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Abstract: The solid-phase speciation of contaminants in soil plays a major role in regulating both
the environmental mobility of contaminants and their bioavailability in biological receptors such as
humans. With the increasing prevalence of urban agriculture, in tandem with growing evidence of
the negative health impacts of even low levels of exposure to Pb, there is a pressing need to provide
regulators with a relevant evidence base on which to build human health risk assessments and
construct sustainable site management plans. We detail how the solid-phase fractionation of Pb from
selected urban agricultural soil samples, using sequential extraction, can be utilised to interpret the
bioaccessible fraction of Pb and ultimately inform sustainable site management plans. Our sequential
extraction data shows that the Pb in our urban soils is primarily associated with Al oxide phases,
with the second most important phase associated with either Fe oxyhydroxide or crystalline FeO,
and only to a limited extent with Ca carbonates. We interpret the co-presence of a P component with
the Al oxide cluster to indicate the soils contain Pb phosphate type minerals, such as plumbogummite
(PbAl3(PO4)2(OH)5·H2O), as a consequence of natural “soil aging” processes. The presence of Pb
phosphates, in conjunction with our biomonitoring data, which indicates the lack of elevated blood
Pb levels in our gardeners compared to their non-gardening neighbours, suggests the (legacy) Pb
in these soils has been rendered relatively immobile. This study has given confidence to the local
authority regulators, and the gardeners, that these urban gardens can be safe to use, even where soil
Pb levels are up to ten times above the UK’s recommended lead screening level. The advice to our
urban gardeners, based on our findings, is to carry on gardening but follow recommended good land
management and hygiene practices.

Keywords: risk assessment; urban gardens; lead; source apportionment

1. Introduction

Urban agriculture and community gardening is increasingly endorsed as a health promoting
activity, providing a wealth of educational, economic and societal benefits [1,2]. Yet urban soils are
frequently reported with high concentrations of a range of potentially toxic elements (PTEs) and
gardening in contaminated urban soils has the potential to increase our exposure to PTEs such as Pb [3].
The transfer of Pb to humans can occur via several exposure routes including soil and dust ingestion,
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inhalation of particles containing Pb, Pb-contaminated water and through the consumption of food
containing Pb [4].

With an increasing body of research highlighting the potential health impacts of even low levels of
environmental exposure to Pb [5], there is a growing need to provide greater confidence to regulators,
who must decide if sites are suitable for use as urban agricultural sites (UAS), in addition to the general
gardening community. To address this need, the Newcastle Allotments Biomonitoring Study (NABS)
was initiated in 2014. NABS is a community-research partnership involving the UAS gardeners,
the local city council, and researchers across a range of academic and government-funded agencies.
As part of this study we undertook the paired sampling of soils and crops, and determined the blood Pb
levels (BLL) of both gardeners (n = 43) and their non-gardening neighbours (n = 29) [4]. We observed
no statistically significant difference between the BLL of the gardeners and those of their non-gardening
neighbours (p = 0.569), despite 98% of the 279 sampled soils reporting total Pb concentrations above
the UK soil screening guideline for Pb [4].

To pose a human health risk, the Pb taken into the body must be bioavailable (i.e., available
for absorption into the systemic circulation) via, for example, the gastrointestinal (GI) tract. In vitro
bioaccessibility studies aim to quantify the fraction of a contaminant in soil that is soluble and readily
released during passage through the GI tract, e.g., [6]. Although it is now relatively common to
determine the oral bioaccessibility of PTEs in soils as part of human health risk assessments, it is less
common to accompany these investigations with complementary lines of geochemical evidence, such as
detailed solid-phase fractionation and biomonitoring. Such data, however, provide pivotal information
to inform both sustainable site management and targeted intervention strategies. Although the specific
aim of this research was to understand the geochemical controls on the bioaccessibility of Pb in soils
from urban allotment sites, our wider remit was to provide evidence on the need for regulators to
consider the role of “aged” or non-labile Pb in UAS. The selected soils were considered typical of urban
allotment soils encountered globally on made-ground, in cities with an industrial heritage. Although
none of the sampled sites were on formerly industrial land, each has a long history of additions of
coal ash from domestic hearths, in addition to other common urban sources of Pb, including legacy
atmospheric sources from the burning of fossil fuels and Pb-painted wood. Our specific objectives
were to (i) identify the solid-phase fractionation of Pb from selected soil samples using sequential
extraction; (ii) identify common geochemical relationships between soils from different sites; and (iii)
relate the solid-phase fractionation of Pb results to the bioaccessible fraction of Pb in each soil.

2. Materials and Methods

A subset (n = 12) of the 279 topsoils collected from around the roots of the crops sampled as part
of the NABS (Entwistle et al.2019 [4]) were used in this current study to elucidate the geochemical
control on the soil Pb. Newcastle is the regional capital of NE England (population 280,200; [7]),
and the soil subset was selected to cover 12 allotment gardens across three urban agriculture sites
(identified herein as sites 1, 2 and 3). The samples are labelled by their site number followed by
a number representing a different sample taken from a different location in that specific site, e.g.,
Sample 2.2 represents the second sample taken from site 2. Methods for pH and organic matter
content are detailed in Entwistle et al. 2019 [4], but in brief were based on a soil-deionized water
suspension and the Walkley–Black method [8], respectively. The total Pb concentration in the <250 µm
soils was determined by a HNO3/HF/HClO4-based mixed acid attack with a HCl/HNO3 pre-digest
followed by ICP-MS analysis. The bioaccessible Pb was previously determined [4] using the Unified
BARGE Method (UBM). Lead bioaccessibilities (n = 21) ranged from 32 to 76% (geomean of 58.7%),
with bioaccessible concentrations ranging from 58 to 705 mg/kg. The UBM was developed by the
BARGE group [9], has been validated against an in vivo swine model for As, Cd and Pb [10], and is an
International Standard for determining PTE bioaccessibility in soil [11].

The solid-phase fractionation of the test soils was determined using the Chemometric Identification
of Substrates and Elements Distributions (CISED) method [12–15].
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The CISED method is a non-specific extraction system utilising chemometric data processing to
measure the trace element distributions in soils and sediments. The basis of this type of approach is that
no extraction reagent is considered to be totally specific for its target phase and, as a result, a non-specific
reagent is used at increasing concentrations. The resulting data set can then be considered in terms
of mixtures of different phases. The mixture of the different dissolved phases is then resolved by the
use of chemometric approaches, which are based on multivariate self-modelling mixture resolution
procedures [16]. A number of assumptions are made when using this type of data processing, which
include “that the material under study consists of a mixture of discrete physico-chemical components
with distinct major element compositions and that the trace metals of interest are distributed amongst
these components” [16]. Another premise is that the physico-chemical components will dissolve to
different degrees and as the reagent strength increases each solution will contain differing proportions
of each of the components of the test material. The final assumption of the methodology [16] is
that within any given physico-chemical component all of the elements are dissolved congruently.
The method is a sequential soil extraction using a simple mineral acid matrix.

Soil samples of approximately 2.00 g were sequentially extracted by the addition of 10 mL of an
extraction solution (Table 1) which contained an increasing concentration of nitric acid/hydrochloric
acid mixture (i.e., from 0 to 5 M). After adding 10 mL of extraction solution, samples were mixed on an
end-over-end shaker for 10 min, and the liquid phase was recovered via centrifugation (4350 g for
5 min) and used for analysis; the soil pellet was re-suspended with the appropriate extraction solution.
The 7 extraction solutions (1 of deionized water and 6 of aqua-regia using mixtures of analytical reagent
grade nitric and hydrochloric acid) are listed in Table 1.

Table 1. Solutions used for the sequential extraction.

Extraction Order Extractant
Concentration

Volume of
Extractant (mL)

No of Repeat
Extractions

Volume of 30 Vol
H2O2 (mL)

1–2 De-ionized water 10 2 0
3–4 0.01 M aqua-regia 10 2 0
5–6 0.05 M aqua-regia 10 2 0
7–8 0.1 M aqua-regia 9.75 2 0.25

9–10 0.5 M aqua-regia 9.50 2 0.50
11–12 1.0 M aqua-regia 9.25 2 0.75
13–14 5.0 M aqua-regia 9.00 2 1.00

Each extraction solution (7 solutions) was used twice to obtain a total of 14 extracts (10 mL).
As highlighted in Table 1, in the last 8 extractions (7 to 14) increasing amounts of H2O2 were added to
the extraction solutions to enhance degradation of organic matter and dissolution of Fe–Mn oxides [17].

Appropriate quality assurance procedures and precautions were followed to ensure the reliability
of these data. All experimental reagents used were of analytical reagent grade. Milli-Q water was
used throughout the study. The quality assurance/quality control procedures for the determination
of bioaccessible Pb utilised the BGS guidance soil (BGS 102), duplicates and blanks, as described by
Entwistle et al. [4]. Duplicates, blank extractions (n = 2) and Certified Reference Materials (n = 3;
BCR 701, BGS 102, NIST 2711a [18–20]) were included in the determination of total Pb. Lead recovery
from the digestion of the reference materials was ± 10%. Lead in the blank digestions was less than
the detection limit (0.02 mg kg−1), with a repeatability within 10% for the total digestion. Duplicate
extraction and analysis of one sample in the CISED extraction was better than 10%.

The major and trace element data obtained from the sequential extracts for each soil was assembled
into a data matrix consisting of 14 rows (the extracts) and 26 columns (the elements). The data for
each soil was subjected to a previously described [16,21] Self Modelling Mixture Resolution (SMMR)
algorithm. This procedure separates the data into geochemically distinct components, which include
the chemical composition of each component, the amount of each component in each extract and the
fractionation of each element between each of the identified components. The algorithm is programmed
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in the MATLAB programming language and uses a bootstrap re-sampling approach to provide median
and 95th percentile confidence intervals on all the outputs [16]. Statistical analysis of the CISED outputs
and plotting was carried out using the R programming language [22]

3. Results

The mean pH of the soils across the three UAS was neutral (pH 7.1, pH range 6.7–7.8), while the soil
organic matter content indicated percentages ranging from 5.7 to 25%, with a mean of 18%. The total
Pb concentration in the soils in this study ranged between 115 and 1131 mg kg−1, with a mean of 487
mg kg−1. CISED extractable Pb ranged between 75 and 88% of the total digest values, despite the
relatively large range across the total concentrations, indicating a similar extractability between soils
and sites.

3.1. Pb Fractionation in the Soils

3.1.1. Pb Extraction Profiles

The CISED approach for determining the physico-chemical fractionation of Pb in the test soils has
been previously described in a number of studies [13,23–26]. The CISED method is designed to identify
the distribution and physical form of PTE within the constituents of any given soil and developed to
overcome the problems associated with traditional sequential extraction methods [21]. The advantages
of the CISED method over other sequential extraction schemes [27,28] are:

• The method is very fast (ca. 10–15 min per extract);
• The analysis is simple to carry out because there are no reagents with high total dissolved solids

(TDS) to cause nebulizer blockages and other analytical problems;
• Rapid extraction and strong acid reagents minimize the potential for elements to be mobilized

and redistributed to other phases; and
• The phases identified are a true representation of the natural state of the soil; they are not

methodologically defined as in more conventional procedures.

Figure 1 shows the Pb extraction profiles over the 14 CISED extracts for each of the 12 soils studied.
The profiles show some similarity between extraction peaks extending from extraction numbers 6 to 14
and with a peak value at extraction number 9–10. This indicates that Pb is extracted at medium to high
acid concentration (Table 1).

3.1.2. Fractionation of Pb between the CISED Identified Geochemical Components

Figure 2 shows how the Pb in each soil is fractionated between the different geochemical
components identified by the CISED extraction. The components are named by the elements that
contribute more than 10% by weight of the component composition (in decreasing percent contribution).
The components are different for each soil but there are some commonalities between the components
in each soil, e.g., Al dominated components, Ca dominated components, Fe dominated components.
Components made up predominantly of organic carbon do not have a strong inorganic signature so
they are not likely to show up as clearly as the mineral components of the soil. This is not to say
that there may be significant amounts of organic matter associated with the components, however
Spearman’s correlation between the percentage bioaccessibility and the organic matter content indicates
there is a significant negative correlation (bootstrapped Spearman correlation coefficient of −0.75 with
95th confidence interval of −0.23 to −0.96, n = 12). This may indicate that the bioaccessible fraction is
more associated with the inorganic fraction of Pb, as suggested by the CISED fractionation. However,
this is a relatively small set of samples (n = 12) and the controls on Pb bioaccessibility are likely to be a
combination of factors [29].



Geosciences 2020, 10, 398 5 of 18

Geosciences 2020, X, x FOR PEER REVIEW 5 of 21 

 

 
Figure 1. Pb extraction profiles, mg kg−1. 

3.1.2. Fractionation of Pb Between the CISED Identified Geochemical Components 

Figure 2 shows how the Pb in each soil is fractionated between the different geochemical 
components identified by the CISED extraction. The components are named by the elements that 
contribute more than 10% by weight of the component composition (in decreasing percent 
contribution). The components are different for each soil but there are some commonalities between 
the components in each soil, e.g., Al dominated components, Ca dominated components, Fe 
dominated components. Components made up predominantly of organic carbon do not have a strong 
inorganic signature so they are not likely to show up as clearly as the mineral components of the soil. 
This is not to say that there may be significant amounts of organic matter associated with the 
components, however Spearman’s correlation between the percentage bioaccessibility and the 
organic matter content indicates there is a significant negative correlation (bootstrapped Spearman 
correlation coefficient of −0.75 with 95th confidence interval of −0.23 to −0.96, n = 12). This may 
indicate that the bioaccessible fraction is more associated with the inorganic fraction of Pb, as 
suggested by the CISED fractionation. However, this is a relatively small set of samples (n = 12) and 
the controls on Pb bioaccessibility are likely to be a combination of factors [29]. 

To facilitate direct comparisons between the fractionation of Pb in the samples, a simplified 
picture of the different geochemical components was obtained by clustering their geochemical 
compositions into groups based on their element composition. Using a Gaussian mixture modelling 
algorithm fitted using expectation maximisation (EM) (mclust library of the R programming 
language [30]) six distinct clusters were identified (Figure 3). 

Figure 1. Pb extraction profiles, mg kg−1.Geosciences 2020, X, x FOR PEER REVIEW 6 of 21 

 

 

Figure 2. Fractionation of Pb between the Chemometric Identification of Substrates and Elements 
Distributions (CISED) identified geochemical components. 

 

Figure 2. Fractionation of Pb between the Chemometric Identification of Substrates and Elements
Distributions (CISED) identified geochemical components.



Geosciences 2020, 10, 398 6 of 18

To facilitate direct comparisons between the fractionation of Pb in the samples, a simplified picture
of the different geochemical components was obtained by clustering their geochemical compositions
into groups based on their element composition. Using a Gaussian mixture modelling algorithm fitted
using expectation maximisation (EM) (mclust library of the R programming language [30]) six distinct
clusters were identified (Figure 3).
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Figure 3 shows the six clusters on a principal component analysis (PCA) biplot of the first two
principle components. Cluster 1 is an Al dominated cluster, clusters 2 and 6 are Fe dominated clusters,
cluster 3 is a K dominated cluster, and clusters 4 and 5 are Ca dominated clusters.

3.1.3. Interpretation of the Geochemical Clusters

At this stage, we have grouped the individual geochemical components from the soil samples from
each site into clusters and the average geochemical composition of each cluster provides a common
overview of the geochemistry of the components across all soils. The other piece of information
that the individual geochemical components provides is the strength of acid extract at which they
are extracted. This gives a measure of the relative mobility of each geochemical component, i.e.,
those extracted at lower acid strength are considered more mobile than those extracted at a higher acid
strength. This measure of mobility can be expressed as an extraction window defined by three pieces
of information:

i. the extraction step when the geochemical component first appears;
ii. the extraction step where the maximum amount is extracted (i.e., the extraction peak); and
iii. the last extraction step where the geochemical component appears.

In Figures 4–9 the left-hand plot (a) provides the mean value and standard deviation of the
percentage composition of the main contributing elements for a given cluster. The smaller the standard
deviation of the mean value shows that the composition of the individual geochemical components
within a cluster have similar element compositions. In the right-hand plot (b), the y axis shows the
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extraction window for each geochemical component (the dot represents the peak value and the top and
bottom whiskers represent the first and last extraction points) in each soil associated with a specific
cluster. For some soils more than one of the geochemical components is associated with a single cluster
and hence some soils have more than one extraction window.Geosciences 2020, X, x FOR PEER REVIEW 8 of 21 
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Cluster 1 is Al dominated, most likely comprising Al oxide, and from peak extraction steps 7–9
(Figure 4). The three major elements in cluster 1 with the smallest relative standard deviation are
Al (ca. 30%), P (ca. 10%) and Pb (ca. 10%). Aluminium (hydr)oxides can be common in the clay
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fraction of soils, occurring as discrete particles, as surface coatings or as interlayers between clay
mineral surfaces, and the literature attests to their ability to sorb metal ions, such as Pb, reducing
their solubility [31]. The presence of an Al and P component also containing 10% Pb suggests that
this component may also reflect the occurrence of a Pb-Al-phosphate mineral, such as the mineral
plumbogummite (PbAl3(PO4)2(OH)5·H2O) which has been shown to be present across a range of
soil types [32–36]. In a study of contaminated soil and Pb mine waste [37] phosphate amendment
was applied to determine if this addition generated a stable form of Pb. Using a combination of
synchrotron-based analysis techniques, the authors showed that, after aging for 4 weeks up to 1 year,
plumbogummite was formed as a stable end point. As such, it is highly probable that over the many
years the Pb has been accumulating in these urban soils that the natural aging process has led to
the formation of stable Pb-phosphate minerals, such as plumbogummite. However, without further
investigation using scanning electron microscopy or X-ray Absorption Fine Structure Spectroscopy
(XAFS), we are unable to identify which Pb-phosphate minerals are present.

Cluster 2 contains on average 40% Fe, extracted at high acid concentration (peak extraction steps
9–11), Figure 5. Although this component has a relatively high Fe content it also contains appreciable
amounts of other elements (P, Na, Al, S, Pb) suggesting that is probably an Fe oxy-hydroxide
component [38].

Cluster 3 has the most variable composition of all six components because it has the largest relative
standard deviation in composition, but is dominated by K (Figure 6). It also has the widest range of
peak extraction windows (steps 3–13). A clue to the source of this cluster comes from a study of the
major element composition of sequential extracts from a variety of soils from Silesia [39], which shows
that the organic fraction contains appreciable amounts of K, Ca and S but is highly variable between the
soils. This cluster is therefore possibly related to organic matter breakdown, however, the Pb content
of this is low (<5%).

Cluster 4 is Ca dominated (ca. 70%) and is extracted at low acid concentrations (component peaks
at steps 5–7) which suggest this is a Ca carbonate component (Figure 7). The median Pb content of this
cluster is below 5%.

Cluster 5 is another Ca dominated cluster (Figure 8) in which the components have a slightly
higher Ca content (ca. 80%) and a much lower variability in Ca content suggesting it represents a purer
form of Ca carbonate than cluster 4. The peaks of extraction of each component are more variable than
those in cluster 4 (3–13). This may suggest that some of these components are more crystalline than
those in cluster 4 which may be a more fine-grained amorphous material.

Cluster 6 is a Fe dominated cluster (Figure 9) with a higher than average Fe content than that of
cluster 2 and a well-defined peak of extraction of step 13 for all sites. The high acid strength and the
purity of this cluster suggests it is derived from dissolution of crystalline Fe oxides [38]. The median
Pb content of this cluster is less than 5%.

Although the clustering process highlights the common features of the physico-chemical
components of the soils studied, the individual components identified for each soil (Figure 2) and the
differences between extraction windows (Figures 4–9) for different components in each soil illustrate
the heterogeneity of the soils, not only between sites but also within sites. This may reflect differences
in soil preparations used by each allotment holder (see SI.1).

3.1.4. Soil Substrate Contributions to Pb Extraction Profiles

Following categorization of the geochemical components in each soil into clusters and formulation
of tentative geochemical interpretations, a closer examination can be made of the contributions to the
original Pb extraction profiles (Figure 1). Figure 10 shows how the two main contributing geochemical
components and their associated clusters contribute to the extraction profile for the site 1.2 sample.
In this instance the main contributor is the component that belongs to cluster 1, the Al oxide component,
with a lesser proportion coming from the crystalline Fe oxide cluster (cluster 6). Applying the same
approach to all of the samples, we can obtain an overview of the source of the main geochemical
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fractions contributing to the total Pb content of the soils. Figure 11 shows the two main contributing
clusters for all of the soil samples under study.
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Figure 10. Example plot of the underlying contributions to the total extracted Pb profile (solid black
line). The two main contributing components (cmpt) are indicated by colour for this specific soil
(red and blue line). The clusters (clstr) to which the components belong are shown by line type (dashed
and solid line). In this example the solid line indicates the Al oxide cluster and dashed line indicates
the crystalline FeO cluster.

Examining each profile for each soil combined with its two major contributing geochemical
components, we see that in 10 of the 12 soils the most important contribution comes from the Al oxide
cluster. In site 3.2, however, the most important cluster is Ca carbonate (cluster 4) and in site 3.1 it is
the Fe oxyhydroxide cluster (cluster 2). The second most important cluster in all cases is either the Fe
oxyhydroxide cluster (cluster 2) or the crystalline FeO cluster (cluster 6).

3.1.5. Relationship between Pb Fractionation and Bioaccessibility

Having identified the geochemical sources of Pb in the soils through the CISED extraction process
we can now compare the CISED identified fractions with the UBM bioaccessibility values and the total
Pb concentrations in the soils. For each soil, the cumulative extracted Pb arising from each CISED
identified component (in order of their extraction which should indicate relative availability) can
be plotted and compared to the total Pb content of the soil and the UBM bioaccessibility (total and
bioaccessible Pb values from Entwistle et al. [4]). The coloured points indicate the geochemical clusters
that the individual soil components come from. The CISED total Pb is usually less than the whole
soil digest value because Pb bound to the alumina-silicate matrix will not be extracted by the mineral
acid extractants.

An examination of the cumulative plots in Figure 12 provides information on which of the soil
component/clusters is responsible for the bioaccessible fraction of the soil. The clusters that contribute
to the cumulative curve up to the bioaccessible value (the green horizontal line) are therefore deemed
to be the sources of the bioaccessible fraction. Figure 12 shows that, in most of the samples, Pb coming
from the components that make up the Al oxide cluster are an important source of the bioaccessible Pb
(i.e., the Pb extracted under the green line). The Al oxide cluster, however, is made up of different
components in each soil and the Figure 12 plots indicate that varying amounts of Pb in the components
in this cluster contribute to the final bioaccessible Pb value. This explains why we observed no
significant correlation (bootstrapped Spearman correlation confidence intervals straddle zero) of the
bioaccessible Pb (either measured as an absolute value or as a percentage of the total Pb) with the Al
oxide fraction.
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For all of the soils, with the exception of that of site 3.2, soil components from the Al oxide cluster
(cluster 1 in Figure 3) are the main contributors to the bioaccessible fraction. For the site 3.2 sample the
main contributing cluster is a Ca carbonate grouping (cluster 4 in Figure 3). There is no indication from
the history of chemical and soil improver usage at this sample site to explain this difference (Table S1).

4. Discussion

Lead contamination of urban soil continues to pose a potential public health threat. For widespread
diffuse Pb pollution in urban areas, in situ remediation methods involving the treatment of the soil,
either through the use of chemical treatments (such as addition of phosphorus containing compounds),
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biological remediation (such as phyto-stabilisation using ground cover) or by dilution (such as through
the addition of compost and other biosolids), are gaining prominence (see reviews [40,41]). Studies on
contaminated urban soils have shown Pb to be present in complexes with organic matter, phosphorus,
carbonates and/or iron oxides (e.g., [42–45]). Our CISED sequential extraction data shows that the
Pb in our UAS soils is primarily associated with Al oxide phases (Al dominated, Figure 3), with the
second most important phase associated with either Fe oxyhydroxide or crystalline FeO, and only to a
very limited extent to Ca carbonates and organic matter (Figure 11). Many studies report reduced soil
mobility of Pb in the form of Pb-phosphates, such as the secondary mineral phases of the pyromorphite
family [46], and 75% of the urban gardeners reported regular (at least annual) application of P-rich
materials, such as compost and manure (SI-1). We interpret the co-presence of a P component with
the Al oxide cluster to suggest the soils contain Pb phosphate type minerals, possibly the mineral
plumbogummite (PbAl3(PO4)2(OH)5·H2O). Indeed, the formation of naturally occurring less-labile and
non-labile (or fixed) forms of Pb over time, as a consequence of natural time-dependent (“soil aging”)
processes, is well reported in the literature [47].

In our study, the Pb associated with the Al oxide–P phase appears to be the major source of the
UBM bioaccessible fraction of Pb, with smaller associations of Pb with Fe oxide and carbonate phases
(Figure 12). There is some suggestion that in vitro tests overestimate the bioaccessible fraction when
phosphate is co-present. A recent study on highly contaminated soil (1500–8000 mg/kg Pb) by smelting
and mining activity showed that the UBM overestimated bioaccessibility in some of the soils [48]
compared to a mouse animal model. Another study [49] showed that uncertainties in comparing
in vitro testing to an animal mouse model to investigate the effect of phosphate amendments on
Pb bioaccessibility makes it difficult to confirm overestimation of in vitro tests. The form of Pb in
soil in particular is influenced by the source, absolute concentration of Pb, chemical composition
of the soil and aging, but it is clear that insoluble Pb-phosphates are formed in the presence of
phosphate amendments [46]. The degree to which these reduce bioaccessibility/bioavailability is still
to be determined, particularly in urban agricultural soils. A recent review of the use of phosphate
compounds to remediate urban Pb contaminated soils highlighted the need for caution because current
understanding is principally drawn from tests on highly contaminated soils (typically from firing
ranges and mine wastes), using high P dosing rates, over experimental periods typically limited to less
than 24 months [40]. Addition of phosphate amendments can also have some negative side effects,
which include the risk of primary P leaching and eutrophication of surface water sources, and the
possibility of As enhanced leaching [46].

On the basis of our CISED data, in tandem with our biomonitoring data, which indicates the
lack of elevated blood Pb levels in our gardeners compared to their non-gardening neighbours, we
conclude the (legacy) Pb in these soils has been rendered relatively immobile. However, the lack
of a statistically significant difference in BLL between the two groups might feasibly be related to
differences in exposure, rather than solely a product of low soil Pb mobility. To account for this,
participant gardeners recruited a neighbour or friend of the same sex and similar age to act as their
control. Thus, the control population was as close a match to the gardeners as possible; they were their
close neighbours, so were subject to similar ambient Pb exposure, and lived in similar housing stock.
To account for confounding variables in our statistical modelling, all participants provided information
on personal characteristics including age, sex, alcohol consumption, smoking, occupations and hobbies
that may lead to Pb exposure, and domestic cleaning habits, in addition to building age, whether they
had lead pipes for tap water, and whether they kept cats or dogs as pets [50]. Gardener participants
also provided information on frequency and duration of visits to the UAS, and rates of consumption
of fruit and vegetables (both shop-bought and homegrown). The majority of gardeners in our study
visited their garden several times a week (during spring, summer and autumn), typically for 2–4 h, and
the consumption rate data indicated a high percentage of homegrown fruit (herbaceous and shrub) and
vegetable (green, root and tuber) consumption in the diet (ranging from 21% to 54% for 50th percentile
consumers) [4]. Our exposure indicators thus suggested a potentially higher exposure to Pb for the
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gardeners compared to our controls. The observed lack of any significant difference in the two cohorts’
BLL supports our interpretation that the Pb in these soils has been rendered relatively immobile.

Our findings suggest that expensive barrier and “fixation” treatments do not appear to be justified
in these urban allotments. The advice to our urban gardeners, based on our findings, is to follow good
land management and hygiene practices such as: removing outdoor footwear before entering the home
and storing gardening equipment outside, or in a designated area near the doorway, to reduce the
back-tracking of soil into the home; thoroughly washing soil-laden crops outside; peeling crops where
feasible before eating; keeping soil moist (or covered) during dry periods and in windy conditions;
and diluting the Pb concentration of the soil using sustainable organic-rich amendments such as animal
manure composts, biosolids, green-waste and biochar [51–53].

5. Conclusions

Our study aimed to understand the geochemical controls on the bioaccessibility of Pb in soils
from urban allotment sites. This knowledge has been used as part of an approach involving multiple
lines of evidence to assess the hazards present in allotment sites, and inform land management and
future use strategies. We have shown that the Pb in our urban soils is primarily associated with
Al oxide phases, with the second most important phase associated with either Fe oxyhydroxide or
crystalline FeO, and only to a limited extent with Ca carbonates. The CISED method has been shown to
provide additional information on element fraction in addition to that of classical sequential extraction
methods [27,28]. The co-presence of a P component with the Al oxide cluster indicates the soils contain
Pb phosphate type minerals, likely as a by-product of natural “soil aging” processes. This information
provides an indication of the chemical forms of Pb in the UAS and their potential lability and
bioaccessibility. Indeed, the presence of Pb phosphates, in conjunction with our biomonitoring data
which shows the lack of elevated blood Pb levels in our gardeners, indicates the (legacy) Pb in these
soils is relatively immobile. This study has given confidence to the local authority regulators and the
gardeners that these urban gardens can be safe to use, even where soil Pb levels are up to ten times
above the UK’s recommended lead screening level. Without this evidence, closure and redevelopment
of such sites were a real concern. The work does highlight some heterogeneity between individual
allotment plots, both within sites and across multiple locations, and serves as a reminder that there
may not be a “one size fits all” approach to remediation/re-use.

Although the debate continues regarding the efficacy of using P-rich amendments to reduce the
bioaccessibility/bioavailability of soil Pb, the often poor quality of many urban soils, or the increasing
desire to utilize raised beds for more accessible gardening, can be seen as a positive driver of Pb
dilution and P additions over the years. Methods for intervention/remediation need to be low cost,
and utilise locally available materials and/or readily implementable practices, to facilitate widespread
adoption. Employment of good hygiene practices remains important for all visitors to UAS, not just the
urban gardeners. Projects that facilitate wider public understanding of environmental pollution and
everyday exposures, such as the academic–regulator–community partnership presented here, have an
important role to play in raising awareness of environmental health issues associated with both legacy
and new generation pollutants. Indeed, increased hand-washing and exposure awareness linked to
the Covid-19 pandemic may yet prove to be a positive driver of reduced exposure to contaminants,
such as Pb, in urban settings.
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