change in
the ice-cliff morphometric indicators, as exceeding by several times the median of their interannual
fluctuations in the order of approximately 0.05–0.06. This, in turn, gives the opportunity to estimate the
duration of the active phase, which in the case of the 10 most-studied Spitsbergen tidewater glaciers
appears to last on average 6–10 years.

The analysis shows a clear difference in morphometry and the behavior of the surging glaciers
between smaller and large tidewater glaciers. One of the elements affecting the rate of the dynamic
processes and their scale is the presence of glacier buttresses, which drives the distribution of the
internal stresses in glaciers to the land anchored part, ensuring the stabilization of the ice-cliff. Buttresses
are especially characteristic of large glaciers which can reach larger linear recession values, but also
react more violently to the jump of the ice-cliff stability node. This also triggers the propagation of
crevasses from the ice-cliff line up the glacier, especially in cases of anchoring the ice-cliff closer to
the valley mouth. The presence of the glacier buttress system is probably another variable regulating
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the distribution of forces inside the glacier, which should be included in the modelling of the calving
processes of tidewater glaciers.

The morphometric model proposed here is of limited use for glaciers with very little contact with
the sea and in the case of ice-cliff shading. Glaciers pinning on islands/capes are also a problem. In this
case, each part of the ice-cliff between the island(s) and the land should be treated as a separate section.
Glaciers that have not lost their complexity are best suited for long-term analyzes.

Currently, Spitsbergen tidewater glaciers show a strong recession pattern, as expected following
Arctic amplification models. Thus, the morphometric indicators presented here also suggest a likely
intensification of the phenomenon of the glacier surge in the coming years.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/10/9/328/s1,
Table S1: Emblems of topographic maps and IDs and acquisition dates of Landsat satellite images used in
the research; Table S2: IDs and acquisition dates of Landsat satellite images for selected tidewater glaciers in
Spitsbergen in the period 1985–2019.

Funding: This paper has been partly created thanks to funds of the Leading National Research Center (KNOW)
No. 03/KNOW2/2014 received by the Centre for Polar Studies in the University of Silesia in Katowice for the
period 2014–2018 and supported with in statutory activities No 3841/E-41/S/2019 of the Ministry of Science and
Higher Education of Poland.

Acknowledgments: The author is very grateful to Leszek Kolondra (University of Silesia in Katowice) for sharing
his collection of topographic maps. The author thanks very much the Reviewers and the Academic Editor, Kristian
Kjellerup Kjeldsen, for all corrections and remarks improving the final version of the text.

Conflicts of Interest: The author declare no conflict of interest.

References
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