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Abstract: Pumping and tracer tests are site-investigation techniques frequently used to determine
hydraulic conductivity. Tomographic test layouts, in which multiple tests with different combinations
of injection and observation wells are performed, gain a better insight into spatial variability.
While hydraulic tomography has repeatedly been applied in the field, tracer tomography lags
behind. In a previous publication, we presented a synthetic study to investigate whether the
ensemble Kalman Filter (EnKF) or the Kalman Ensemble Generator (KEG) performs better in inverting
hydraulic- and tracer-tomographic data. In this work, we develop an experimental method for
solute-tracer tomography using fluorescein as a conservative tracer. We performed hydraulic- and
tracer-tomographic tests at the Lauswiesen site in Germany. We analyzed transient drawdown and
concentration data with the EnKF and steady-state hydraulic heads and mean tracer arrival times
with the KEG, obtaining more stable results with the KEG at lower computational costs. The spatial
distribution of the estimated hydraulic conductivity field agreed with earlier descriptions of the
aquifer at the site. This study narrows the gap between numerical studies and field applications for
aquifer characterization at high resolution, showing the potential of combining ensemble-Kalman
filter based methods with data collected from hydraulic and solute-tracer tomographic experiments.

Keywords: hydraulic tomography; tracer tomography; temporal moments; field experiments;
data denoising; data processing; ensemble-Kalman filter; Kalman Ensemble Generator

1. Introduction

Pumping and tracer tests are frequent site-investigation techniques used to determine aquifer
parameters, notably hydraulic conductivity (K). The data retrieved with such tests in their conventional
layout yield average characteristics of the subsurface material being investigated and usually give
limited information of subsurface heterogeneity. However, resolving the spatial variability in hydraulic
conductivity is critical, for example in the design of efficient groundwater remediation systems,
in which solute transport is partially controlled by small-scale variations in hydraulic properties [1].

The limitations of conventional hydraulic testing have motivated the development of more
sophisticated methods such as tomographic aquifer experiments, in which large datasets representative
of different parts (and different processes) of the subsurface can be collected. The idea behind
a tomographic aquifer test is to sequentially stress the aquifer at multiple isolated sections and
measure the response at many observation points. The observations are then inverted to estimate
aquifer parameters. The most common application of an aquifer tomographic method is hydraulic
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tomography, which involves a sequence of pumping tests with multiple injection/extraction wells
and many observation locations to monitor hydraulic head changes. Hydraulic tomography has
been applied successfully in theoretical, laboratory, and field studies [2–27], however, the diffusive
nature of groundwater-flow limits the information contained in the observed data, no matter how
sophisticated the chosen test layout is [28–31]. Recent studies suggest that this limitation can be
overcome by integrating data of different types (e.g., hydraulic head and tracer concentrations) in
parameter estimation. The different sensitivity patterns of each data type help improve the resolution
and reduce the uncertainty of the estimate [32–35].

The relevance of tracer data for aquifer characterization has motivated the adaptation of traditional
tracer tests into a tomographic layout. In analogy to hydraulic tomography, tracer tomography
involves a series of tracer tests with tracer injection at different locations or in different depths of the
aquifer. The concept of tracer tomography has been investigated mainly in numerical [34–39] and
laboratory [33,40] studies. The logistic effort and associated costs have hindered its field application
in real aquifers. Doro et al. [41] presented a field method to perform tomographic tracer tests and
showed its viability with a field experiment performed at the hydrogeological research site Lauswiesen,
in Germany. Somogyvári and Bayer [42] obtained a hydraulic-conductivity tomogram based on tracer
data collected during a field tracer tomography experiment at the Widen field site, in Switzerland.
Both studies used heat as tracer.

The datasets retrieved from combined tomographic experiments require inverse models that
can use the information at reasonable computational costs. Different inverse methods have been
proposed [43–45], but the large datasets recorded and the high spatial resolution aimed for the
estimated parameter fields limit the application of many approaches. Gauss–Newton methods,
for example, require the sensitivity of all observations with respect to all parameters. This may
be achieved by solving as many adjoint problems as there are measurements [46–49]. This approach,
however, imposes prohibitive computational costs if a highly discretized model and many observations
are used.

An efficient alternative is data assimilation, in which real and simulated observations at the
current state of a system are merged, the model states and/or parameters are corrected to minimize
their differences, model simulations are run forward in time until new observations are available and
the differences are evaluated again. A particularly popular data assimilation method in hydrogeology
is the ensemble Kalman filter [50], due to its simplicity in implementation and efficiency for correcting
(or updating) model states and/or parameters, for which sensitivities are not explicitly calculated.
The covariance matrices needed in the update step are evaluated by ensemble-averaging within Monte
Carlo simulations. The premise is that the efficiency of data assimilation methods in updating model
parameters and/or states may enable resolving aquifer heterogeneity at higher resolutions, given that
enough information is available. As the main objective of aquifer tomographic tests is to provide
comprehensive information about subsurface heterogeneity, it seems a natural choice to explore the
performance of data assimilation schemes in the estimation of aquifer parameters with tomographic
data sets. Although different applications of ensemble-Kalman filter based methods in groundwater
problems can be found in the literature [51–57], their application to data from combined hydraulic and
tracer tomographic experiments has not yet been reported.

This work is the follow up to a synthetic study [58] on the application of two data assimilation
methods to the estimation of spatially distributed hydraulic conductivity: (1) the Ensemble Kalman
Filter (EnKF) and (2) the Kalman Ensemble Generator (KEG). In the preceding synthetic study [58],
we showed that the EnKF and KEG are well-fitted for the estimation of spatially distributed hydraulic
conductivity fields from hydraulic- and tracer-tomographic data. In this paper, we applied these
techniques to field experiments and to the estimation of aquifer parameters with the data collected in
real tomographic aquifer tests.

The approach for the assimilation of field data follows the methods presented in the synthetic
study. We used the same numerical models to simulate groundwater flow and solute transport but
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extended the problem to three spatial dimensions. To minimize repetition, we refer the reader to the
previous paper [58] and the references therein for a more in-depth description of the theory behind
groundwater flow, solute transport, and the application of ensemble-Kalman filter based methods to
groundwater problems. The experimental work presented here was applied at the hydrogeological
research site Lauswiesen in Germany.

This work is motivated by the constant evolution of modern measurement devices that have led
to better, smaller, and affordable sensors. Unlike previous field applications [41,42], in which heat was
used as tracer, the experimental setup developed in this work uses fluorescein as conservative tracer,
avoiding issues related to the high diffusivity of heat, density and viscosity effects caused by changes
in water temperature, and the technical difficulties associated with the injection of water for long time
periods at a temperature different than that of the ambient groundwater.

Like in the synthetic study [58], we applied the standard update scheme of the EnKF to assimilate
transient drawdown data. In this scheme the parameters (and/or model states) are updated by
evaluating the model performance from the current state to one step forward in time. For the
assimilation of tracer concentrations, we applied a restart scheme of the EnKF, in which parameters are
updated in the analysis of a time step and solute transport is resimulated from the initial time until the
next available measurement time step [59–62]. Although computationally more demanding, the restart
scheme is necessary to honor mass conservation and consistency between hydraulic parameters
and model states during transport simulations [58]. In contrast, parameter updating with the KEG
was performed by assimilating all available information simultaneously, with an iterative approach
in which the same data are reused to update all ensemble members. The update scheme of the
KEG requires full forward simulations, posing prohibitive computational costs for three-dimensional
transient groundwater flow and solute transport simulations of finely discretized numerical models.
To reduce the computational burden, we directly solved for steady-state flow and the first two temporal
moments of tracer concentration and used only steady-state hydraulic heads and mean breakthrough
times as data for the update.

We estimated effective aquifer parameters by type-curve matching of analytical and semianalytical
solutions of the groundwater flow [63–65] and advection–dispersion equations [66,67]. This information
was considered, together with information from previous investigations, in the geostatistical models
applied for the generation of the ensemble of parameters.

The work is structured as follow. Section 2 is dedicated to the underlying theory and governing
equations describing groundwater flow and solute transport. Section 3 summarizes the theory of
ensemble-Kalman filter based methods for parameter estimation. Section 4 describes the general
hydrogeological setting of the aquifer at the research field site Lauswiesen and the experimental
design of the aquifer tomographic experiments. Section 5 presents the dataset obtained with the field
experiments and describes the general methodology applied to denoise and process the raw data.
Section 6 contains a description of the numerical models used to simulate the aquifer tomographic
experiments and the settings of the EnKF and KEG applied for the assimilation of the field data.
Section 7 presents the results of the parameter estimation using both ensemble-Kalman filter based
methods. This work ends in Section 8 with conclusions, a discussion of the limitations of the proposed
methodology, and recommendations to improve solute-tracer tomography on the field scale.

2. Governing Equations

We consider the spatial field of isotropic hydraulic conductivity K(x) [LT−1] and the transient
hydraulic-head field h(t,x) [L] as described by the groundwater flow equation:

S0
∂h
∂t
−∇ · (K∇h) = W0 (1)

subject to:
h = h0 at t = t0 ∀x (2)
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h = hin at Γin ∀t (3)

h = hout at Γout ∀t (4)

n̂ · (−K∇h) = q f ix (x) at Γno ∀t (5)

in which x [L] is the vector of spatial coordinates, S0 [L−1] is the specific storage coefficient, t [T]
denotes time, t0 [T] refers to the initial time, W0 [T−1] describes volumetric sources or sinks
(e.g., injection/extraction wells), Γin and Γout are the Dirichlet boundaries at the in- and outflow
of the domain, respectively, and Γno represents the Neumann boundaries with defined normal flux
q f ix [LT−1]. n̂ is the unit vector normal to the boundary pointing outwards. h0[L], hin[L], and hout[L]
denote the initial and boundary values of hydraulic head, and the specific discharge q [LT−1] follows
Darcy’s law (q = −K∇h).

We also assume solute transport described by the dual-domain advection–dispersion equation,
which separates the pore space of an aquifer into mobile and immobile continuous domains and
assumes that the mass transfer between the two domains is proportional to the corresponding
concentration difference [68,69]:

nm
∂cm

∂t
+ nim

∂cim
∂t

+∇ · (qcm − nmD∇cm) = 0 (6)

∂cim
∂t

= λmt (cm − cim) (7)

subject to:
cm = cim = 0 at t = 0 ∀x (8)

cm = cin at Γin,c ∀t (9)

n̂ · (D∇c) = 0 at Γ\Γin,c ∀t (10)

in which cm [ML−3] and cim [ML−3] refer to the tracer concentrations in the mobile and immobile
domains, respectively, nm [L3L−3] and nim [L3L−3] are the corresponding porosities, D [L2T−1] is
the dispersion tensor, λmt [T−1] is the first-order solute exchange coefficient between the mobile and
immobile zones, Γ represents all domain boundaries, and cin [ML−3] is a known concentration along
the inflow boundary Γin,c. If the mobile porosity equals the total porosity and the immobile porosity is
set to zero, the model described by Equations (6) and (7) simplifies to the classical advection–dispersion
equation. The seepage velocity v [LT−1] is defined as the specific discharge divided by the porosity
(v = q/n).

Additionally, we consider temporal moments of tracer concentration, which can be computed by
temporal-moment generating equations [70]:

q · ∇ (mc
k − nmD∇mc

k) = nmkmc
k−1 + nimkmcim

k−1 (11)

− kmcim
k−1 = λ

(
mc

k −mcim
k
)

(12)

in which mc
k is the k-th raw temporal moment of the tracer concentration c. Equations (11) and (12)

imply that the zeroth moments mc
0 and mcim

0 of the mobile and immobile concentrations are
identical, and the first moment of the mobile concentration does not differ between the standard
advection–dispersion model and the dual-domain case with two porosities. In our analysis, we used
mean tracer arrival times, that is, the ratio of the first over the zeroth temporal moment of concentration,
rather than the moments themselves as observations.

3. Parameter Estimation with Ensemble-Kalman Based Methods

We applied the same ensemble-Kalman filter based methods for parameter estimation as those
used in the synthetic study of the companion paper [58]: the Ensemble Kalman Filter (EnKF) and the
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Kalman Ensemble Generator (KEG). Ensemble-Kalman filter based methods are recursive processes
with a forecast-update cycle defined by Equation (13) (forecast) and Equation (14) (update) [71].
Both the EnKF and KEG share the same underlying theory and differ only in the way observations
are analyzed.

ysim,i
t = f

(
pi

t−1

)
(13)

pi
c = pi

u + βQpy
(
Qyy + R

)−1
(

yobs −
(

ysim,i − εi
))

(14)

in which i = 1, 2, . . . , Nens is the ensemble index, and Nens is the number of ensemble members,
f is the model that simulates the model states ysim (e.g., drawdown or concentrations) for given
parameters (e.g., hydraulic conductivity) and preceding states p, and t [T] is the time index, yobs and
ysim,i are the real and simulated observations, respectively. Measurement noise ε drawn from a
multi-Gaussian probability distribution with zero mean and covariance matrix R is added to the
simulated observations [72]. The subscripts u and c refer to the unconditional and conditional state
and/or parameter vector p, respectively, and β is a damping factor that ranges between 0 and 1,
which reduces the step size of parameter updates. The matrices Qyy (Nobs×Nobs) and Qpy (Npar×Nobs)
are the auto-covariance matrix of modeled observations and the cross-covariance matrix between
model parameters and modeled observations, respectively, computed from the model ensemble. Npar

and Nobs refer to the number of parameters and available observations, respectively.
We applied the EnKF with a standard update, damping, and normal-score transformations to

assimilate transient hydraulic data, whereas the restart EnKF scheme was implemented without data
transformations for concentrations. The normal-score transformation, or Gaussian anamorphosis, is a
univariate transformation that modifies the marginal distributions of the variables to standard normal
distributions without changing the statistical dependence and thus without ensuring multi-Gaussianity
after the transformation. We built an individual transformation function for each measurement
location and applied it to both the perturbed modeled observations (ysim,i + εi) and the corresponding
reference observation yobs [51,73]. In the KEG, we updated parameters by assimilating all observations
simultaneously, as it is regularly done in a batch calibration. This scheme follows an iterative approach,
in which the same data are reused to update those ensemble members for which the likelihood of
the data does not meet an acceptance criterion. In the application of the KEG, we solved only for
steady-state flow and the zeroth and first temporal moments of tracer concentration and used the
steady-state heads and mean breakthrough times as data. Neither damping nor data transformation
were applied during parameter updating with the KEG.

4. Field Site and Test Design

4.1. Hydrogeological Research Site Lauswiesen

The research site Lauswiesen is located in a flat area of the Neckar Valley, east of Tübingen,
southwest Germany (Figure ??). The aquifer at the site consists of 8 m to 9 m thick gravel with small
amounts of sand (∼10%) and fines (<10%). It is overlain by about 2 m of alluvial fines and underlain by
low-conductive claystones of the upper Triassic (Bunte Mergel, Steigerwald to Mainhardt formations).
The depth to groundwater is approximately 4 m, defining an unconfined system with an ambient
hydraulic gradient between 0.2% to 0.3% to the northeast. Strong variations in the main flow direction
are induced by water level changes of River Neckar.
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Figure 1. Hydrogeological research site Lauswiesen: Location and distribution of the injection/ extraction
and observation wells in the central well field used during the tracer tomography experiments.

Previous field investigations report a mean hydraulic conductivity value of the aquifer at
Lauswiesen of 3× 10−3 ms−1 [25,41,74–81], which is a typical value for deposits dominated by gravel
sheets. Extensive direct-push injection-logging and direct-push slug-test field campaigns identified
two major aquifer layers, a highly conductive and relatively homogeneous upper unit and a less
conductive and more heterogeneous lower layer [82]. These results are supported by fitting multilevel
breakthrough curves using a two-layer model [83]. A fitted 3-D dual-domain flow and transport model
indicated a mean porosity value of about 26%, with only ∼2% being mobile [25].

The wells used in the present tomographic tests cover an area of about 30 m × 10 m (see Figure ??)
and include four fully-screened wells (B-wells) with a diameter of 150 mm, aligned with the main
natural groundwater flow direction. Between wells B3 and B6, a total of 20 observation wells are
distributed in a 5× 4 regular grid. Observation wells cmt1 to cmt4 are multilevel wells [84] with six
depth-discrete observation ports each, embedded in a high-density polyethylene (HDPE) multichannel
tubing with a diameter of 19 mm. All other observation wells (ow-wells) are fully-screened with a
diameter of 25 mm. Overall, a total of 40 observation points were available for monitoring hydraulic
head and tracer concentrations. The possibility to retrieve both depth-integrated and multilevel
measurements may provide valuable information to represent many important features required to
model three-dimensional transport processes [78].

4.2. Test Design

Figure 2 sketches the main details of the experimental design. To constrain the tracer injection to
a specific depth-range of the aquifer, a multilevel injection system was installed at well B3, generating
three independent injection sections. Throughout the tests, water was injected simultaneously into all
three sections, while the tracer injection was restricted to a single section per test. To enforce horizontal
flow, water injection was adjusted such that the injection rate in each segment was approximately
proportional to the transmissivity of that section. To compute these transmissivities, vertical variations
of hydraulic conductivity were taken from previous borehole flowmeter tests [77]. To prevent tracer
re-entering the system, extracted water was released more than 40 m downstream, close to the river
banks of River Neckar.
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Figure 2. Schematic illustration of the experimental setup, with details of the geological setting,
well types and distribution, multilevel injection system, pumps, fiber optic pressure transducers,
fluorosensors, and online monitoring system.

The tomographic experiment itself consisted of a series of tracer tests with the injection of ∼1 g of
the conservative tracer fluorescein, at one of the three isolated sections of well B3 (injection at the middle
section is exemplified in Figure 2). The tracer was injected only after steady-state flow was achieved.
Tracer injection times lasted less than one minute, and in comparison with the overall test times (>6 h)
a (Dirac) pulse injection was assumed. The steady-state flow field was maintained throughout the
entire duration of each individual tracer test. To achieve a tomographic layout, the tracer experiments
were repeated after changing the tracer injection interval. Prior to a subsequent experiment, the system
was left under natural conditions for at least one day, providing the remnant tracer more time to be
flushed out of the domain.

All tracer tests discussed in this work were performed with a forced-gradient flow field
in a nested-cell setup. This four-well system, originally suggested for in-situ remediation [85],
was implemented in a numerical studies [35,58] within the framework of synthetic thermal and solute
tomographic tracer tests, respectively, and implemented at the Lauswiesen field site in tomographic
heat-tracer experiments [41]. In the nested-cell flow system, a stable local artificial ambient flow field is
achieved with high extraction and injection rates applied at the outer well pair (here wells B2 and B7).
The inner well pair (here wells B3 and B6) is then used to create an inner nested flow field with lower
injection/extraction rates. To enhance tracer recovery rates during the tracer tests, an asymmetric flow
setup was adopted by applying higher extraction than injection rates in both well pairs. The benefits
of this flow-field design include: a well-focused flow field, a reduction of the test duration due to high
hydraulic gradients, a decreased impact of fluctuating boundary conditions, higher tracer recovery
rates, and a minimized leakage of tracer into the environment, that is, any tracer bypassing the inner
extraction well is collected by the outer extraction well.

Hydraulic head responses to water injection and extraction were measured with up to 14
fiber optic pressure transducers (FISO Technologies Inc., Quebec, QC, Canada, Sensor: FOP-MIV,
signal conditions: FPI-HR), with an accuracy of ±1 mm and a sampling frequency of 1 Hz.
These pressure sensors and their respective data loggers are schematically represented in blue in
Figure 2. Real-time monitoring of hydraulic head changes helped identifying when quasi steady-state
flow was achieved. Hydraulic heads were monitored throughout the entire tracer test to detect any
disturbance of the flow field. Tracer concentrations were taken with fiber-optic probes, connected
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to a 19-channel field fluorometer (Hermes Messtechnik, Stuttgart, Germany), marked in Figure 2 in
red, with a sampling frequency of 1 Hz. The field fluorometer measures fluorescence intensity as
a response to a stimulation with a LED-light source. Light is transmitted back and forth between
the observation points and the detector through fiber optics; it has a detection limit that ranges
between 3 µgL−1–5 µgL−1, and the accuracy depends on the internal settings of the device. However,
the accuracy of the instrument also depends on, e.g., the setup of the sensor in the well, the quality
of the fiber optic cables, or the color of the well screen. For these reasons we decided to use the field
fluorometer only as a detector producing a voltage signal. To scale the intensity in mV to concentration
values in mgL−1, we collected several groundwater samples at each monitored observation well,
measured the concentration in the laboratory, and performed a linear regression between the voltage
signal at the time point of sampling and the concentration measured in the lab. We estimate that this
procedure leads to an an absolute error of 1 µgL−1 and a 5% relative error.

For a better spatial coverage, we performed two tests per injection interval, for which the pressure
transducers and fluorosensors were swapped among the available observation wells, leading to a
total of six tracer tests. Tracer breakthrough was also recorded at the injection and extraction wells
in all tests. The different active observation wells used in each test can be seen in the legends of
Figures 6 and 7, where we present the field hydraulic and tracer dataset. For clarity, we labeled each
test according to the injection location. The two tests with tracer injection at the top level are referred
to as tests 1a and 1b. Tests 2a and 2b and tests 3a and 3b correspond to the experiments with tracer
injection at the middle and bottom sections, respectively. We further distinguish between drawdown
and concentrations by an additional pumping or tracer label. Table 1 summarizes each test setup by
injection/extraction rates, tracer injection location, and mass of the injected tracer. Small differences in
the injection and extraction rates between tests a and b of each injection level and in the mass of the
injected tracer were unavoidable and taken into account in the numerical analysis.

Table 1. Summary of the experimental setup of each individual tracer test of the solute-tracer
tomography experiment. Top, Mid, and Bot refer to the top, middle, and bottom section generated
with the multilevel injection system placed in well B3. Positive flow rates represent injection of water,
whereas negative flow rates refer to extraction rates.

Test
Inj.Depth (m) Tracer Applied Flow Rates (Ls−1)

(Level) Mass(gr) B2 B3Top B3Mid B3Bot B6 B7

1a 4.0–5.0 (Top) 1.10 5.2 1.6 0.9 0.6 −2.0 −9.0
1b 4.0–5.0 (Top) 1.15 4.8 2.0 0.87 0.6 −2.4 −9.0
2a 5.5–6.5 (Mid) 1.10 5.2 1.8 0.9 0.6 −2.5 −9.0
2b 5.5–6.5 (Mid) 1.20 4.9 2.1 0.81 0.6 −2.0 −9.0
3a 7.0–8.0 (Bot) 1.10 5.2 1.8 0.9 0.6 −2.5 −9.0
3b 7.0–8.0 (Bot) 1.15 4.9 2.2 0.82 0.6 −2.0 −8.7

5. Data Processing and Preliminary Aquifer Characterization

To increase the signal-to-noise ratio, correct signal shifts and/or remove outliers, background
values, and trends introduced by the sensors in the collected dataset, we used smoothing functions
and low-pass filters to remove high frequency noise and automated outlier detection algorithms based
on the modified Z-scores [86].

To account for the anomalous transport observed at the research site Lauswiesen [25,78], which is
characterized by early breakthrough and long tailing, we fitted the generalized inverse Gaussian (GIG)
distribution [87] to the tracer data, and used the fitted curve in those cases in which the parametric
model and the field data showed a good agreement. The objective of fitting a parametric function to
noisy data is to find a smooth curve that follows the trend of the data but is fully characterized by a
few parameters. While a parametric model has the disadvantage that it predefines the general shape
of the curve, it has the advantage that it can be used for extrapolation, which may be relevant in the
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estimation of transport parameters using temporal moments. If the fitted curve preserves the main
features of the original data, e.g., first arrival, peak, and observed part of tail of a breakthrough curve,
it may be considered instead of the actual data. If the main features are not described well enough,
they should not be used.

The GIG distribution f (x) is defined as:

f (x) = η
(a/b)p/2

2Kp(
√

ab)
(x− ∆x)(p−1) exp (−(a(x− ∆x) + b/(x− ∆x))/2) + ∆y, ∀x > 0 (15)

in which Kp is the modified Bessel function of the second kind and order p, and a and b are
non-negative parameters. The GIG distribution includes the inverse Gaussian distribution, which is
the analytical solution for the 1-D advection–dispersion equation with uniform coefficients, as special
case (p = −1/2) but adding another coefficient facilitates distributions that are more skewed than the
inverse Gaussian. The version of the GIG distribution we present in Equation (15) includes a ∆x and
∆y for shifts in both dimensions, accounting for delayed arrival times and background values in the
observed signal, and a factor η that scales the distribution to the units of the data. These parameters
regulate the signal recovery, offsets in the baseline of the online fluorometer, and time shifts. The fitting
was performed using nonlinear least squares with the Levenberg–Marquardt algorithm. As an example,
Figure 3 shows the raw data and the corresponding fitted distribution for the breakthrough curve
measured at extraction well B6 during tracer test 3b. Despite the high noise level in the raw signal
(gray line), the resulting fitted curve (black dashed line) is a noise-free breakthrough curve with all
relevant features of the original data.

Figure 3. Fit of the generalized inverse Gaussian distribution to the breakthrough curve measured
during test 3b at extraction well B6.

To estimate effective values of hydraulic conductivity and specific storage coefficient, we fitted the
Theis solution [63] to selected drawdown curves, accounting for multiple injection and extraction wells.
Even though the aquifer under investigation is an unconfined system, previous investigations have
shown that assuming confined conditions is acceptable for the time scales of the current experiments
and for pumping tests in which the drawdown is considerably smaller than the thickness of the aquifer.
Effective porosities and dispersivities were estimated by fitting a travel-time based semianalytical
solution of the advection–dispersion equation (ADE, Equation (6)) [67], to the breakthrough curves
measured at extraction wells B6 and B7. The latter can represent one-dimensional advection and
dispersion processes, combined with a dual-porosity domain and a first-order mass transfer reaction
between the two regions. The analytical solution exists only in the Laplace domain and the final result is
obtained via numerical inverse Laplace transformation [88]. Type-curve matching of the Theis solution
to the drawdown data was performed using the Nelder–Mead simplex algorithm that evaluates
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the fit using direct function evaluations, rather than derivatives. We fitted the travel-time based
semianalytical solution to the breakthrough curves using the global search algorithm DREAM-ZS,
which is an advanced Markov chain Monte Carlo sampler that provides the estimation together with
the associated uncertainty bounds [89].

The full processed dataset of the tracer tomography test consists of 52 drawdown curves and
46 breakthrough curves (Figures 4–6). Hydraulic head changes observed during test 2a could not be
retrieved due to technical problems with the data loggers. We selected 27 characteristic time points
from each processed drawdown curve, for both the estimation of effective aquifer parameters with
the Theis solution and for model inversion. The number of characteristic points selected from the
breakthrough curves varied between 27 and 34 characteristic points, depending on the length of
each test.

Figure 4. Drawdown curves of five individual tests. Tests 1a and 1b: tracer injection at the top section
of well B3; Test 2b: tracer injection at the middle section of well B3; Tests 3a and 3b: tracer injection at
the bottom section of well B3.

Hydraulic responses to injection and extraction of water were similar throughout the five tests
shown in Figure 4. The small differences between tests were attributed to the slightly different injection
and extraction rates applied. For tests 1a and 1b, steady state was achieved after 5000 s, whereas in all
other tests steady-state conditions were not observed before 7000 s. Multiple points taken from the
steady-state portion of the drawdown curves would not provide additional information for parameter
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estimation; therefore, the curves were trimmed at the first time point at which steady-state flow was
observed at most locations.

Figure 5 shows the tracer breakthrough curves, normalized by the injected mass, measured at
extraction wells B6 and B7 during the six tracer tests of the tracer tomography experiment. The tracer
was detected in both extraction wells; however, the concentrations observed in well B7 were one order
of magnitude smaller than those of well B6. The difference in peak arrival times observed in tests with
tracer injection in the same section (e.g., tracer tests 1a and 1b) is attributed to the slightly different
pumping rates applied. Please note that the breakthrough curves measured at pumping well B6 during
tests 1b and 2a (Figure 5 top) still show some level of noise, which means that it was not possible to fit
the GIG parametric function in a satisfactory way and instead the smoothed curve had to be preserved.

Figure 5. Denoised breakthrough curves measured at extraction wells B6 (top) and B7 (bottom) during
the six individual tracer tests. Inset: corresponding injection section of each tracer test.

The recovered tracer mass was calculated for the breakthrough curves measured at wells B6
and B7 with temporal moments, where the 0th temporal moment mc

0 represents the effective tracer
mass (mass per discharge). The recovered tracer mass indicates the reliability of the recorded data.
However, the estimation is highly affected by all processing steps required to transform the raw and
noisy breakthrough curves into a smooth time series in units of concentration. We estimated a tracer
recovery of 87% and 62% for tracer tests 2a and 2b, respectively. The lowest tracer recovery was
estimated for tracer test 3b (32%), indicating that the majority of the tracer was lost into ambient flow
or remained somewhere in the domain. Disturbances of the steady-state hydraulic field were not
observed, and the reason for the low recovered mass could not be identified. A larger measurement
uncertainty was assigned to this dataset when it was used for parameter estimation. The overestimation
of the recovered mass for tracer tests 1a, 1b, and 3a (115%, 107%, and 117%, respectively) was attributed
to complications during water sampling and uncertainties in the laboratory measurements, leading to
errors when the data was scaled to units of concentration.
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The breakthrough curves measured in all additional observation wells are shown in Figure 6,
normalized by the injected mass. The three plots on the left correspond to the first test series (series a),
and the plots on the right are the breakthrough curves of the second test series (series b). A visual
inspection of all curves reveals that independent of the tracer injection location, the tracer plume
was well distributed horizontally and vertically in the investigated area. Breakthrough curves were
observed even at the wells located at the corners of the observation well grid (e.g., in wells ow4, ow13,
and ow16) and also at different depths of the multilevel observation wells (e.g., in wells cmt1, cmt2,
and cmt3). Except for test 1a, tracer concentrations decreased with a shift of the tracer injection towards
the bottom of the aquifer. The highest concentrations were measured in the observation point cmt1-3,
which is located at a depth of 4m and directly next to the injection well B3. The vertical location of this
point coincides with the top tracer injection section. High tracer concentrations were observed at this
point also in tests 3a and 3b, indicating a large and fast vertical spread of the plume. Breakthrough
curve tailing was accentuated in the tests with tracer injection at the lower sections of the aquifer.
This might indicate a higher degree of heterogeneity and zones with lower hydraulic conductivity.

Figure 6. Processed breakthrough curves of the six individual tests. The curves are normalized by the
injected mass. Left column: breakthrough curves of the first test series; Right: breakthrough curves
of the second test series. Top row: tests 1a and 1b with tracer injection at the top section of well B3;
Middle row: tests 2a and 2b with tracer injection at the middle section of well B3; Bottom row: tests 3a
and 3b with tracer injection at the bottom section of well B3.

Figure 7 exemplarily illustrates the fitting of the analytical and semianalytical solutions to some
drawdown (top) and breakthrough curves (bottom), and Figure 8 summarizes with violin plots the
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statistical distribution of the estimated aquifer parameters. In addition to the mean and median (solid
and dotted black lines in Figure 8, respectively), violin plots show the shape of the full distribution of
a dataset.

Figure 7. Top: type-curve matching with the Theis model [63], applied to selected drawdown curves of
test 1a. Solid lines: processed field curves; dotted lines: Theis model. Bottom: fitting of the travel-time
based semianalytical solution of the dual-domain version of the advection–dispersion equation [67],
to the breakthrough curves measured at extraction well B6 during tests 2b and 3b. Solid lines: processed
field curves; shadowed areas: uncertainty bounds of the fitted model.
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Figure 8. Violin plots showing the mean (black lines), median (dotted lines), and distribution shape
(shaded areas) of the aquifer parameters estimated by fitting the Theis model and the travel-time
based semianalytical solution of the advection–dispersion equation, to the drawdown and tracer data,
respectively. K: hydraulic conductivity; So: specific storage coefficient; λmt: first-order mass transfer
coefficient, nm and nim: mobile- and immobile-phase porosity; αl : longitudinal dispersivity.

In general, the Theis model matches well the hydraulic response to the injection and extraction
of water and fits the steady-state values observed during the pumping tests. A mean hydraulic
conductivity K of 3.2× 10−3 ms−1 was estimated after averaging the individual values calculated for
all drawdown curves of all tests. The corresponding violin plot for K (Figure 8, first column) shows that
although the majority of the estimated values cluster around the median, the values distribute more or
less uniformly across the estimated range. These estimates agree with previous research performed
at the research site Lauswiesen [77,80–82]. The observed drawdown is representative of the volume
of the domain being investigated. This volume expands with pumping time, producing hydraulic
responses that are increasingly averaged [90]. This effect is evidenced in the relatively small coefficient
of variation (CV) of 46% calculated for the Theis curve derived hydraulic conductivities. We estimated
a mean specific storage coefficient So of 8.6× 10−3 m−1 which is typical of confined systems. The large
variability in the estimation of S0 (CV = 127%) can be seen as an aliasing effect in which unresolved
conductivity appears as a variation of aquifer storativity and is a direct consequence of the application
of methods derived under the assumption of homogeneity in heterogeneous systems [90–92]. The violin
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plot for S0 (Figure 8, second column) shows that despite the wide range observed in the estimated
values of S0, the most probable values of S0 are well grouped near the median.

Figure 7 (bottom) shows the semianalytical model fitted to the breakthrough curves observed
at extraction well B6 during tests 2b (gray solid line) and 3b (orange solid line), together with the
associated uncertainty bounds (shaded areas) for a 95% confidence interval. The semianalytical model
reproduces the overall shape of the observed breakthrough curves well, with the uncertainty bounds
covering the measured data at almost every point in the curve. The largest misfits occur at the first
arrival and tail of the curves, for which the field data fall outside the uncertainty bounds. This might
indicate the unresolved small-scale variability of aquifer heterogeneity by a semianalytical model.
Similar fitted curves were obtained for the rest of the breakthrough curves measured at wells B6 and
B7 during all additional tests, and the statistics of all the estimated transport parameters (first-order
mass transfer coefficient, mobile and immobile porosities, and dispersivity) are shown in the last four
columns of Figure 8.

After fitting all breakthrough curves, we estimated a mean mass transfer coefficient (λmt) and
longitudinal dispersivity (αl) of 2.5 × 10−6 m−1 and 1.3 m, respectively. These estimates are in
agreement with values previously reported for the Lauswiesen site [25,78]. We also estimated mean
mobile (nm) and immobile (nim) phase porosities of 8% and 7.5%, respectively. However, the violin
plots for the porosities (Figure 8 columns 4 and 5) show that mean porosity values are strongly affected
by values close to 28%. Although the median is less affected by extreme values, the small median
values estimated for the mobile and immobile porosities (nm ∼ 3% and nim ∼ 2%) are unrealistically
low. We have found similar mobile porosity values in preceding studies after fitting an analytical
solution to tracer data collected at the same field site, but in those studies total porosity values close to
30% were needed to improve transport simulations [25]. To account for the uncertainty observed in
the porosity estimates, spatially uniform mobile and immobile porosities were also updated during
the assimilation of the tracer data.

6. Numerical Simulations and Parameter Estimation with Ensemble-Kalman Based Methods

6.1. Numerical Implementation of the Real Tomographic Experiments

We updated the spatially distributed hydraulic conductivity with the EnKF using transient
hydraulic heads and tracer concentrations and updated the parameters with the KEG using only
steady-state hydraulic heads and mean tracer arrival times. For the former we simulated the hydraulic
and tracer experiments in HydroGeoSphere Aquanty, Waterloo, ON, Canada, [93], whereas for the
latter, the same experiments were simulated with a numerical model implemented in Matlab that
directly computes for steady-state heads and solves for temporal moments of the tracer concentration.
Both numerical models presented in this work are three-dimensional versions of the 2-D models
presented in the companion paper [58].

The grid of the HydroGeoSphere model consists of ∼760,000 nodes forming 725,700 block
elements, distributed over 30 layers. The smallest elements (∆x = ∆y = ∆z = 0.2 m) were defined
in the region where the extraction, injection, and observation wells are located. This area is referred
to as area of interest in Figure 9. The elements were coarsened toward the domain boundaries,
reaching a maximum element size of 5 m × 5 m × 0.2 m. The extension of the domain was chosen
such that pumping-induced effects were minimized at the boundaries, while keeping model run
times acceptable.

A similar grid was implemented in the steady-state groundwater flow and temporal-moment
transport model implemented in Matlab, with the same model dimensions and a total of 826,560
nodes forming 799,954 block elements, distributed over 80 layers. Solving steady-state simulations
is computationally more efficient; hence, we implemented a finer grid in the area of interest than
in the transient model, in both the horizontal and vertical directions (∆x = ∆y = ∆z = 0.1 m),
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without causing a relevant increase in computational demands. In this model, the elements were also
coarsened toward the domain boundaries, reaching a maximum element size of 5 m × 5 m × 0.1 m.

Figure 9. Three-dimensional HydroGeoSphere model used for flow and transport simulations.
Top: horizontal grid refinement and limits of the area of interest (white rectangle). Bottom: distribution
of the injection, extraction, and observation wells in the model domain and an example of a simulation
of a tracer test with tracer injection at the bottom section of B3.

In both models, the bottom boundary was set to a constant elevation of 0 m and corresponds to
the bottom of the aquifer, and the top was defined as a confined layer at a constant elevation of 6 m.
Although the aquifer under investigation is an unconfined system, previous investigations have shown
that assuming confined conditions is acceptable for the time scales of the current experiments [25].
Constant-head boundaries were defined at the left and right limits of the domain, and no-flux
boundaries at the front, back, bottom, and top faces of the model. In all simulations, the constant head
value at the left was set to 10 m, and the constant value at the right was adjusted according to the
mean ambient hydraulic gradient, estimated with manual water level measurements taken before the
beginning of each test.

The injection and extraction wells B2, B6, and B7 were defined as fully-screened wells, covering the
whole aquifer thickness. The three isolated injection sections of well B3 were implemented by creating
three different wells identified as B3Top, B3Mid, and B3Bot for the top, middle, and bottom sections,
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respectively. All ow-wells were implemented as observation wells covering the whole thickness
of the aquifer, and all cmt-wells were defined as point observations at the corresponding elevation
(see Figure 9).

The field settings of the individual tests, e.g., injection and extraction rates, injected mass of
tracer and active observation wells (see Table 1), were considered in the corresponding simulations.
We simulated groundwater flow and solute transport separately. For transport, the groundwater
flow velocity distribution was calculated with an initial steady-state flow simulation, followed by the
injection of tracer at the corresponding location. Dual-domain transport was assumed for the transient
tracer-test simulations. Figure 9 (bottom) shows an example of a tracer test simulation at the time of
tracer injection in the bottom section of well B3.

6.2. Parameter Estimation with the EnKF and KEG

For the estimation of the spatially distributed hydraulic conductivity, we first assimilated the
hydraulic-head data of three individual pumping tests (pumping tests: 3b→3a→1b), data from
pumping test 2a was not available due to technical problems with the data loggers and data from
pumping test 1a were used for validation. Tracer data from three tracer tests were used for parameter
updating only after drawdown data were assimilated (tracer tests: 3a→2a→3b). We considered that
the assimilation of tracer data from only three pumping and tracer tests suffice to demonstrate the
evolution of the parameter updating when data from different tests is included. We selected tracer
tests 2a and 3b because of the larger number of active observation points and less noise present in
the processed breakthrough curves. We also included tracer test 3a, for which tracer recovery was
overestimated by 17%, to assess the effects of including data with higher uncertainties in parameter
estimation. While the order of assimilation may affect the final estimate [28], these effects were not
assessed in the present study.

We generated 500 spatially distributed log-hydraulic conductivity fields for the area of interest,
using a spectral approach [94]. All elements outside this region were assigned a value equal to the mean.
We defined the geostatistical parameters for the generation of hydraulic conductivity fields, based on
the findings of Lessoff et al. [82] (see Table 2), who presented a statistical analysis of the hydraulic
conductivity distribution in the same study area. We considered the two layers identified by [82]
and accounted for uncertainty in the mean log-hydraulic conductivity and thickness of each layer,
as well as the uncertainty in the spatial correlation lengths, by sampling from constrained uniform
distributions, that is, in each realization we first draw the geostatistical parameters from uniform
distributions and then generated an autocorrelated log-conductivity field accordingly. We assumed
identical correlation lengths in the horizontal (Ix = Iy) and a different vertical correlation length (Iz).
We used the same geostatistical parameters to generate the initial ensemble for both numerical models.

Table 2. Statistical parameters used for generating the spatially distributed hydraulic conductivity
fields. K: hydraulic conductivity; µmin and µmax: minimum and maximum values for the mean
hydraulic conductivity; σ2

ln(K): variance of log-hydraulic conductivity; Ix, Iy and Iz: longitudinal,
transverse, and vertical correlation lengths; b: aquifer thickness.

K (ms−1) Ix and Iy (m) Iz (m) Layer Thickness (m)

µmin µmax σ2
ln(K)

min max min max min max

upper layer 1.8× 10−3 2.4× 10−3 0.23 4.0 8.0 0.2 0.27 2.0 4.0
lower layer 1.2× 10−3 1.8× 10−3 3.0 1.0 1.8 0.29 0.34 b-upperlayer thickness

The effective specific storage coefficient S0 was also updated during the assimilation of the
transient drawdown data with the EnKF. Spatially homogeneous mobile and immobile porosities,
as well as dispersivities and the mass transfer coefficient were included in the assimilation of tracer
concentrations. The statistical parameters used to generate normally distributed random realizations
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of effective parameters were taken from type-curve matching the field drawdown and breakthrough
curves but adjusted by evaluating initial model states.

We applied the EnKF and KEG settings that were identified as best choices in the companion paper
(see Table 3) and quantified filter performance with the root mean square error (RMSE, Equation (16))
between reference and simulated observations:

RMSEu =

√√√√ 1
N

N

∑
i=1

(
ȳmod

i − yre f
i

)2
(16)

in which u is the index of the update step, N is the number of observations, and ȳmod
i and yre f

i are the
i-th ensemble mean and reference observations at each update step, respectively. The RMSE is a metric
of model predictability, where a value of zero would imply a perfect match between simulated and
measured data.

The spread of the ensemble of parameters was evaluated with the mean ensemble standard
deviation (MESD), calculated only for the grid elements within the area of interest, as follows:

MESDu =

√√√√ 1
GM

M

∑
j=1

G

∑
i=1

(pmod
i,j,u − p̄mod

i,u )2 (17)

in which G is the number of grid elements, M is the number of realizations in the ensemble, pmod refers
to the updated parameter values, the overbar represents the ensemble average, and u indicates that
the analysis is performed for each update step.

Table 3. Settings of the EnKF and KEG used for the assimilation of hydraulic-head and tracer data. “X”
and “×” indicate whether normal-score transformations were applied or not. Transf: transformation;
cum. conc.: cumulative concentration time series [58].

Method

Pumping Tests A and B Tracer Tests A and B

Data Damping Data Damping

Type Transf. Factor β Type Transf. Factor β

EnKF transient X 0.1 cum. conc. × 0.1
KEG steady-state × 1.0 arrival times × 1.0

All calculations were performed on a high-performance computing cluster, using a single node
with 28 XEON processors and 128 GB of memory. We concluded all simulations in ∼30,000 core hours,
with up to 70 % of the compute time spent in the transient transport simulations.

7. Results and Discussion

In the following we first compare the hydraulic conductivity fields estimated with both
ensemble-Kalman filter based methods, and then discuss model performance based on the ensemble
simulations of the pumping and tracer tests.

Figure 10 shows details of the estimated mean log-hydraulic conductivity field (A and C) and the
associated ensemble variances (B and D) after all drawdown and tracer data were assimilated. The top
row of Figure 10 corresponds to the results obtained with the EnKF, and the bottom row shows the
results of the KEG.
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Figure 10. Three dimensional representation of the estimated ensemble mean (A,C) and variance (B,D)
of log-hydraulic conductivity, conditioned to drawdown and tracer data using the EnKF (A,B) and
KEG (C,D). Histograms at the center (E–G) show the statistical distribution of the mean log-hydraulic
conductivity field for the EnKF (blue bars) and KEG (gray bars) for the entire aquifer (E), and the upper
(F) and lower (G) aquifer layers. Black dots show the location of the injection and extraction wells.

To help visualize the three-dimensional fields, Figure 10A,C includes slices enclosing the area of
interest, an extra horizontal slice at the middle of the aquifer, and a cross section along the location of the
injection and extraction wells. A visual inspection reveals that the hydraulic structure differs between
the two estimated 3-D fields, although both log-hydraulic conductivity fields show a similar statistical
distribution, as observed in the histograms computed for the full aquifer thickness (Figure 10E).
Higher conductivity values dominate the upper portion of the aquifer for the KEG, while they are
more evenly distributed across the entire aquifer for the EnKF (Figure 10F,G). While the KEG preserves
the two different peaks in the distribution enforced in the generation of the parameter fields, a single
peak distribution is observed for the EnKF (Figure 10E). In both cases lower-conductive zones are
accentuated at the bottom. These results are consistent with the prior geostatistical distributions
assigned for generating the ensemble of parameters and agree with previous studies in which a
more conductive upper layer overlaying a less conductive and more heterogeneous lower layer was
found [41,82].

The exact structure of the aquifer material at the site is unknown, which hampers evaluating
the correctness of the estimated hydraulic conductivity fields. Instead of a direct comparison
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between available in-situ measurements of hydraulic conductivity and estimated values with the two
ensemble-Kalman filter based methods, we compared the spatial structure of the estimated mean
ensemble hydraulic conductivity fields, with the findings of Lessoff et al. [82] (see Table 4). Differences
in the support volume of the direct-push measurements and of the pumping and tracer test data render
a one-to-one comparison between available point measurements of (relative) hydraulic conductivity
and the estimated hydraulic conductivity of the corresponding grid cells in the suboptimal models.
We thus subdivided both model grids in two major units—an upper layer with a thickness of 2 m and
a 6 m thick lower layer—and estimated the corresponding mean and variance of the mean ensemble
log-K fields obtained with both the EnKF and the KEG.

Table 4. Comparison of the mean (µln(K)) and variance (σ2
ln(K)) of log-hydraulic conductivity from

hydraulic direct-push tests [82] with the corresponding ensemble-mean estimates obtained with the
EnKF and KEG. The values were calculated for the two aquifer layers identified by Lessoff et al. [82].

Upper Layer Lower Layer

µln(K) σ2
ln(K)

µln(K) σ2
ln(K)

Lessoff et al. [82] −6.2 0.23 −6.8 3.8
EnKF −6.2 0.6 −7.0 3.4
KEG −6.0 0.3 −7.3 2.0

The spatial variability of the ensemble mean of log-hydraulic conductivity at the upper layer is
lower than for the lower layer in both the EnKF and KEG, which is in agreement with the statistical
analysis of Lessoff et al. [82]. The similarity between the mean of the ensemble mean log-hydraulic
conductivity for the EnKF and the values reported by [82] (which were used to generate the initial
ensemble) demonstrate that the EnKF is not able to shift the distribution away from the prescribed
geostatistical parameters, even if the reference data is not honored (see below). While this is usually not
a problem in synthetic studies, where the geostatistical parameters used to generate the initial ensemble
are known, it is a strong limitation in field applications, where those parameters are unknown.

By the end of the data assimilation, relevant reductions in the ensemble variance of log-hydraulic
conductivity were observed across the entire area of interest for both methods but especially for the
upper layer (see Figure 10B,D), indicating filter inbreeding. In both methods, two different zones
with distinct mean variance and structure could be observed. For the EnKF, a thin high variance
zone was developed at the bottom of the aquifer, whereas the distinction between the two zones in
the KEG is closer to the transition between the upper and lower aquifer layers that was enforced
during the ensemble generation. Furthermore, a strong reduction in variance for the EnKF (Figure 10B)
is observed all over the upper ∼6 m of the aquifer, even at places far away from sensitive regions,
indicating spurious correlations during parameter updating. In contrast, the ensemble variance
of the KEG (Figure 10D) is noticeably reduced only in the regions where the observation wells
are located, suggesting fewer and smaller artifacts introduced in the numerical covariances during
parameter updating.

With the EnKF, we estimated a final ensemble mean aquifer specific storage coefficient S0 of
0.04 m−1 with an associated ensemble variance of 0.3 m−2. The estimated mean S0 falls within the
range of values obtained with type-curve matching of the field drawdown curves (see Figure 8),
and can be considered typical of unconfined systems. The high ensemble variance obtained indicates
difficulties in updating a unique effective S0. With the EnKF, we also estimated a final ensemble
mean of mobile and immobile porosities, mass transfer coefficient, and longitudinal dispersivity of
2.0%, 10%, 7.5 × 10−6 s−1 and 0.5 m, respectively. As for S0, no ensemble variance reduction of these
effective parameters was observed. We attribute the inability of the filter to reduce the variance to the
underrepresented aquifer heterogeneity.

Figure 11a shows a scatter plot of the ensemble-mean and spread of simulated versus measured
drawdown for the last pumping test (pumping test 1b) assimilated. Transient drawdown data,



Geosciences 2020, 10, 462 21 of 30

which were used by the EnKF are shown in black crosses. Blue dots are the drawdown values
simulated at the last assimilation step with the EnKF, which correspond to the steady-state values used
by the KEG (red dots). We observe that the EnKF has difficulties simulating properly very low and
high drawdown values, underestimating the majority of the measured data. The KEG shows better
simulations than the EnKF, with an ensemble spread that covers the measured values at almost all
observation points.

Additionally, Figure 11b,c are the distribution of the normalized errors (by their corresponding
error measurement), for the EnKF and the KEG, respectively. The black lines in Figure 11b,c are normal
distributions fitted to the corresponding residuals. While the residuals of the EnKF show a better
shape, the corresponding standard deviation of 5.71 indicates that the residuals are considerably larger
than explained by measurement error. The residuals of the KEG are skewed , but the distribution is
considerably narrower than the distribution of residuals of the EnKF.

Figure 11. (a): Calibration plot for the assimilated transient drawdown used in the EnKF (black dots)
and the steady-state drawdown used in the KEG (red dots) of pumping test 1b. Blue dots refer to the
last assimilation step with the EnKF. Red and blue bars represent the ensemble spread of drawdown
simulations. (b,c): distribution of the residuals normalized by the corresponding measurement error
for the EnKF and the KEG, respectively. Black lines are fitted normal distributions.

A gradual improvement in the EnKF predictions was observed after transient data from each
pumping test were included. This is confirmed by a decrease of the RMSE from 15 cm after assimilating
data from the first pumping test, to 3.5 cm after all data were assimilated. The larger misfit is observed
at early-time drawdown, especially during the assimilation of data from pumping tests 3b and 3a.
We attribute this to assimilating a single uniform effective specific storage coefficient, leaving relevant
variability of aquifer storativity unresolved. At late times, steady state is achieved, which does
not depend on the storativity at all, and an improvement on the simulated drawdown is observed.
An alternative explanation could be that small-scale features of the conductivity field are not properly
resolved even though we work with realizations exhibiting variability on all scales. The early-time
drawdown is heavily affected by hydraulic conductivity in the direct vicinity of the pumping well,
whereas the support volume of late-time drawdown measurements is bigger. The KEG achieves a
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similar reduction of the RMSE, with an RMSE-value of 4 cm at the end of the assimilation of steady-state
drawdown. The final RMSE-values obtained with both methods are bigger than the measurement
error assumed during updating (σ = 5 mm).

These results suggest that no real advantage of transient records exist over the steady-state values.
Higher computational resources are required by transient simulations, and to stabilize the parameter
updates with the EnKF and reduce filter inbreeding, a strong damping factor had to be applied.
In contrast, only steady-state simulations were required by the KEG, and no damping was necessary.
Transient data would be advantageous in cases when variability in aquifer storativity is considered,
which could not be estimated from steady-state information.

Figure 12 shows, for each tracer test assimilated with the EnKF, an example of the ensemble
predictions of cumulative concentrations as a function of time. The simulations of the breakthrough
curves were performed using the ensemble of parameters obtained at the end of the assimilation
of each test. Field measurements are represented with black solid lines, and the ensemble median
and 90% confidence interval of the ensemble predictions are shown with dashed lines and as gray
zones, respectively.

Large discrepancies were observed between the ensemble predictions and the observed
breakthrough curves. Even though there is a slight improvement after each test is assimilated, the EnKF
is not capable of fixing the parameters to honor the tracer data. A reason for the failure of the EnKF
with tracer data could be attributed to the strong damping applied, which limits the improvement
during parameter updates. In addition, a big difficulty lies in the sequential approach of the EnKF itself,
and more so when parameters, and not models states, are included in the update. In each update step,
the parameters are modified to obtain a good fit at that time, potentially affecting the fitting at earlier
times. The latter is not the case for a batch calibration, where parameters are updated considering all
data at once. Furthermore, effective parameters fail to resolve local variations in the aquifer material.
To improve model simulations, transport parameters such as nm, nim and αl would most likely have
to be considered as spatially variable during updating, increasing the computational requirements.
The systematic underestimation of the predicted mean cumulative concentrations observed in tracer
tests 3a and 2a can be attributed to biases in the estimation of effective transport parameters and errors
in the log-K fields.

Figure 12. Ensemble predictions with the EnKF, of cumulative concentrations at different observation
wells, during the sequential assimilation of data from tracer tests 3a (A), 2a (B), and 3b (C). Solid lines:
measured cumulative concentrations; Dashed lines: ensemble median; Gray area: 90% confidence
interval of the ensemble predictions.

Figure 13 shows in the upper row, scatter plots of the reference mean tracer arrival times versus
the corresponding ensemble mean (dots) and spread (solid lines) obtained with the KEG. Figure 13
also includes the root mean square errors and mean absolute errors for the mean tracer arrival times
predictions normalized by the difference between maximum and minimum arrival times for each test
(NRMSE and NMAE, respectively). The histograms in the bottom row of Figure 13 are the distribution
of the normalized errors for each test. The mean of the histograms is close to zero for all three tests,
and while the spread in the normalized residuals for tests 3a and 2a is reasonable, for the latter
fitting almost perfectly to a standard normal distribution, it increases considerably for tracer test
3b. We expected a lower performance for tracer test 3b, having the lowest recovery rates of all tests,
and therefore larger uncertainties associated to the measured data.
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In general, acceptable mean ensemble predictions were observed with the KEG, with uncertainty
bounds better constrained than by the EnKF. Furthermore, we observed a decrease in the NRMSE
and MAE after each tracer test data was assimilated. Mean tracer arrival times are less sensitive to
artifacts caused by, e.g., sensor instabilities, and therefore introduce less measurement uncertainty
during data assimilation. The largest ensemble spread occurred at the largest mean arrival times.
A similar behavior has been observed before [58] and is related to observation points far away from
the injection, at the limits of the study area for which data from only one tracer test were measured
(e.g., ow-14 and ow-16). At these locations the ensemble variance of log-hydraulic conductivity is
relatively high in comparison to the central region of the domain.

The histogram of the normalized residuals for test 2a shows a reasonable fit to the normal
distribution but not for tracer tests 3a and 3b, in which the histograms are skewed. This can be
attributed to the non-Gaussian distribution of the mean arrival times, which is bounded on one side
by zero. It is not guaranteed that bounded quantities can assume prescribed distributions, especially if
the measured values are close to the bounding values.

Figure 13. Top row: calibration plot for the assimilated mean tracer arrival times of tracer tests 3a, 2a,
and 3b, used with the KEG. Bottom row: distribution of the normalized errors for the same tests.

To validate both conditioned parameter ensembles, we evaluated the steady-state simulations
of pumping test 1a, which was not used for updating the parameters. Figure 14 shows a calibration
plot that compares the predicted with the measured steady-state drawdown. The blue and red dots
correspond to the simulations performed with the ensemble of parameters updated with the EnKF
and KEG, respectively. Acceptable ensemble predictions were observed for the KEG. This is confirmed
by an RMSE of 3 cm. In contrast, we estimated an RMSE of 24 cm for the simulations with the
parameters conditioned with the EnKF and observed a systematic overestimation of the drawdown.
These results emphasize the advantage of compressing the concentration data to mean arrival times,
which stabilizes the parameter updates during the assimilation of tracer data at dramatically reduced
computational costs.
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Figure 14. Calibration plot for the steady-state ensemble predictions of drawdown from pumping
test 1a, after assimilation of all drawdown and concentration data. Blue dots: ensemble mean
simulations with the parameters updated with the EnKF. Red dots: ensemble mean simulations
with the parameters updated with the KEG. Red and blue bars represent the ensemble spread of
drawdown simulations.

8. Conclusions and Recommendations

In this study, we have presented the entire workflow for combined field-scale hydraulic
and solute-tracer tomography experiments, data preprocessing, preliminary analysis of the data,
and inversion by ensemble-Kalman filter based approaches to obtain hydraulic aquifer parameters.
We have applied the field method at the hydrogeological research site Lauswiesen in Germany,
obtaining a dataset that consists of 52 drawdown curves and 46 breakthrough curves. The preliminary
aquifer characterization provided information that was used to define the prior distributions of aquifer
parameters needed in stochastic parameter estimation.

For the estimation of the spatially distributed hydraulic-conductivity field, we used the same
models and inversion methods as in the virtual tests presented in the Sanchez et al. [58] but extended
the problem to three dimensions. When using the ensemble Kalman filter (EnKF), we applied the
standard update scheme to assimilate transient drawdown data and the restart scheme for the transient
records of cumulative tracer concentrations. When using the Kalman Ensemble Generator (KEG),
by contrast, only steady-state hydraulic heads and mean breakthrough times were used for parameter
estimation. The latter excluded the estimation of dual-domain properties of the aquifer.

In contrast to the findings of the companion paper, in which the assimilation of transient
drawdown outperformed the steady-state data, we observed no real advantage of using transient
records. We partially attribute the poor performance of the EnKF with the transient drawdown data
to the unknown specific storage coefficient. While the specific storage coefficient was also updated,
we considered only an effective uniform parameter. By ignoring the spatial variability of storativity,
the EnKF largely penalizes the hydraulic conductivity for the model misfit at early times, whereas in
reality the poor model performance might be caused by the unrepresented variability of storativity.
This can lead to erroneous initial parameter updates that propagate to later times. Unresolved
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variability of aquifer storativity is also reflected in the relatively large error metrics estimated for
early-time drawdown data. Model simulation errors are reduced at later update steps, when there is
no more dependence of the drawdown on aquifer storativity.

The very small ensemble spread obtained after assimilating both transient drawdown and tracer
concentrations by the EnKF indicates severe filter inbreeding caused by erroneous correlations,
despite the strong damping applied. This leads to a deterioration in the quality of the update
that ultimately translates into large errors in the ensemble simulations. Better behaved covariances
were obtained with the KEG, suggesting more stable parameter updates when steady-state and
mean breakthrough times were used. For well-controlled hydraulic tests, we thus recommend
batch-calibration techniques, in which all data are accounted for simultaneously rather than a
classical filter (or smoother) in which sequential parameter updating is performed. Condensing the
concentration data to their temporal moments increases the computational efficiency of the inversion
but may be challenging if the time series are incomplete.

The ensemble-mean of log-hydraulic conductivity obtained with both ensemble-Kalman filter
based methods, preserved the two prescribed aquifer zones. A highly conductive zone at the top of
the aquifer and low-conductivity material dominating the bottom. However, the transition between
the two layers was shifted to the bottom of the aquifer with the EnKF.

Even though we worked with a relatively dense monitoring network at our site, it remains
difficult to capture important features of aquifer heterogeneity at scales smaller than the distance
between the observation points (∼3 m in the horizontal directions). Additional information could
be gained by installing new wells perpendicular to the main flow direction, that would function as
additional and interchangeable injection and extraction wells. By using these wells, groundwater flow
would be forced perpendicular to the natural flow direction, producing flow regimes considerably
different to those generated with the wells used for our tests, which may also provide insight into
hydraulic anisotropy.

Currently, we are advancing the field method to include a salt tracer that can be monitored using
cross-hole time-lapse electrical resistivity tomography (ERT). We aim for a design that allows the
integration of both tracers in a single tomographic test with minimal additional effort. The sensitivity
of the geoelectrical measurements would provide information of aquifer heterogeneity that is not
restricted to the direct vicinity of the observation wells and in combination with the hydraulic and
concentration data, a better overall picture of the aquifer properties that may be obtained. The inclusion
of electrical resistivity data obtained during salt-tracer tests in the ensemble-Kalman filter based
methods is straightforward but involves estimating additional parameters and significantly increases
the computational effort. As ERT is sensitive to salt both in the mobile and immobile fractions of the
pore space, combining concentration measurements in wells with ERT data may also shed additional
light onto dual-domain transport behavior.
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