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Abstract: This paper aimed to present a systematic study of the effects caused by the strong
earthquake that struck southern Italy on 23 November 1980 (Ms = 6.9) and affected the Campania
and Basilicata regions. Two aspects are discussed here: The broadening of the knowledge of the
response site effects by considering several soil free-field conditions and the assessment of the role
of the soil–structure interaction (SSI) on a representative benchmark structure. This research study,
based on the state-of-the-art knowledge, may be applied to assess future seismic events and to
propose new original code provisions. The numerical simulations were herein performed with the
advanced platform OpenSees, which can consider non-linear models for both the structure and
the soil. The results show the importance of considering the SSI in the seismic assessment of soil
amplifications and its consequences on the structural performance.

Keywords: Irpinia-Basilicata earthquake; seismic assessment; soil structure interaction; numerical
simulations; OpenSees

1. Background

The 23 November 1980 Irpinia–Basilicata (Southern Italy) earthquake (Ms = 6.9) caused deep
changes in the urban socio-economic layout, and primary and secondary effects that brought about
changes to the natural environment, such as landslides (e.g., Senerchia, Buoninventre, Caposele, Calitri,
San Giorgio La Molara, and Grassano) [1–4]. It consisted of several rupture episodes, which occurred
at 0.18 and 40 s from the foreshock, and it was assigned a surface-wave magnitude of Ms = 6.9 [5,6].
A wide area (about 3500 km2) recorded serious damage, many casualties, and 15 localities were almost
destroyed, including Sant’Angelo dei Lombardi, Laviano, Lione, Santomenna, Senerchia, Pescopagano,
and Balvano. It was estimated that of a total of approximately 1.85 million buildings involved in the
event, 75,000 were destroyed, 275,000 seriously damaged, and 480,000 slightly damaged [6].

With respect to this event, the documentary sources are based on two main typologies of technical
data preserved in local archives: The “Scheda A” and “Scheda B”, which report the damages to the
buildings, consisting mostly of reinforced concrete (RC) structures characterized by infill masonry
walls (IMWs), which are representative of the Italian residential buildings. Eight damage levels
were defined by considering the action to be undertaken, such as repairing works, evacuation, or
demolition [6]. Other important documents are the recovery plans (named “Piani di Recupero”) of the
historical centers, the other sources used to analyze the outcomes of the earthquake at the urban scale.
An important study regarding the effects of spectral accelerations was proposed by [7], who analyzed
the effects of the soil on the accelerations in several locations, with particular attention to the Naples
area. In addition, [8] simulated the recorded strong-motion data by computing spectral accelerations
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and peak amplitude residual distributions in order to investigate the influence of site effects and
compute synthetic ground motions around the fault. They simulated the expected ground motions
varying the hypocenters, the rupture velocities, and the slip distributions and compared the median
ground motions and related standard deviations from all scenario events with empirical ground-motion
prediction equations (GMPEs). Recent earthquakes, such as the Athens (Greece, 1999) [9], the Kocaeli
(Turkey, 1999) [10], the Haiti (2010) [11], and the Gorkha (Nepal, 2015) [12–14] earthquakes, showed
the importance of taking into account soil amplifications. In the literature, several approaches have
been applied to perform ground motion analyses including site effects: hybrid analyses that consist
of a combination of probabilistic and deterministic methods (e.g., [15,16]), convolution approaches
that provide modifications of the rocking hazard (e.g., [17,18]), and 1D seismic site response analyses
(e.g., [19,20]).

Even if the 1980 Irpinia–Basilicata (southern Italy) earthquake is well documented with several
contributions (e.g., [21–24]) and models proposed [25,26], the assessment of the role of the soil on
the structural damage is still a relatively unexplored issue and this paper aimed to fill this gap. In
particular, the principal aim was to propose numerical simulations of different soil conditions and
assess the effects of the soil–structure interaction (SSI), which can significantly affect the seismic
vulnerability of structures [27–29]. In this regard, when the superficial deposits overlie the bedrock,
amplifications of the surface seismic accelerations may not be conservatively predicted by the codes.
The so-called site effects consist of a combination of soil and topographical effects, which can modify
(amplify and attenuate) the characteristics (amplitude, frequency content, and duration) of the incoming
wave field and are primarily based on the geotechnical properties of the subsurface materials [30].
In particular, the response of the superficial layers is strongly influenced by the uncertainty associated
to the definition of the soil properties and model parameters that are fundamental to assess the
well-known mechanism of seismic amplifications of ground motion [31]. Therefore, accounting for the
amplification effects of superficial layers has become critically important in seismic design [32] and
widely adopted in many codes’ prescriptions, such as Eurocode 8 [33], ASCE (American Association of
Civil Engineering) standards 7-05 [34], and 4-98 [35]. These codes provide soil parameters, generally
determined through geological investigations [36–40], that can largely vary even within the same
area [41,42]. The methodology followed in this paper consists of a first step, where free-field (FF)
analyses were computed on several layers of soil, and secondly, an SSI (Soil-Structure Interaction)
analysis was performed on a selected structural configuration that is representative of the buildings
that were damaged during the Irpinia-Basilicata earthquake.

2. Case Study

SSI analyses require the definition of geomechanical parameters that are fundamental to describe
the dynamic soil behavior, such as the modulus reduction and damping curves (see [43,44]). According
to the current state of knowledge on the Irpinia-Basilicata earthquake, strength parameters for
superficial layers are not available. Therefore, it was necessary to select representative values based on
available information, such as [8], for a preliminary study. These values are herein determined with
free-field analyses since the actual values at each building site will slightly differ when the building
characteristics are considered. In particular, the present paper aimed to model a low-rise building
based on a relatively shallow foundation assuming that the ground motion amplitude, which decreases
at the foundation level with respect to the free field, may be negligible [42].

The study here proposed was divided into two steps. First of all, several FF models with different
soil conditions were considered (Figure 1), in order to study the effects of soil deformability on the
amplification of the motion. In particular, four incoherent soils were performed on the basis of the
contributions that were found in the literature. Then, a complete 3D numerical model with the
soil-foundation-structure system was performed (Figure 2). The FF soil models consist of a one-layer
20-m-deep homogenous incoherent material with a 3D mesh (Figure 1). The penalty method was
adopted for the boundary conditions (tolerance of 10−4), chosen as a compromise for the soil domain
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definition, which was modelled large enough to ensure strong constraint conditions but not too large
in order to avoid problems associated with the equations system conditions. Base boundaries (depth of
20 m) were considered as rigid. Base and lateral boundaries vertical direction (described by the third
degree of freedom (DOF)) were constrained, while longitudinal and transversal directions were left
unconstrained on the lateral boundaries, in order to allow shear deformations of the soil. The definition
of the mesh elements dimension follows the approach already adopted [45–48] and, in order to verify
proper simulation of FF conditions, accelerations at the top of the mesh were compared with the FF ones,
which were found to be identical, confirming the effective performance of the mesh. The benchmark
structure was calibrated in order to be representative of the buildings that were present in Irpinia in
1980. In this regard, a 3-storey concrete building with masonry walls was considered.
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Figure 2. Mesh 2: SSI model; uniform soil layer (blue), infill (green), and foundation (yellow).
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Dynamic analyses were performed with OpenSeesPL. The selected input motion was chosen from
the Italian Accelerometric Archive [49] and it represents the acceleration registered in Sturno (STN)
station (lat: 41.0183◦, long: 15.1117◦) in Avellino, Campania (Figure 3), and located less than 5 km
from the fault and 33 km from the epicenter (41.76◦N, 15.31◦E). For more details, see [8]. The input
was defined on soil B, as classified by Eurocode 8, and applied at the base of the model along the
longitudinal direction.
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2.1. Step 1: FF Analyses

The soil models were built up on a two-phase material following the u-p formulation [50], where
u is the displacement of the soil skeleton and p is the pore pressure. The soil material was based on
the following assumptions: (1) Small deformations and rotations, as well as solid and fluid densities
remain constant in both time and space; (2) porosity is locally homogeneous and constant with
time; (3) soil grains are incompressible; and (4) solid and fluid phases are accelerated equally [51].
The 20-m-deep soil layer was defined by the PressureDependMultiYield02 model [52,53], based on the
multi-yield-surface plasticity framework developed by [54], in order to reproduce the mechanism
of cycle-by-cycle permanent shear strain accumulation in clean sands (Figure 4). Table 1 shows the
adopted parameters, such as the low-strain shear modulus and friction angle, as well as the shear
wave velocities and permeability. Soil fundamental periods were estimated considering an equivalent
uniform linear layer, following [55]. The number of yield surfaces was equal to 20 for all soil models.
Figure 5 shows the backbone curves for all the selected soil models.
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Table 1. Soil characteristics.

Soil S1 S2 S3 S4

Density [Mg/m3] 1.7 1.9 1.9 2.1
Reference Shear Modulus [kPa] 3.83 × 104 4.28 × 104 5.50 × 104 1.32 × 105

Reference Bulk Modulus [kPa] 1.50 × 105 2.00 × 105 2.00 × 105 3.90 × 105

Shear wave velocity [m/s] 150 150 170 250
Soil fundamental period [s] 0.53 0.53 0.47 0.32

Cohesion [kPa] 5 5 5 5
Friction angle [◦] 27 29 35 40

Hor. Permeability [m/s] 1.0 × 10−7 1.0 × 10−7 1.0 × 10−7 1.0 × 10−7

Ver. Permeability [m/s] 1.0 × 10−7 1.0 × 10−7 1.0 × 10−7 1.0 × 10−7
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Figure 5. Backbone curves (selected soils).

The 3D soil models consist of a 100 m × 100 m × 20 m mesh, built up with 8000 20-node BrickUP
elements and 9163 nodes to simulate the dynamic response of solid-fluid fully coupled material [52,53].
For each BrickUP element, 20 nodes describe the solid translational degrees of freedom, while the eight
nodes on the corners represent the fluid pressure 4 degrees of freedom. For each node, Degree of
Freedom (DOF)s 1, 2, and 3 represent solid displacement (u) and DOF 4 describes fluid pressure (p),
which were recorded using OpenSees Node Recorder [52,53] at the corresponding integration points.
The element dimension increases from the structure (center of the model) to the lateral boundaries,
which were modelled to behave in pure shear and located far away from the center of the mesh.
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2.2. Step 2: SSI Analyses

The study considered an RC structure with infill masonry walls as a benchmark, in order to
represent the Italian residential buildings that were mostly damaged during the 1980 Irpinia–Basilicata
earthquake. The benchmark structure was built with a 4 × 2 column scheme (4 columns in the
transversal direction (8 m spaced) and 2 in the longitudinal direction (10 m spaced)) and modelled to
have periods in the range of those of residential buildings, considering 3 floors (a 3.4 m storey height,
with a total structure height of 10.2 m). The structure was modelled as a superposition of two schemes
(Figure 6). Both vertical and horizontal elements were composed by RC concrete columns and beams,
respectively, and characterized by fiber section models. Concrete02 material [56,57] was chosen to
model the core and the cover portions (Figure 7a,b, respectively) of the section (0.40 m × 0.40 m) and
with the parameters defined in Table 2. The ratio between the unloading slope (related to the maximum
strength) and the initial slope was taken as equal to 0.1. A total of 30 bars were used and represented
by Steel02 material [58], with the properties shown in Table 3 and the ratio between the post-yield
tangent and initial elastic tangent equal to 0.01 (Figure 8). The parameters that control the transition
from elastic to plastic branches were assumed R0 = 15, CR1 = 0.925 and CR2 = 0.15, as suggested
by [53]. The masonry walls were modelled as equivalent diagonal elasticBeamColumn elements [52,53],
in both the longitudinal and transversal directions. The masonry walls’ properties were selected based
on the Italian code provisions, with low-to-medium mechanical characteristics (Table C8A.2.1 [59]),
as shown in Table 4. Table 5 shows the vibration periods of the structure with and without the infill
masonry walls. It is worth noting that the masonry walls affect the structural natural period (from
0.3012 s to 0.2085 s), since they increase the lateral stiffness of the whole structure (as shown in [60]).
In particular, the infill masonry walls introduce different mechanisms that may significantly modify the
seismic behavior of the structure. The foundation was modelled as a 0.50-m-deep rectangular concrete
raft foundation (28.4 m × 34.4 m) in order to represent the recurring shallow foundation typologies for
residential buildings. These types of foundation can be particularly vulnerable due to their bearing
capacity, which depends only on the contact pressure and not on the frictional mechanisms (as in
the case of deep foundations). The considered foundation was assumed to be rigid, by tying all the
columns base nodes together with those of the soil domain surface, using equalDOF [52,53]. Horizontal
rigid beam-column links were set normal to the column longitudinal axis to simulate the interface
between the column and the foundation. The foundation was designed by calculating the eccentricity
(the ratio between the overturning bending moment at the foundation level and the vertical forces)
in the most detrimental condition of the minimum vertical loads (gravity and seismic loads) and
maximum bending moments. The foundation was modelled with an equivalent concrete material, by
applying the Pressure Independent Multi-Yield model [52,53] (Table 6). This model consists of a non-linear
hysteretic material with a Von Mises multi-surface kinematic plasticity model, which can simulate
a monotonic or cyclic response of materials whose shear behavior is insensitive to the confinement
change. The nonlinear shear stress-strain backbone curve is represented by the hyperbolic relation,
defined by the two material constants (low-strain shear modulus and ultimate shear strength) [52,53].

Table 2. Concrete02 (core and cover).

Concrete02 Core Cover

Compressive strength at 28 days [kPa] −4.630423 × 104
−2.757900 × 104

Strain at maximum strength [%] −3.484000 × 10−3
−2.00000 × 10−3

Crushing strength [kPa] −4.466062 × 104 0
Strain at crushing strength [%] −3.572200 × 10−3

−6.0000 × 10−3

Tensile strength [kPa] 6.482592 × 103 3.861060 × 103

Tension softening stiffness [kPa] 1.860438 × 106 1.930530 × 106
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Table 3. Steel02 (bars).

Steel02 Core Cover

Yield Strength [kPa] 4.55054 × 105
−2.757900 × 104

Initial elastic tangent [kPa] 2.00000 × 108
−2.00000 × 10−3
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Figure 8. Shear stress vs. shear strain relationship for Steel02 (bars).

Table 4. Masonry characteristics [53].

Diagonals Masonry

Density [Mg/m3] 1.8
Young Modulus [kPa] 1.50 × 106

Shear Modulus [kPa] 5.00 × 105

Compressive strength [kPa] 3.00 × 103

Shear strength [kPa] 70

Table 5. Structural periods.

Models T1 [s] T2 [s] T3 [s]

RC 0.301 0.107 0.073
RC with IMWs 0.209 0.074 0.049

Table 6. Foundation.

Parameters Concrete

Density [Mg/m3] 2.4
Reference Shear Modulus [kPa] 1.25 × 107

Reference Bulk Modulus [kPa] 1.67 × 107

The 3D soil models consist of a 118.4 m × 124.4 m (20.5 m thick) mesh, built up with 31,860 nodes
and 35,868 20-node BrickUP elements to simulate the dynamic response of solid-fluid fully coupled
material [52,53] and with the same assumptions considered for the free-field models (Section 2.1).
As explained in Section 3.1, S2 was implemented amongst the soil materials that were considered in
step 1. The first 0.5-m-deep soil layer around the foundation was modelled with a backfill defined
by the PressureDependMultiYield [52,53] model, based on the multi-yield-surface plasticity framework
developed by [54]. Table 7 shows the adopted parameters, such as the low-strain shear modulus,
the friction angle, and the permeability. The number of yield surfaces was equal to 20. Figure 9 shows
the backbone curves.
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Table 7. Infill soil characteristics.

Soil S1

Density [Mg/m3] 1.7
Reference Shear Modulus [kPa] 3.83 × 104

Reference Bulk Modulus [kPa] 1.50 × 105

Soil fundamental period [s] 150
Cohesion [kPa] 0.53

Friction angle [◦] 5
Hor. Permeability [m/s] 27
Ver. Permeability [m/s] 1.0 × 10−7

Geosciences 2020, 10, x FOR PEER REVIEW 9 of 17 

 

Young Modulus [kPa] 1.50 × 106 

Shear Modulus [kPa] 5.00 × 105 

Compressive strength [kPa] 3.00∙×103 

Shear strength [kPa] 70 

Table 5. Structural periods. 

Models T1 [s] T2 [s] T3 [s] 

RC 0.301 0.107 0.073 

RC with IMWs 0.209 0.074 0.049 

Table 6. Foundation. 

Parameters Concrete 

Density [Mg/m3] 2.4 

Reference Shear Modulus [kPa] 1.25 × 107 

Reference Bulk Modulus [kPa] 1.67 × 107 

Table 7. Infill soil characteristics. 

Soil S1 

Density [Mg/m3] 1.7 

Reference Shear Modulus [kPa] 3.83 × 104 

Reference Bulk Modulus [kPa] 1.50 × 105 

Soil fundamental period [s] 150 

Cohesion [kPa] 0.53 

Friction angle [°] 5 

Hor. Permeability [m/s] 27 

Ver. Permeability [m/s] 1.0 × 10−7 

 

Figure 9. Backbone curve (infill soil). 

3. Results 

In this section, the results are discussed on the basis of the assumptions made so far. In 

particular, it is important to state that the findings are limited to the conditions considered herein, 

especially to those regarding the selected soils. 

3.1. FF Analyses 

The selected soil profiles were considered under the assumption that the superficial layers are 

characterized by sand deposits with shear wave velocities in the range of 150–250 m/s. In this regard, 

the four materials were selected to be representative of real soil conditions from low to medium-low 

0

10

20

30

40

50

60

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Sh
e

ar
 S

tr
es

s 
[k

Pa
]

Shear strain [%]

INFILL

Figure 9. Backbone curve (infill soil).

3. Results

In this section, the results are discussed on the basis of the assumptions made so far. In particular,
it is important to state that the findings are limited to the conditions considered herein, especially to
those regarding the selected soils.

3.1. FF Analyses

The selected soil profiles were considered under the assumption that the superficial layers are
characterized by sand deposits with shear wave velocities in the range of 150–250 m/s. In this regard,
the four materials were selected to be representative of real soil conditions from low to medium-low
stiffness. Saturated and dry conditions were chosen in order to perform dynamic analyses. The position
of the water table is fundamental in order to assess the performance of the system (soil + structure).
However, it is extremely difficult to know this parameter in real situations. In this study, the water
table depth was set at a depth of 2 m from the ground surface for the saturated condition and for all
soil models. For each soil condition, transfer functions (TFs) were calculated as the ratio between the
acceleration at the ground surface (depth of 0 m) and the one at the base of the soil domain (depth of
20 m), considering the selected input motion (Figure 3) along the longitudinal axis.

Figure 10 compares the behavior of S1, S2, S3, and S4 for both saturated and dry conditions for
the range of periods between 0 and 1 s. It is worth considering that the role of soil deformability in
the mechanism of amplification inside the range of periods of the selected structure is paramount
(Table 5). In particular, S2 with the saturated condition is shown to be the most detrimental soil above
which the structure can be founded (maximum amplification equal to 1.66), since the TF peak occurs in
conjunction with the fundamental period of the structure (Table 5), and thus S2 is applied in the SSI
model (see Section 3.2). Moreover, dry conditions are noticeable for those periods that are far from the
structural ones. In general, it is possible to state that S2, S3, and S4 with the saturated condition are the
most detrimental cases. On the other hand, S1 seems to behave differently from the other cases, since
dry conditions are more detrimental for the structural configurations that were herein considered.
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3.2. SSI Analyses

With the recent development of the performance-based earthquake engineering (PBEE)
methodology [61–63], there has been an increasing attention in the new engineering demand parameter
(EDP) to assess the structural performance of buildings, such as the floor accelerations. In particular,
many codes [64–67] are implementing new provisions based on floor performance. In this regard, the
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paper aimed to move in the direction of this new approach by calculating not only the peak values
of the aforementioned EDP but also the top floor accelerations. This section presents the structural
performance at the foundation level and along the height of the building, considering the soil S2 under
saturated conditions, which was found to be the most detrimental (Section 3.1).

Figure 11 represents the rotation versus bending moment related to an RC column at the base of
the structure. It is possible to see that the diagram presents the typical hysteretic mechanism registered
during a seismic event. In particular, the values of the rotations are not significant, meaning that the
rocking component of the foundation does not relevantly affect the performance of the structure, which
is tied to the ground. The settlement of the foundation is not substantial as well (maximum 1.8 mm)
and this is the reason for the low level of overturning moments and interstorey drifts (Figure 12),
calculated as the ratio between the relative longitudinal displacement and the height of the floor from
the foundation level.
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The floor spectra (5% damping), which were considered in order to assess the amplifications of
the longitudinal accelerations, and thus the seismic performance of the structure, are represented in
Figure 13. It is worth noticing that the peaks correspond to the fundamental period of the structure (as
expected), demonstrating that the numerical model performed properly. Moreover, the accelerations
increase with the height of the structure (0.426, 0.628, and 0.776 g, respectively, for floor 1, floor 2, and
floor 3), with amplifications for floor 2 and floor 3 of 23.5% and 82.1% greater than those resulted for
floor 1. Additionally, the significant peak related to the period of 0.6 s is noticeable, where all the
structures show the same level of amplification (nearly 0.9 g). This peak corresponds to a period that is
close to the fundamental period of the S2 soil, and thus may be a consequence of the mutual behavior
of the soil and the structure [68].Geosciences 2020, 10, x FOR PEER REVIEW 13 of 17 
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Figure 13. Spectra at various floors (damping ratio = 5%).

Figure 14 shows the maximum longitudinal displacements along the height of the structure. It is
noticeable that the foundation maximum displacement is 1.725 cm, which means that a considerable
translation occurred. In addition, since the structure is a low-rise building, the structural stiffness
drives the increase in displacements along the height of the buildings and in relation to the various
floors. The maximum displacement at the top of the structure is 1.885 cm, which is significant for a
three-storey building in terms of structural performance.
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Figure 14. Maximum longitudinal displacements.

Figure 15 represents the shear forces versus longitudinal displacements for the masonry walls.
These outputs are fundamental in order to define the damage conditions of the wall and to determine
the potential collapse mechanism. It is worth noticing that the results are somewhat significant,
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demonstrating that the masonry walls are the weakest elements in the structure, as expected by
the historical evidence during the 23 November 1980 Irpinia–Basilicata (southern Italy) earthquake.
In particular, the maximum base shear was 390 kN and the corresponding maximum tensile stresses
were approximately 65 kPa, which is close to the ultimate tensile stress. This aspect suggests that the
potential damage is primarily due to the shear failure of the masonry walls.
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Figure 15. Shear forces vs. longitudinal displacements at various floors.

Overall, the results demonstrate that the numerical model is in good agreement with the
assumptions made so far, and thus the ground-foundation-structure system was simulated properly.
The paper assessed the role of soil deformability in the amplification of accelerations, and thus its
consequences on the structure. In particular, the outputs were chosen in accordance with the new
approach proposed by the recent code provisions and the top floor accelerations and other significant
EDP were calculated for the performed structure. In this regard, the values of the shear forces that
occurred in the masonry elements show that shear failure may potentially occur in these elements, as
expected and as proved by the damage that occurred during the 23 November 1980 Irpinia–Basilicata
(southern Italy) earthquake.

4. Conclusions

The paper investigated the effects of soil deformability on a typical structural configuration by
analyzing a 3-D soil–structure model built up with OpenSeesPL. The results are the consequence
of several mechanisms known globally as the soil–structure interaction (SSI). The principal novelty
of the paper consisted of proposing a model that performs detailed 3-D simulations of both the
soil and the structure and assessing the structural performance in terms of displacements, drifts,
and accelerations at various floors. Overall, the paper demonstrated that the soil may cause several
spectral amplifications under free-field conditions (maximum amplifications: 1.66) and that a rigid
low-rise building is sensitive to SSI effects, which need to be considered. Although the findings
were limited to the specified conditions, they may potentially be useful to propose formulations that
include SSI effects within code provisions. In this regard, future parametric numerical simulations
on the response of other structural typologies and soil characteristics (e.g., water-level depth) will
be performed.
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