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Simple Summary: Intramuscular fat (IMF) is a key meat quality trait in the pork industry. In this
study, we validated the effect of the copy number of Netrin-1 (NTN1-CNV) on Netrin-1 (NTN1) protein
expression and explored the possible affective mechanism of NTN1 on IMF. The results indicated that
NTN1-CNV may affect the expression of NTN1 protein by its gene dose, and the expression of NTN1
may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase
(AMPK) pathway and finally influence the IMF content.

Abstract: Intramuscular fat (IMF) content is an important economic trait for pork quality. Our
previous results regarding the genome-wide association between IMF content and copy number
variations (CNVs) indicated that the CNV within Netrin-1(NTN1-CNV) was significantly associated
with IMF. In order to validate the effect of NTN1-CNV, we detected the Netrin-1 (NTN1) gene
dose and protein expression content in the longissimus dorsi of different IMF content pigs using
Western blotting and investigated the expression of NTN1 RNA in different tissues using real-time
quantitative polymerase chain reaction (qPCR). The knock-down of the NTN1 gene in C2C12 and
3T3-L1 cells and over-expression in C2C12 cells during the proliferation and differentiation stage
were also investigated to explore the possible pathway of action of NTN1. The results showed that in
individuals with IMF content differences, the gene dose of NTN1 and the expression of NTN1 protein
were also significantly different, which indicated that NTN1-CNV may directly affect IMF by its
coding protein. NTN1 had the highest expression in pig longissimus dorsi and backfat tissues, which
indicates that NTN1 may play an important role in muscle and fat tissues. The in vitro validation
assay indicated that NTN1 silencing could promote the proliferation and inhibit the differentiation of
C2C12 cells, with no effect on 3T3-L1 cells. Additionally, NTN1 over-expression could inhibit the
proliferation and promote the differentiation of C2C12 cells. Combined with previous research, we
conclude that NTN1-CNV may affect IMF by its gene dose, and the expression of NTN1 may affect
the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK)
pathway and finally influence the IMF.

Keywords: copy number variation; intramuscular fat content; NTN1; swine

1. Introduction

In the past few decades, with the continuous breeding of pig litter sizes, growth rate, back-fat
thickness and other traits, the quality of pork has been declining [1]. Intramuscular fat (IMF) content is
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an important factor affecting pork quality. The content of IMF is closely related to the flavor, tenderness
and juiciness of pork. A suitable intramuscular fat content can produce a better taste and is an
important factor in determining meat quality [2].

As one of the most extensive variations of the genome, copy number variations (CNVs) play an
important role in many traits and are the most likely mutations to explain the “missing inheritance”
beyond the single nucleotide polymorphism (SNP) effect [3]. In animals, especially in pigs, research into
CNV maps and functions has made many important advances. In 2008, using array-based comparative
genomic hybridization (aCGH) technology, 13 pigs were selected as experimental materials to construct
maps of 37 CNV regions on chromosomes 4, 7 and 17 of pigs [4]. From 2014, the SNP chip and next
generation sequencing (NGS) were used to detect CNV in different Chinese and foreign pig breeds, and a
total number of 4145 CNVRs were detected [5–9]. In one of the global analyses of CNVs in pigs using
sequencing data, one CNV in the gene glycerol-3-phosphate acyltransferase 2 (GPAT2) was found to
be significantly associated with the C18:2(n-6)/C18:3(n-3) ratio in backfat and carcass length [5]. In the
research of Ran et al. (2018), copy number variations of the methenyltetrahydrofolate synthetase domain
containing (MTHFSD) gene was significantly associated with litter size traits in Xiang pigs [6]. In one
study on 3892 pigs, Stafuzza et al. found that four CNV regions on SSC2 (4.2–5.2 Mb), SSC3 (3.9–4.9 Mb),
SSC12 (56.6–57.6 Mb) and SSC17 (17.3–18.3 Mb) were associated with the number of piglets born alive [7].

We previously performed a genome-wide association study of IMF traits on the F2 generation
phenotypic data of large white ×Min pigs and found that the CNV (on chromosome 12, from 56,893,678
bp to 57,020,468 bp) within Netrin-1 (NTN1, also called UNC-6, on chromosome 12, from 56,822,597
bp to 57,056,391 bp) was significantly associated with IMF [8]. In previous research, we also found
that DNA dosages were consistent with NTN1 RNA expression, and the NTN1 RNA expression was
consistent with IMF content. NTN1 is a member of the laminin-associated secreted protein family,
and its function is currently unclear. Studies in humans and mice have shown that the NTN1 gene
is involved in a variety of cellular function-related metabolic pathways and is associated with the
extension of synapses and cell migration, apoptosis, and differentiation during development [10,11].
Studies in 2014 showed that NTN1 gene expression was significantly higher in human and murine obese
fat cells than in lean fat cells [12]. The Adenosine a2b receptor (a2bR) is one of the receptors which NTN1
protein could bind directly to [13]. A previous study showed that the a2bR gene was involved in some
well-known fat deposition pathways such as Cyclic adenosine monophosphate (cAMP)-dependent
protein kinase (cAMP-PKA), the mitogen-activated protein kinase (MAPK) pathway, and so on [14].
Although there are many studies on the NTN1 gene in humans and mice, beyond our research, there
is no report that their CNV has any influence on traits. This study aimed to confirm the effect of the
NTN1 gene and its internal copy number variation (NTN1-CNV) on muscle and fat.

2. Materials and Methods

2.1. Ethics Statements

All methods and procedures in our study were carried out according to the standard guidelines on
experimental animals, which were established by the Animal Ethics Committee of the Institute of Animal
Science, Chinese Academy of Agricultural Sciences (IAS-CAAS) (Beijing, China). The experimental
protocols were approved by the Science Research Department of IAS-CAAS (No. IASCAAS-AE-09).

2.2. Sample Collection

In order to investigate the NTN1 RNA expression in different tissues, the heart, liver, spleen, kidney,
longissimus dorsi and backfat were obtained from five individuals in the F2 resource population [8]
who were randomly selected. The F2 resource population was constructed using Large White and
Min pigs as F0 generation pigs, and the population size was 602 individuals. Pigs were weighed and
sacrificed at 240 ± 7 days following standard commercial procedures. To detect the gene dose of NTN1
and NTN1 protein expression, nine pigs with high (IMF content > 5.0) and low (IMF content < 1.5) IMF
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were selected for longissimus dorsi collection. IMF contents were measured using an ether extraction
method (Soxtec Avanti 2055 Fat Extraction System, Foss Tecator, Hilleroed, Denmark). All samples
collected were placed in a −80 ◦C freezer for the later extraction of tissue RNA and protein extraction.

2.3. Western Blotting Analysis

To detect the protein expression of NTN1 and adenosine, the longissimus dorsi of 5 high-IMF
and 4 low-IMF individuals were selected to extract total protein. Total proteins were isolated in
radioimmunoprecipitation assay (RIPA) lysis buffer (Beijing, China) with phenylmethylsulphonyl
fluoride (PMSF), and the protein content was determined by a bicinchoninic acid (BCA) protein
Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal amounts of protein, with
SDS-PAGE separation, were transferred to the polyvinylidene fluoride membranes. The membrane
was sealed with 5% non-fat milk at room temperature for 2 h, incubated at 4 ◦C overnight, and the
primary hybridized antibody was washed three times with tris-buffered saline and tween 20 (TBST).
The secondary antibody was hybridized and washed again. Finally, the immunoblotting was visualized
by an enhanced chemiluminescence (ECL) kit, and the optical density of the target band was analyzed
by Quantity One image analysis software. Protein expression was normalized to β-actin expression.

2.4. Gene Dose of NTN1 in Individuals with Different Intramuscular Fat, and NTN1 RNA Expression in
Different Tissues

To detect the gene dose of NTN1 in individuals with different IMF and NTN1 RNA expression
in different tissues, real-time quantitative PCR amplification was performed using a SYBR® green
kit (TaKaRa Bio, Shiga Prefectur, Japan) on a Bio-Rad IQTM5 system (Bio-Rad, Hercules, CA, USA).
When detecting the gene dose of NTN1, the glucagon gene (GCG) was used as a single copy control.
The copy number was calculated by the method of 2−∆∆CT, where ∆ CT was the differential value of
the target region cycle threshold (CT) and of the control region CT. Moreover, 2−∆∆CT stands for the
comparison of the ∆ CT value of samples with CNV to those without CNV. When detecting the NTN1
RNA expression in different tissues, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
as an internal reference, and the expression level of the gene was also calculated by 2−44CT. A list of
primer sequences is shown in Table 1.

Table 1. Primer sequences for RT-qPCR.

Gene Symbol * Sense Strands (5′-3′) Anti-Sense STRANDS (5′-3′)

NTN1 TTGCAAAGCCTGTGATTGCC AATCTTGATGCAAGGGGCAG
GCG AAGCTTCAAACAGGGGTACAAT CCACTTGGAATGTTACCCTAATG

GAPDH CACUCAAGAUUGUCAGCAATT UUGCUGACAAUCUUGAGUGAG
KI67 AGCTAACTTGCGCTGACTGG ATATTGCCTCTTGCTCTTTGACT
P21 GTACTTCCTCTGCCCTGCTGCA CCAATCTGCGCTTGGAGTGATAG

MYOD GGCAGAATGGCTACGACAC GGGTCTGGGTTCCCTGTTCT
MYOG CGGTGGAGGATATGTCTGTTG GGTGTTAGCCTTATGTGAATGG
MCK AGGAGTACCCAGACCTCAGCAA GACCGTGTAGGACTCCTCATCG

CyclinD1 CAGTAACGTCACACGGACTACAGG CGTTGAGGAGATTGGTGTCAGG
PPARγ AAGAGCTGACCCAATGGTTG ACCCTTGCATCCTTCACAAG
FABP4 TAAAAACACCGAGATTTCCTTCA CCTTTCATAACACATTCCACCA
CDCK4 CTACATACGCAACACCCG TCAAAGATTTTCCCCAACT

* NTN1: netrin-1; GCG: glucagon; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KI67: antigen identified by
monoclonal antibody Ki 67; P21: cyclin-dependent kinase inhibitor; MYOD: class I myosin; MYOG: myogenin; MCK:
muscle creatine kinase; CyclinD1: cyclin domain 1; PPARγ: peroxisome proliferator-activated receptor gamma;
FABP4: fatty acid binding protein 4; CDCK4: cyclin dependent kinase 4.

2.5. NTN1 RNA Silencing in C2C12 Cells

To investigate the role of NTN1 in muscle cell proliferation and differentiation, si-RNA was used
to interfere with the expression of C2C12 cells first. The C2C12 cells were cultured in Dulbecco’s
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modified Eagle medium (DMEM, Gibico, Gaithersburg, MD, USA) containing 10% fetal bovine serum
(FBS, Gibico, Gaithersburg, MD, USA) and 1% penicillin streptomycin (PS, Gibico, Gaithersburg, MD,
USA) at 37 ◦C under a 5% CO2 atmosphere. Three NTN1 si-RNAs and one negative control (NC) were
designed in GenePharma (Table 2), transfected at a cell density of 70%, and the transfected reagent
lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA) was mixed with si-RNA and NC according
to the instructions. The Opti-MEM medium (Gibico, Gaithersburg, MD, USA) was replaced with
DMEM medium (Gibico, Gaithersburg, MD, USA) for 5 h. The complete medium was changed to the
differentiation medium (including DMEM supplemented with 2% horse serum (Sigma, Ronkonkoma,
NY, USA) and 1% PS solution) after continuous culturing for 24 h (defined on day 0, proliferative
phase). After the differentiation medium was changed, cells were fused to 90% (defined day 0); then,
the liquid was changed every day until day 3. Cells on day 0, day 1, day 2 and day 3 were collected for
RNA extraction after induction. Each set of experiments was set up with three independent replicates.

Table 2. si-RNA targeting the mouse NTN1 coding region.

si-NTN1 Sense Strands (5′-3′) Anti-Sense STRANDS (5′-3′)

si-1085 GCGCGACUCCUAUUACUAUTT AUAGUAAUAGGAGUCGCGCTT
si-1225 GCGACCGUUGCAAGCCCUUTT AAGGGCUUGCAACGGUCGCTT
si-562 GCAACUCUUCGGAUCCCAATT UUGGGAUCCGAAGAGUUGCTT

NC UUCUCCGAACGUGUCACGUTT UUCUCCGAACGUGUCACGUTT

2.6. RNA Silencing in 3T3-L1 Pre-Adipocytes Cells

To investigate the role of NTN1 in fat cell proliferation and differentiation, si-RNA was used
to interfere with the expression in 3T3-L1 cells (Tianwei, Beijing, China). The culture of 3T3-L1
pre-adipocytes cells was carried out in accordance with the above C2C12 culture. The transfection of
NTN1 si-RNA and NC was also carried out in accordance with the above C2C12 transfection. The
complete medium was changed to the differentiation medium after continuous culture for 48 h (defined
day 0, proliferative phase). The differentiation of 3T3-L1 cells was induced two days after fusion in
DMEM containing 0.5 mM 1-methy1-3-isobutylxanthine (IBMX, Sigma, USA), 1 µM dexamethasone
(DEX, Sigma, USA) and 5 µg/mL insulin. After two days (day 2), the maintenance solution (10 µg/mL
insulin complete medium) was replaced and the culture was continued. The liquid was changed every
day until day 8. Cells on day 2, 4, 6 and 8 were collected for RNA extraction after induction. After
6 days of differentiation of the adipocytes, oil red O staining and the detection of the accumulation
of plasmid were performed. 3T3-L1 cells were washed three times with PBS, and then fixed with 4%
formaldehyde fixative at 37 ◦C for 45 min. After repeating the washing three times, they were stained
with oil red O for 2 h, the stain solution was discarded and the floating color was washed. The treated
cells were observed under an inverted microscope (Tokyo, Japan).

2.7. RNA Over-Expression in C2C12 Cells

To investigate the role of NTN1 in muscle cell proliferation and differentiation, RNA over-expression
was also used in C2C12 cells (Tianwei, Beijing, China). One over-expression plasmid, named PEX-3
(pGCMV/MCS/Neo), and one negative control named PEX-1 (pGCMV/MCS/EGFP/Neo) with the
binding site of XhoI/EcoRI was designed and synthesized by GenePharma. After the procedures of
amplification, transformation and plasmid extraction, pEX-3 and PEX-1 were transfected in C2C12
at a cell density of 70%. The procedure of cell proliferation and differentiation was the same as
the aforementioned.

2.8. Real-Time Quantitative Polymerase Chain Reaction (qPCR) Assay

The different expressions of si-RNA and regulating factors during cell proliferation and
differentiation were detected using the qPCR method. Cyclin-dependent kinase inhibitor (P21),
antigen identified by monoclonal antibody Ki 67 (KI67), muscle creatine kinase (MCK), myogenin
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(MYOG) and class I myosin (MYOD) were selected as regulator factors in muscle cell proliferation
and differentiation. Cyclin D1, cyclin dependent kinase 4 (CDK4), peroxisome proliferator-activated
receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) were selected as regulating factors
in adipose proliferation and differentiation. The total RNA of the harvest cells was extracted using
Trizol® reagent. The reverse transcription of RNA into single-stranded DNA was performed using a
reverse transcription kit. Real-time quantitative PCR was performed using a SYBR® green kit (TaKaRa
Bio) on a Bio-Rad IQTM5 system (Bio-Rad, Hercules, CA, USA). GAPDH was used as an internal
reference, and the expression level of the gene was calculated by 2−44CT. The primers of the remaining
genes are shown in Table 1.

2.9. Statistical Analysis

The Tukey HSD test was used for comparison across multiple tissues, and a t-test was performed to
evaluate the statistical significance of the two-part comparisons of expression difference. In vitro, there
were three replicates in each group. Statistical analysis was performed using SAS 9.4 statistical software
(SAS Institute, Cary, CA, USA). A difference of p < 0.05 was considered to be statistically significant.

3. Results

3.1. Expression of NTN1 Protein in Longissimus Dorsi with Different Intramuscular Fat

Individuals 5, 11, 13, 14 and 15 were selected from the low-IMF group, and the individuals 16, 17,
19 and 20 were selected from the high-IMF group. In Figure 1, it can be observed that the expression of
netrin and the downstream protein adenosine in the high-IMF group was significantly higher than that
of the low IMF group (Figure 1A,B).
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Figure 1. DNA, RNA, and protein expression of NTN1. (A) Protein expression of netrin and adenosine
(n = 9, individual 5, 11, 13, 14 and 15 were low Intramuscular Fat (IMF), and individuals 16, 17, 19 and
20 were high IMF.). (B) Differences of NTN1 and adenosine protein expression and NTN1 gene dose in
high and low IMF pig longissimus dorsi. (C) Expression of NTN1 gene in different tissues. * p < 0.05.
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3.2. Gene Dose of NTN1 in Individuals with Different Intramuscular Fat, and NTN1 RNA Expression in
Different Tissues

From Figure 1B, the gene dose of NTN1 in high-IMF individuals were significantly higher than in
low-IMF individuals. The results (Figure 1C) showed that the NTN1 expression level in the longissimus
dorsi, backfat and heart were significantly higher than in other tissues (p < 0.05). The NTN1 gene had
the highest expression in the longissimus dorsi and backfat, followed by the heart and kidney, and the
lowest expression in the liver and spleen. As C2C12 and 3T3-L1 cell lines are commonly the cell lines
used in biological research into muscle and adipose tissue, we chose these two cell lines to perform the
following research.

3.3. Effect of si-NTN1 on the Proliferation and Differentiation of C2C12 Cells

Three si-NTN1s named si-1225, si-562 and si-1085, were transfected into C2C12 cells and assayed
for NTN1 interference efficiency testing. The results showed that in si-1085 and si-1025 interference
cells, the expression of NTN1 RNA were significantly different from NC interference cells (Figure 2A,
p < 0.05), which indicated good transfection efficiency. Finally, si-1085 was selected to mirror the
subsequent experiments.
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Figure 2. Effect of si-NTN1 on the proliferation and differentiation of C2C12 cells. (A) The interference
efficiency of three NTN1 si-RNAs. (B) Expression of NTN1, antigen identified by monoclonal antibody
Ki 67(KI67), and cyclin-dependent kinase inhibitor (P21) gene in C2C12 cell proliferation phase. (C) The
expression levels of NTN1 and muscle creatine kinase (MCK), myogenin (MYOG) and class I myosin
(MYOD) in normal differentiation C2C12 cells. (D) Expression of muscle creatine kinase (MCK), MYOG,
MYOD, and NTN1 gene in C2C12 cell differentiation phase. The results were represented as mean ±
SD. The expression level of genes in si-NTN1 C2C12 cells was determined by q-PCR using NC as the
control. * p < 0.05.

As shown in Figure 2B, during the period of proliferation, when NTN1 was successfully silenced,
the expression of cyclin-dependent kinase inhibitor (P21) significantly decreased and the expression of
the antigen identified by the monoclonal antibody Ki 67 (KI67) significantly increased. As shown in
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Figure 2C, in the normal differentiation stage, the expression of NTN1, muscle creatine kinase (MCK),
myogenin (MYOG) and class I myosin (MYOD) on day 3 were higher than on other days. Thus, the
expression of these genes at 72 h after transfection were detected. As shown in Figure 2D, when the
NTN1 was silenced, the expression levels of MCK, MYOG and MYOD also significantly decreased.

3.4. Effect of Over-Expression of NTN1 on the Proliferation and Differentiation of C2C12 Cells

NTN1 over-expression was also used to investigate the role of NTN1 in muscle cell proliferation
and differentiation. As shown in Figure 3A, when NTN1 was over expressed, the expression
of P21 significantly increased and the expression of KI67 significantly decreased. As shown in
Figure 3B, when the NTN1 was over-expressed, the expression levels of MCK, MYOG and MYOD also
significantly increased.
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Figure 3. Effect of over-expression of NTN1 on the proliferation and differentiation of C2C12 cells.
(A) Expression of NTN1, KI67, and P21 gene in C2C12 cell proliferation phase. (B) Expression of MCK,
MYOG, MYOD, and NTN1 gene in C2C12 cell differentiation phase. The results were represented as
mean ± SD. The expression level of genes in NTN1 over-expression C2C12 cells was determined by
q-PCR using NC as the control. PEX-3 and PEX-1 were the over-expression plasmid, and the negative
control, respectively. * p < 0.05.

3.5. Effect of si-NTN1 on the Proliferation and Differentiation of 3T3-L1 Cells

The results showed that the expression of NTN1 significantly decreased after the transfection
of si-NTN1 in the proliferative phase, while the expression of genes related to adipose proliferation
such as Cyclin D1 and cyclin dependent kinase 4 (CDK4), showed no difference compared to NC cells
(Figure 4C). After transfection and differentiation, day-6 cells were collected and stained with Oil red
O, and fat particles were observable. From Figure 4A,B, we can see the 3T3-L1 precursor adipocytes
were well differentiated on day 6. The expression levels of NTN1, peroxisome proliferator-activated
receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) genes were not significantly
different. Therefore, NTN1 may not have had an effect during the proliferation and differentiation of
fat (Figure 4D).
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of differentiation 3T3-L1 cells. (B) The expression levels of NTN1, Peroxisome proliferator-activated
receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) in 3T3-L1 adipocytes. (C) Expression
of Cyclin D1, cyclin dependent kinase 4 (CDK4) and NTN1 gene in 3T3-L1 cell proliferation phase.
(D) Expression of PPARγ, FABP4, and NTN1 gene in 3T3-L1 cell differentiation phase. The results were
represented as mean ± SD. The expression level of genes in si-NTN1 3T3-L1 cells was determined by
q-PCR using NC as the control. * p < 0.05.

4. Discussion

IMF deposition is a dynamic process that is regulated comprehensively by many factors such
as hormones and cell factors [15]. The regulation of IMF deposition proceeds by a complex pathway,
which interacts with muscle, fat and connective tissue [16].

NTN1 is a protein-coding gene, which is involved in many biological processes. In 2014, studies
confirmed that the expression of the NTN1 gene in human and mouse obese fat cells was significantly
higher than that of lean fat cells [11]. Among the genes of the NTN1 interaction protein, fibroblast
growth factor receptor 1 (FGFR1) and v-myb myeloblastosis viral oncogene homolog (MYB), which
interacts with a2bR and NTN1, were found to be different in muscles with different IMF contents [17].
In this study, the detection of netrin and adenosine protein expression revealed that NTN1 protein
was significantly different in high and low-IMF content pigs. Additionally, the expressions of netrin
and adenosine were identical, which was consistent with the results of previous research [18]. In our
previous research, NTN1 RNA expression was consistent with the copy number variation within
NTN1 [8]; in this study, we found that both the NTN1 gene dose and NTN1 protein expression were
consistent with IMF content, and we confirmed that NTN1-CNV affects IMF content by the gene dose.

The tissue expression profile results show that NTN1 may be involved in the development of
muscle and fat in pigs. IMF deposition was determined not only by adipogenic but also fibrogenic
processes [19,20], and this may explain why NTN1 has the highest expression in longissimus dorsi
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and backfat. The expression of NTN1 in the heart is also very high, and this may relate to the NTN1
function of cardiac protection [21]. However, in order to research how NTN1 affects muscle and fat, we
chose the C2C12 myoblasts and 3T3-L1 precursor adipocytes to perform in vitro validation.

In the process of muscle fiber formation, myoblast proliferation is a key stage in the early stage
of muscle, which is regulated by a variety of signaling factors. P21, which is a cell cycle inhibitor, is
one of the famous regulating factors, which can inhibit myoblast proliferation [22]. KI67 is another
famous myoblast proliferation-associated protein [23]. Thus, we chose these two genes to validate
the effect of NTN1 on myoblast proliferation. The silencing and over-expression of NTN1 could affect
the expression of both P21 and KI67, and this result indicates that the duplication of NTN1-CNV may
inhibit myoblast proliferation. When myoblasts enter the differentiation stage, many regulatory factors
are present, including myogenic regulatory factor (MRFs). MRFs are part of the transcription factor
superfamily, including MYOD, MYOG, myogenic factor 5 (MYf5) and myogenic regulatory factor 4
(MRF4), which can stimulate the expression of myoblast differentiation. With the differentiation of
myoblasts, the expression of MYf5 and MYOD increased gradually [24]. Furthermore, MCK is a late
differentiation stage marker [25]. When we knocked-down NTN1 expression, MYOG, MYOD and
MCK expression levels decreased in the differentiation phase compared with the control NC. When
we over-expressed NTN1, the expressions of MYOG, MYOD and MCK increased consistently. This
result has indicated that the duplication of NTN1-CNV may play an important role in promoting
myoblast differentiation.

In previous research, P21, KI67, MYOD, MCK and NTN1 has been shown to be involved in the
AMP-activated protein kinase (AMPK)-related pathway in different tissues [25–29], and the AMPK
pathway has recently been proven to be associated with IMF content in beef and pigs [30]. We inferred
that NTN1 may affect the IMF content by an AMPK-related pathway.

Precursor fat cells can only become mature fat cells to form fat after proliferating and differentiating.
The cell proliferation cycle is divided into G1, S and G2 phases to regulate cell proliferation. In the
proliferation stage, the expression of Cyclin D1 and CDK4 is usually high in adipocytes [31,32]. In the
differentiation stage, the activation of PPARγ and FABP4 could stimulate adipogenesis in fat cells [33,34].
In order to investigate the effect of NTN1 on adipocyte proliferation and differentiation, we silenced
NTN1 in adipocytes and then detected the expression level of CyclinD1, CDK4, PPARγ and FABP4. We
found that there was no different expression compared to the NC cells. PPARγ plays an important
role in the differentiation process of adipocytes. In some research, PPARγ mRNA expression was
significantly and positively correlated with IMF deposition (p < 0.05) [35]. Additionally, it was found
that NTN1 protein interacted with a2bR, and studies by cell lines indicated that the overexpression
of a2bR could inhibit fat production and regeneration [13,17]. However, in our research, we could
not detect the effect of NTN1 on CyclinD1, CDK4, PPARγ and FABP4. In a previous study, CyclinD1
and CDK4 mainly affected fat deposition by constructing a Cyclin D/Cdk4 complex [36]. PPARγ and
FABP4 mainly affected fat deposition through the PPARγ pathway [37,38]. Thus, we inferred that
the possible reasons why NTN1 did not affect the expression of these factors could be either that
NTN1 played its role in a different pathway, or NTN1 regulated fat deposition only by promoting
muscle cell differentiation. In any case, the important mechanism of NTN1 for myoblast and adipocyte
proliferation and differentiation is worthy of further exploration.

5. Conclusions

The quantitative expression results of RNA and protein showed that the NTN1 gene played an
important role in the development of muscle or fat. Further studies have shown that NTN1 could
significantly regulate the proliferation and differentiation of C2C12 cells but have no effect on the
proliferation and differentiation of 3T3-L1 preadipocytes. It is speculated that the copy number of the
NTN1 gene affects the expression of genes through the gene dose, which in turn affects the deposition
of intramuscular fat by affecting muscle development through an AMPK-related pathway.
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