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Abstract: As drought occurs in a region it can have cascading effects through the water cycle. In
this study, we explore the temporal co-evolution of various components of the hydrologic cycle
in California from 2002 to 2018. We combine information from the Gravity Recovery and Climate
Experiment (GRACE) satellites, the North American Land Data Assimilation System (NLDAS) suite
of models, and the California Department of Water Resources (DWR) reservoir levels to analyze
dynamics of Total Water Storage (TWS), soil moisture, snow pack, large reservoir storage, and
ultimately, groundwater. For TWS, a trend of −2 cm/yr is observed during the entire time period
of our analysis; however, this rate increases to about −5 cm/yr during drought periods (2006−2010
and 2012−2016). Results indicate that the majority of the loss in TWS is caused by groundwater
depletion. Using proper error accounting, we are able to identify the start, the peak, and the ending
of the drought periods for each individual water state variable in the study domain. We show that
snow and soil moisture are impacted earlier and recover faster than surface water and groundwater.
The annual and year-to-year dynamics shown in our results portray a clear cascading effect of the
hydrologic cycle on the scale of 8−16 months.
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1. Introduction

In recent decades, the demands of fresh water for urban, agricultural, and environmental uses
have exceeded the natural renewable supply in many regions of the world, especially for arid and
semi-arid regions such as California [1,2]. To date, this gap between the available surface water supply
and the growing water demand has caused significant stresses on fresh water systems globally. This
has created a large reliance on groundwater, a slowly renewable resource conveniently stored at
shallow subsurface aquifer layers. Because of continued extraction and insufficient recharge that is
complicated by climate variability (i.e., droughts), depletion of subsurface aquifers has become a dire
environmental consequence that is being observed globally in arid and semi-arid regions with highly
variable precipitation (e.g., [3–12]). Generally, various aspects of the hydrologic cycle, such as snow
pack and soil moisture, have been impacted by increasing temperatures and more variable precipitation.
This overall shock to the water cycle can be seen in both observations and model simulations of total
water storage for many regions of the world [7–12].

Despite the critical need for fresh water supplies, water resource availability is often poorly
monitored. For example, groundwater monitoring networks do not exist at the same scope and scale
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for those that track surface water [13]. Conventionally, groundwater level change is monitored through
in situ measurements at observational wells, which are sparse, very cost ineffective, and difficult to
access. Furthermore, measurement records are often discontinuous. To overcome these challenges,
various methods, such as geostatistical interpolation and hydrologic model simulation, have been
proposed to estimate fresh water availability [14,15]. Even though hydrologic models may be capable
of inferring water availability at high spatiotemporal resolution, the conventional land surface models,
such as Noah-MP [16], omit consideration of human activities. This lack of representation could cause
biases in simulations, for example by underestimating rates of groundwater loss [17]. In addition to
groundwater, other sources of fresh water are hardly monitored or tracked, such as soil moisture or
snow water. Although methods exist to gather data on these processes, such as airborne or satellite
observations, in situ observations, or methods like data assimilation that fuse observations with model
simulations [15,18,19], detailed knowledge about the state of these systems is still lacking. This causes
a great deal of uncertainty in estimates of the different aspects of the hydrologic cycle.

In California, particularly in productive agricultural regions such as the Central Valley, has
experienced periodic declines in total water storage in recent decades. A main reason for the loss
of fresh water in this region is due to groundwater depletion. Annually, at least 40% or more of
the Central Valley’s demand for water is supplied from groundwater, with the majority is used in
agriculture [11,20] Data from the United States Geological Survey (USGS) show that between 1962
and 2003, groundwater use in the Central Valley increased from 0.75 to 2.5 km3 per year [21]. The
groundwater extracted for irrigation often exceeds the natural recharge, leading to declines in the
groundwater table [13,21–23]. Furthermore, the winter snow pack in the Sierra Nevada is usually a
reliable source of fresh water for the drier spring and summer seasons. However, recent years have
shown a large increase in temperatures and a slight decrease in precipitation, causing a depletion
of the snowpack for many regions where snow is usually available [15]. Also, large surface water
reservoirs have shown periods of depleted reserves during droughts, and many of the largest reservoirs
were in critical condition during recent droughts [24]. The impacts from droughts are usually felt
in one hydrologic process before it reaches another, for example, depletion of the snow pack occurs
before groundwater reserves are relied on. In this study, we aim to capture this cascading effect of
the hydrologic cycle for California, and to quantify its uncertainty by analyzing different sources of
information that are available.

More recently, much effort has been focused on monitoring aspects of the hydrologic cycle
using remote sensing techniques (e.g., [4,5,7,13,25–27]). For example, NASA’s Gravity Recovery and
Climate Experiment (GRACE) mission [28] has proven to be an extremely valuable tool for regional
to global scale water cycle studies [7,28]. Satellite observations of Earth’s gravity field from GRACE
are processed routinely into estimates of surface mass change and can provide information about
basin-scale dynamics of groundwater. GRACE mass change estimates can be combined with other
hydrologic information, such as model simulations or in situ observations, to infer groundwater
changes (e.g., [7,11–13,29,30]). For example, information on snow and soil moisture can be obtained
from high-resolution land surface models, and reservoir storage information can be obtained by local
water managers, and this information can be helpful to estimate groundwater dynamics derived from
the GRACE satellites. In this way, various sources of information are fused to quantify the water cycle
along with its uncertainty.

Total Water Storage (TWS) estimates from GRACE include all of the snow, ice, surface water, soil
water, canopy water, and groundwater in a region, and when combined with auxiliary hydrologic
datasets, TWS can be utilized to infer process information on groundwater, or other water sources. To
investigate the various water processes in our study, we utilize data from the North American Land
Data Assimilation System (NLDAS-2) for outputs of soil moisture and snow water equivalent [19,31].
For surface water, we use data from the California Department of Water Resources (DWR) on the
50 largest reservoirs in the state. We ignore smaller terms that may be negligible, such as ice or
canopy water. This leaves us with the groundwater component. By combining all of these sources of
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information, we can investigate the temporal evolution of each water process and answer questions
such as: 1) Is there a cascading effect in the hydrologic cycle that can be clearly extracted from the data?
2) Are there obvious differences in the timing of drought (beginning, peak and end of drought) for each
process, and if so, by how many months (or years)? By utilizing the various sources of information
available to us via satellite observations, model simulations, and ground observations, we are able to
infer the cascading effect of the water cycle and can make quantitative assessments of the evolution of
each hydrologic process.

2. Data and Methods

2.1. GRACE Satellites

NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission provided a new
means to observe fresh water variability from space (e.g., [5,7,13,29]). Since 2003, satellite observations
of time variable gravity from the GRACE mission have provided monthly estimates of total mass
change globally. These estimates have been widely used for hydrology and water resource monitoring.

Various recent studies have demonstrated that GRACE derived estimates of variations of total
water storage (TWS) can provide fresh water availability estimates with sufficient accuracy [11,18,26].
These GRACE-based methods have been applied to regions such as Northern India [5,32], the
Middle East [33,34], Northern China [35,36], and California [7,11,13,30], among others. In this
study, the JPL RL05M.1 Version 2 GRACE mascon product, which can be downloaded at https:
//grace.jpl.nasa.gov/data/get-data/ [37,38], is used to examine water storage changes in California
(Figure 1) and its underlying aquifer system during the GRACE satellite period, from April 2003
through June 2017. Figure 1 shows temporal trends in TWS observed by the GRACE satellites for
2003−2017 and for drought periods such as 2006−2010 and 2012−2016. There is a clear depletion of
TWS in California, as seen in Figure 1, especially during droughts. Furthermore, the GRACE product
also provides uncertainty estimates, which will be used in our overall assessment of groundwater
uncertainty described in Section 2.5. In other words, the standard deviation of the TWS estimates at
each time step, or σTWS (t), is provided with the downloaded GRACE product.
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Figure 1. Trends in TWS observed by the GRACE satellites for (A) the entire time period of the study,
(B) the drought period from 2006 to 2010, and (C) the drought period from 2012 to 2016.

2.2. NLDAS—Mosaic, Noah, and VIC

The North American Land Data Assimilation System (NLDAS-2) constructs quality-controlled,
and spatially and temporally consistent, land-surface model (LSM) datasets from the best available
observations and model outputs [19,31] Data sets are available on hourly, daily, monthly and
climatological time scales. NLDAS products are used in modeling, research, and applications,
such as drought and flood monitoring, watershed and water quality management, and case studies
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of extreme events. NLDAS integrates a large quantity of observation-based and model reanalysis
data to drive offline (not coupled to the atmosphere) land surface models (LSMs), and is executed at
1/8th-degree grid spacing over North America.

The models we use from NLDAS are the Noah, Mosaic, and VIC land surface models. We extract
and use monthly average soil moisture at the 1 m level (SM) (Figure 2A−C) and snow water equivalent
(SWE) (Figure 2D−F) outputs from each model for the years 2003–2018. The NLDAS-2 data used
in this study can be downloaded at https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS. Figure 2
shows temporal trends in SM and SWE for 2003–2018 simulated by the suite of NLDAS-2 models.
As shown in Figure 2, there are large discrepancies between the various model simulations, which
create uncertainties for our estimates of SM and SWE. We define the uncertainty for each process as the
standard deviation (std) between the ensemble of three models at each time step (Figure 3B,C):

SWE (t) = std (SWENoah (t), SWEMosaic (t), SWEVIC (t)) (1)

SM (t) = std (SMNoah (t), SMMosaic (t), SMVIC (t)) (2)
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suite of models. (A,D) The Mosaic model. (B,E) The Noah model. (C,F) The VIC model.
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Figure 3. Temporal dynamics with uncertainties for all water processes in California that are investigated
in this study, including (A) TWS from GRACE, (B) SWE from NLDAS, (C) soil moisture from NLDAS,
(D) reservoir storage from DWR, and (E) estimated groundwater anomalies calculated in this study.

2.3. Reservoir Data from the California DWR

The California Department of Water Resources (DWR) is a government agency that is responsible
for managing and protecting California’s water. The DWR provides the California Data Exchange
Center (CDEC), which installs, maintains, and operates an extensive hydrologic data collection network
including data on the largest reservoirs in California, which we use in this study. The data can be
downloaded at http://cdec.water.ca.gov/reservoir.html. We extract the information for the 50 largest
reservoirs in California for the period 2003-2018, and use this as our Surface Water (SW) portion of
the hydrologic cycle for this study. As done in previous studies (e.g., [7]), we apply 15% noise to the
reservoir level data to obtain uncertainty estimates for surface water (Figure 3D), i.e., σSW (t) = 0.15 ×
(SW (t))

2.4. Data Processing to Calculate Groundwater

Each data product was re-gridded to match the GRACE product resolution (GRACE resolution =

0.50◦ × 0.50◦). The original NLDAS simulations had a resolution = 0.125◦, but these were re-gridded
using bi-linear interpolation to match the gridding of the GRACE product. Once all products were on
the same grid, we performed an area-weighted average that accounted for grid areas as a function
of latitude. Then each of the data pieces was accumulated (summed) to obtain a temporal curve
with uncertainties for each process (i.e., TWS(t), SM(t), and SWE(t)). The DWR reservoir data were
in the form of point information, but we added up all these values to get one temporal data vector
for California (i.e., SW(t)). Finally, once all the data was in the form of a temporal vector (with
uncertainties), we were able to estimate the groundwater and its uncertainty.

http://cdec.water.ca.gov/reservoir.html
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2.5. Groundwater Estimates and Associated Uncertainties

The GRACE products estimate total mass change; therefore, the contributions of mass changes
from other processes must be estimated before the groundwater mass change can be inferred [7].
Typically, this is done with a numerical land surface model. However, one standing issue with respect
to GRACE is how much of the derived groundwater mass change is due to anthropogenic causes
versus model error. Addressing this requires a rigorous and robust treatment of uncertainties that come
with individual model corrections. Below, we outline the essential steps for deriving groundwater
storage change and the approach we adopt to quantify the associated uncertainties.

The GRACE total water storage (TWS(t)) data were processed in a way that was able to quantify
the uncertainty of the temporal dynamics of groundwater storage change aggregated for California
(Figure 3A). We used information for soil moisture (SM(t)), snow (SWE(t)) and surface water (SW(t))
aggregated for the GRACE analysis region as described in Sections 2.2 and 2.3, and then subtracted
their effects from the TWS variations (TWS(t)) obtained from GRACE, where t indicates time. Our
analysis was performed at monthly resolution. Therefore, the time-specific changes in groundwater
(GW(t)) for a region are given by the following:

GW(t) = TWS(t) - [ SM(t) + SWE(t) + SW(t)] + ε (t) (3)

We applied the Monte Carlo method and draw n = 1000 ensembles by introducing the uncertainty
from each hydrologic process (i.e., TWS, SM, SWE, and SW). The calculation uses a normal (Gaussian)
error with standard deviation σ, or N(0, σ):

ε (t) = N(0, σTWS(t)) + N(0, σSWE(t)) + N(0, σSM(t)) + N(0, σSW(t)) (4)

The uncertainty of TWS, or σTWS in Equation (4), is directly the error associated with the GRACE
measurements, which is offered as part of the data product. The uncertainty information for SM and
SWE, or σSM and σSWE in Equation (4), was obtained from the NLDAS-2 models. We characterized the
uncertainty of SM and SWE as the standard deviation (std) between the ensemble of three models
at each time step from the Mosaic, VIC, and Noah land surface models. The data for the reservoirs
that represent the surface storage were obtained from the California Department of Water Resources
(DWR). The uncertainty of the surface reservoir storage, or σSW in Equation (4), was assigned as 15%
of the magnitude of the storage, a conservative approach that has been employed in previous studies
(e.g., [7]).

After propagating all the sources of uncertainty, we were able to estimate the temporal groundwater
dynamics for California with uncertainties (see Figure 3E). Note that there should theoretically be
a correlation between the error components, since these processes are directly linked with one
another. One way to account for this is to include these correlation terms (if they were known) in the
non-diagonals of the error matrices. Although accounting for these correlations is beyond the scope of
the current paper, we believe it could provide further insight on how these processes co-evolve together.

2.6. Wavelet Analysis

Many scientists have made use of the wavelet method in analyzing time series in geophysical or
climate studies [39,40]. At present, there are many easy-to-use wavelet software packages for analyzing
two time series together. Here, we used the cross wavelet transform and wavelet coherence (i.e., https:
//www.mathworks.com/matlabcentral/fileexchange/47985-cross-wavelet-and-wavelet-coherence) for
examining relationships in the time frequency domain between two time series [40]. Grinstead et al.
demonstrated how phase angle statistics can be used to gain confidence in causal relationships and test
mechanistic models of physical relationships between time series. As hypothesized, the annual and
year-to-year dynamics of the hydrologic cycle should portray a clear cascading effect. To investigate
this further, we applied a wavelet analysis, which shows the frequency (in months) with which there is

https://www.mathworks.com/matlabcentral/fileexchange/47985-cross-wavelet-and-wavelet-coherence
https://www.mathworks.com/matlabcentral/fileexchange/47985-cross-wavelet-and-wavelet-coherence
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a clear signature between the temporal correlation of two processes. We applied this test to show the
wavelet analysis results for each pair of processes estimated in our study.

3. Results

3.1. Trends in the Water Cycle

Figure 1 shows trends in TWS estimated by the GRACE products for different time periods,
including two drought periods. A trend of roughly -2 (+/− 0.15) cm/yr is observed during the entire
time period of our analysis (2002−2017). However, this trend has been up to -5 (+/− 0.65) cm/yr during
drought periods (2006−2010 and 2012−2016). In Figure 2, trends in SM and SWE simulated by the
NLDAS-2 suite of models are shown. For SM (Figure 2A−C), there are significant differences in the
simulated trends between the various models, but losses of water from SM are estimated to have been
roughly −1 (+/− 0.25) cm/yr, and as high as −3 cm/yr in some regions. For SWE (Figure 2D−F), most
models agree that there has been roughly −1 (+/− 0.10) cm/yr loss of fresh water from the snow pack.

After applying the method described in Section 2.5, we are able to estimate the groundwater
anomalies for the period of the study. Figure 3 shows the timeline of each hydrologic process, along
with their respective uncertainty bounds. Table 1 reports the signal of water loss from each process,
for different time periods. These numbers are also displayed in Figure 4, where the processes that
contribute to the trends seen in TWS are disentangled and displayed separately. In summary, these
results indicate that the majority of the loss in TWS is caused by groundwater depletion. This is
especially apparent when we look at the volume of water lost in the right column of Table 1, where
groundwater makes up the majority of this signal. Also, in Figure 4E−G, we show that groundwater
makes up 60%−90% of the signal seen in TWS loss (red histograms).

Table 1. Estimates of change in various components of the hydrologic cycle for the periods 2003−2017
(top), 2006−2010 (middle), and 2012−2016 (bottom). Total water storage is from the Gravity Recovery and
Climate Experiment (GRACE), soil water and snow water storage are from model simulations (NLDAS),
and surface water storage in the form of reservoirs is from the DWR. Estimates for groundwater storage
are calculated in this study, and 1-sigma standard errors are shown for each estimate.

Entire Record 2003−2017

Storage Compartment Trend (cm/yr) Volume Trend (km3/yr) Volume Lost (km3)

Total −1.36 ± 0.15 −3.98 ± 0.43 −55.69
Soil Water −0.05 ± 0.04 −0.15 ± 0.12 −2.11

Snow Water −0.02 ± 0.02 −0.06 ± 0.05 −0.80
Reservoir −0.15 ± 0.04 −0.44 ± 0.12 −6.17

Groundwater −1.14 ± 0.16 −3.33 ± 0.46 −46.60
Drought 1 2006–2010

Storage Compartment Trend (cm/yr) Volume Trend (km3/yr) Volume Lost (km3)
Total −6.37 ± 0.67 −18.60 ± 1.97 −74.40

Soil Water −1.00 ± 0.28 −2.91 ± 0.81 −11.64
Snow Water −0.13 ± 0.09 −0.39 ± 0.27 −1.55

Reservoir −1.19 ± 0.29 −3.48 ± 0.85 −13.92
Groundwater −4.05 ± 0.81 −11.82 ± 2.36 −47.29

Drought 2 2012−2016
Storage Compartment Trend (cm/yr) Volume Trend (km3/yr) Volume Lost (km3)

Total −6.28 ± 0.65 −18.35 ± 1.89 −73.41
Soil Water −0.49 ± 0.25 −1.42 ± 0.72 −5.70

Snow Water −0.06 ± 0.04 −0.18 ± 0.12 −0.72
Reservoir −1.37 ± 0.25 −4.00 ± 0.72 −15.99

Groundwater −4.37 ± 0.74 −12.75 ± 2.15 −51.01
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Figure 4. (A) Temporal dynamics of TWS from GRACE. The blue line represents the trend of TWS
for the entire time period, and the red and magenta lines represent the trend during drought periods.
(B–D) Histograms showing the magnitude and its uncertainty of the trends in TWS depicted in Panel
A for all of the ensemble simulations. (E–G) Disentangling the trends in TWS shows that the majority
of the losses are due to changes in groundwater storage (red), compared to losses in surface storage
(blue), soil moisture (brown), or snow pack (light blue).

3.2. Cascading Effect of Hydrologic Cycle

In this section, we aim to capture the cascading nature of the hydrologic cycle. Figure 5A shows
the mean annual cycle of the monthly averages for each process. We see that SWE and SM have peaks
and also minimums that occur earlier than surface water and groundwater. For SWE and SM, the peaks
occur around winter time, and the minimums around summer. For surface water and groundwater,
the peaks occur around the spring, and the minimums occur in the fall. The cascading effect of the
water cycle on an annual scale is therefore depicted here in these figures.

Figure 5B–F illustrates the de-seasonalized data, which we use to estimate the start, the peak, and
the ending of the drought periods for each hydrologic process. This processing step is done to change
the raw simulations into ones that show deviation from the annual cycle. In other words, if a certain
process has a low or high value relative to the same month in the historic record, this processing step
captures that deviation. This also allows us to investigate all of the processes as anomalies, which
matches the forms of TWS and GW. These deviations, shown with black dots in Figure 5B–F, are
computed by subtracting the mean annual cycle shown in Figure 5A from the mean simulations shown
in Figure 3. A 13-month running mean (blue dots) show the state of each water process relative to
its climatology for that month while smoothing out high-frequency fluctuations. This allows us to
understand whether a certain process has low or high levels of water storage relative to its past states,
and thus to quantify the timing of the beginning, peak, and ending of the drought for each process.
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Figure 5. (A) The mean annual cycle for each process. The curves show the monthly averages.
The cascading effect of the water cycle is clearly depicted in these figures. (B−F) Individual month
deviations from the mean annual cycle (black dots), which shows each water process normalized by its
interannual variability. A 13-month running mean (blue dots) show the state of each water process
relative to its climatology for that month. This allows us to investigate the beginning, the peak, and the
ending of each drought period.

Our estimated start, peak, and ending of each drought period for each hydrologic process are
displayed in Table 2. Also included are the peak magnitudes of volumetric water loss (in km3) for each
component. These results indicate that snow and soil moisture are impacted earlier than surface water
and groundwater. By initial inspection using the values in Table 2, we can estimate that there is a lag of
roughly 8–16 months between the impact on SM and SWE compared to that of SW and GW. The next
section highlights another way to quantify this temporal lag correlation between the various processes
through wavelet analysis.

Table 2. Timing of the beginning, the peak, and the end of each drought period for each of the
components of the hydrologic cycle. Also included are the peak magnitudes of water loss for each
component during each drought (in km3).

2006−2010 Drought SM SWE SW GW TWS

Begin Drought 1 2006.8 2006.6 2007.5 2008.9 2008.4
Peak Drought 1 2007.4 2007.4 2008.7 2009.5 2009.5
End Drought 1 2009.7 2009.7 2010.3 2010.8 2010.4

Minimum (km3) −4.62 −1.46 −4.62 −6.28 −11.16

2012−2016 Drought SM SWE SW GW TWS

Begin Drought 2 2011.9 2011.8 2013.2 2012.9 2012.8
Peak Drought 2 2014 2014.7 2015.5 2015.2 2015.2
End Drought 2 2016.2 2016.6 2016.7 2017.3 2017.1

Minimum (km3) −8.30 −2.02 −7.89 −34.73 −48.23
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3.3. Results from the Wavelet Analysis

As mentioned in the previous section, the annual and year-to-year dynamics shown in our results
portray a clear cascading effect of the hydrologic cycle on the scale of 8−16 months. To investigate this
further, we apply a wavelet analysis which shows the frequency at which there is a clear signature
between the temporal correlations of two processes. Figure 6 shows the wavelet analysis results for
each pair of processes that we estimate in our study. The time series used for each process in the
wavelet analysis shown in Figure 6 are the mean state estimates from Figure 3 (blue lines). We also
applied this analysis on the 13-month running means from Figure 5B−F (blue dotted lines), but do not
show the wavelet analysis for these time series since there were no coherent relationships between
them. This is possibly due to the loss of information when applying a running average.Geosciences 2020, 10, 71 11 of 13 
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Figure 6. Wavelet analysis showing the frequency at which there is a clear signature that the two
plotted processes are correlated. For example, the panel on the top right shows that, for TWS and
groundwater, there is a high power signal (yellow colors), which indicates there is high correlation at
around 8-16 months. Outside of this time window, there is a low power signal (blue colors) which
indicates there is little correlation between the two processes.

The panel on the top right of Figure 6 shows that, for TWS and groundwater, there is a high power
signal (yellow colors), suggesting there is high correlation at around 8−16 months between these two
processes. Outside of this time window, e.g., at 4 or 32 months, there is a low power signal (blue colors),
which indicates there is little correlation between the two processes. the frequency of correlation at
around 8−16 months is observed between all pairs of hydrologic processes. This indicates that the
evolution of the hydrologic cycle occurs through an 8–16 month window. This window presumably
begins with the rise and fall of soil moisture and snow pack in the winter and spring, followed by the
decline of surface water and groundwater. These sources of water will continue to be relied upon and
depleted in the summer time until the next season with sufficient rain begins, which could be the next
or even the following Fall. This is what describes the pulse of roughly 8−16 months for the hydrologic
cycle in California.
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The correlation seen in the 8–16 month time range is a combination of both natural as well as
human factors. First, the period of the annual rainfall accumulation affects other processes, like the
accumulation of snow, soil moisture, and reservoir storage. Once the rainfall is finished for the year
and the natural processes take their course, such as snow melting and soil moisture evaporation, the
next step of this cascading evolution is the human use of water. By releasing reservoir storage and
pumping groundwater to meet the demands of the human population, the final aspect of this cascading
hydrologic cycle is complete as water reserves are depleted. The cycle starts again with the new rainfall
of the next year. This roughly explains the 8–16 month window that is captured with the wavelet
analysis, which is a result of both natural and human factors.

4. Summary and Discussion

In this study, we explored the temporal co-evolution of various aspects of the hydrologic cycle in
California from 2002-2018. We combined information from the GRACE satellites, the NLDAS suite of
models, and the California DWR to analyze dynamics of Total Water Storage, soil moisture, snow pack,
large reservoirs, and finally, groundwater. We calculated groundwater after propagating uncertainties
from other hydrologic processes and factored them out of the TWS estimates from GRACE.

There were clear trends of losses in water volume for all hydrologic processes. For TWS, a trend of
-2 cm/yr was observed during the entire time period (Figure 1), and −5 cm/yr during drought periods
(2006−2010 and 2012−2016). We disentangled the various processes from this trend, and found that
the majority of the loss in TWS is caused by groundwater depletion (Figures 2 and 4; Table 1). We
quantified the start, the peak, and the ending of the drought periods for each hydrologic process, and
showed that snow and soil moisture are impacted earlier than surface water and groundwater (Figure 5;
Table 2). The annual and year-to-year dynamics shown in our results portray a clear cascading effect of
the hydrologic cycle on the scale of 8−16 months (Figures 5 and 6).

Overall, this study displayed the cascading evolution of the hydrologic cycle in California. This
timeline begins with the accumulation of soil moisture and snow pack in the winter and its release in
the spring, followed by the decline of surface water and groundwater during the drier summer period.
Studies like this can help scientists and water managers better define and characterize droughts and
their impacts. Generally, drought is defined by the lack of precipitation or the depletion of visible
reserves such as reservoir storage or low snowpack. This study showcased the lagged effect of a
drought, which also includes the depletion of groundwater reserves. It can be a mistake to assume the
end of a drought period is reached as soon as rainfall occurs, since other aspects of the hydrologic cycle
may not be replenished for months or years after. In this study, we hoped to portray that all aspects of
the hydrologic cycle should be considered when characterizing a drought, and the cascading effect of
this cycle can be confidently quantified, as we did here.
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