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Simple Summary: Minerals are distributed in milk in two main forms: The diffusible (or soluble)
fraction, composed of free ions and inorganic salts, and the micellar fraction, composed of mineral
elements located on the surface or in the inner part of casein micelles. The ratio between diffusible and
micellar minerals strongly affects milk coagulation ability. The objective of this study was to investigate
the ability of mid-infrared spectroscopy to predict diffusible and micellar Ca, P, K, Mg and Na in
individual milk samples of Holstein Friesian cows. Overall, the accuracy of mid-infrared prediction
models was moderate for Ca, P and Mg, and low for micellar K, micellar Na and diffusible Na.

Abstract: Milk and dairy products are major sources of minerals in human diet. Minerals influence milk
technological properties; in particular, micellar and diffusible minerals differentially influence rennet
clotting time, curd firmness and curd formation rate. The aim of the present study was to investigate
the ability of mid-infrared spectroscopy to predict the content of micellar and diffusible mineral
fractions in bovine milk. Spectra of reference milk samples (n = 93) were collected using Milkoscan™
7 (Foss Electric A/S, Hillerød, Denmark) and total, diffusible and micellar content of minerals were
quantified using inductively coupled plasma optical emission spectrometry. Backward interval
partial least squares algorithm was applied to exclude uninformative spectral regions and build
prediction models for total, diffusible and micellar minerals content. Results showed that backward
interval partial least squares analysis improved the predictive ability of the models for the studied
traits compared with traditional partial least squares approach. Overall, the predictive ability of
mid-infrared prediction models was moderate to low, with a ratio of performance to deviation in
cross-validation that ranged from 1.15 for micellar K to 2.73 for total P.
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1. Introduction

Milk and dairy products are important sources of minerals for human health, with particular
regard to physiological processes such as cellular homeostasis, bone growth, muscular and nervous
functions and blood clotting. On average, dairy products provide 59% and 27% of recommended
daily intake of Ca and P, respectively, and 10% of K and Mg [1]. From a technological point of
view, milk minerals are directly involved in casein micelles stability, the milk coagulation process
and cheese yield [2,3]. In particular, during the cheese-making process, minerals are differentially
partitioned into curd and whey, and the relative proportion of these two fractions is influenced by milk
composition and technological treatments [4]. Minerals associated to curd, named micellar minerals,
can be incorporated into casein micelles as colloids, or nanoclusters. Still, some micellar minerals
associate to casein micelles, even if they are not part of colloids; for example, Ca is present on the
micellar surface, forming molecular bridges responsible for paracaseinate complex formation [5].
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The remaining amount of minerals is defined as diffusible, and may be present in the form of free ions
or associated with counter ions and proteins [6–8]. Significant sources of variation for milk minerals
are management, lactation stage and parity, whereas the seasonal effect is trivial [9,10].

Several methods have been proposed to discriminate between diffusible and micellar mineral
fractions. Rennet coagulation-, ultracentrifugation-, dialysis- and ultrafiltration-based methods are
widely used, and their efficiency has been already discussed [11]. Recently, Franzoi et al. (2018) [12]
proposed a modification of the rennet coagulation-based method to overcome the need of using
correction factors for the excluded volume. Indeed, correction factors have been usually applied to
all the samples, notwithstanding the single sample variation in major constituents and quality [13].
Once the fractionation of micellar and diffusible milk minerals is achieved, the quantitation is usually
carried out through inductively coupled plasma optical emission spectrometry after mineralisation
using microwave-assisted acid digestion [14]. Regardless of the adopted methods, sample preparation
and quantification of minerals are expensive, time-consuming and require specific instrumentation
and skilled operators.

Mid-infrared spectroscopy (MIRS) is a rapid, non-destructive and cost-effective method for
the determination of milk components, routinely used in dairy companies [15,16]. Several studies
reported a moderate ability of MIRS to predict milk mineral composition and, even if accuracies do
not suggest the use of this technique for milk payment or analytical purposes, it can be useful for
population studies [17–21]. Variable selection procedures have shown to be useful tools to improve the
accuracy of MIRS prediction models [17]. Among them, backward interval partial least squares (BiPLS)
algorithm has shown good performance and effectiveness in external validation procedures [22,23].
To date, only Malacarne et al. (2018) [17] have investigated the ability of MIRS to predict micellar and
diffusible minerals, but only in bulk milk samples. Those authors collected reference data using the
ultrafiltration procedure to differentiate between micellar and diffusible minerals, demonstrating the
poor performance of MIRS prediction models, likely attributable to the low variability of the studied
traits [17]. Therefore, the aim of the present study was to develop MIRS prediction models for total,
micellar and diffusible minerals of individual cow milk, by applying BiPLS as the variable selection
and prediction algorithm.

2. Materials and Methods

2.1. Chemical Analysis

A total of 93 Holstein cows (days in milk = 168.66 ± 115.27; parity = 2.78 ± 1.61;
milk yield = 32.08 ± 8.49 kg/day) were sampled during morning milking between April and June
2018. Cows were fed forage and concentrates. Milk samples were immediately added with Azidiol
preservative (Nova Chimica Srl, Italy) and analysed with MilkoScanTM 7 (Foss Electric A/S, Hillerød,
Denmark) for milk composition in the laboratory of the South Tyrolean Dairy Association (Bolzano,
Italy). Mid-infrared spectra of the analysed samples were also available. Starting spectra comprised
1060 data points between 5012 and 686 cm−1. An aliquot of 10 mL of samples was stored at 4 ◦C
and the protocol for diffusible and micellar minerals separation was applied within 12 h as described
by Franzoi et al. (2018) [12]. Briefly, 10 mL of milk was warmed at 38 ◦C for 2 h in order to reach
mineral equilibrium between diffusible and micellar phases, and then calf rennet (1:3000 wt/wt) was
added. Milk was incubated at 36 ◦C for 30 min; the curd was then cut and re-incubated for 30 min.
After centrifugation, 5 mL of whey was collected, and 5 mL of ultrapure water was added to the
samples and left to equilibrate for 1 h after mixing. Finally, samples were centrifuged and 5 mL of
diluted whey was collected.

Mineral extraction from starting milk, whey and diluted whey was carried out through acid
mineralisation, whereas mineral quantification was obtained through inductively coupled plasma
optical emission spectrometry. Finally, diffusible and micellar mineral fractions were calculated as
proposed by Franzoi et al. (2018) [12].
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2.2. Prediction Models

The normal distribution of traits in the calibration dataset was checked using the Shapiro-Wilk test.
Outliers for reference measures were defined as the values deviating more than 3 standard deviations
from the mean of each trait. Spectral variables were transformed to absorbance by applying log10 of
reciprocal of the transmittance. Spectral regions to develop prediction models were selected as the
“good spectrum” wavelengths according to the infrared instrument manufacturer. The calibration
dataset was checked for spectral outliers using Mahalanobis distance and no outliers were detected.
The final dataset comprised 450 spectral variables in the intervals 964.5 to 1562.5 cm−1, 1720.7 to
2291.7 cm−1 and 2415.1 to 2970.7 cm−1, from 91 samples.

Prediction models and fitting statistics were obtained using SAS 9.4 (SAS Institute Inc., Cary,
NC, USA). Backward interval partial least squares analysis was performed according to Zou et al.
(2007) [23]. Spectra were divided into 45 intervals, including 10 variables in each interval, and PROC
PLS of SAS 9.4 was iteratively performed excluding one interval at a time. Predicted residual error sum
of squares (PRESS) was calculated for each iteration. The interval to be excluded from the subsequent
BiPLS round was the one resulting in the lowest PRESS statistic when left out. The procedure was
iterated until only one interval remained [22]. For each iteration, the number of latent variables (LV) to
perform partial least squares (PLS) procedure was defined as the minimum number of LV from 1 to
10 to achieve the lowest PRESS, with p > 0.10. Root mean square error in leave-one-out cross validation
(RMSECV) was calculated for each BiPLS round and the model with the best performance was selected
as the final prediction model. For comparison, PLS was performed using the same parameters as the
BiPLS analysis, including all spectra wavenumbers to develop the prediction models. Fitting statistics
of PLS and BiPLS models were the coefficient of determination in cross-validation (R2

CV) and the
ratio of performance to deviation in cross validation (RPDCV), calculated as the ratio between SD and
RMSECV. Moreover, the difference between R2

CV of BiPLS and PLS models (∆R2
CV) for each mineral

was calculated.

3. Results and Discussion

Fat, protein, lactose and pH averaged 4.03%, 3.47%, 4.75% and 6.65%, respectively (Table 1).
Regarding milk mineral composition, total Ca averaged 123.26 mg/100 mL, with micellar Ca being
about 3.5-fold the diffusible Ca. Total P averaged 102.03 mg/100 mL, with micellar P being nearly
twofold the diffusible P. Potassium was primarily present more in the diffusible (121.38 mg/100 mL)
than in the micellar phase (26.12 mg/100 mL). On the other hand, Mg was almost evenly distributed
between micellar and diffusible phases (58% and 42%, respectively). Finally, about 99% of Na was in
the diffusible phase, with a total amount that averaged 36.63 mg/100 mL. Overall, the concentration of
minerals in the diffusible phase was lower than that reported by Gaucheron (2005) [22]. Such results can
be attributed to the peculiar quantification method applied in the present study. Indeed, the proposed
quantification does not suffer the bias due to the difference between the correction factor for the
excluded volume, applied equally to all the samples to correct for the diffusible minerals trapped in
the curd, and the real excluded volume, influenced by milk solids content.
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Table 1. Descriptive statistics of milk composition, milk minerals (mg/L) and ratio between micellar
and diffusible fractions (w/w).

Trait Mean SD CV, % Minimum Maximum

Milk composition, %
Fat 4.03 0.63 15.63 2.68 5.84
Protein 3.47 0.34 9.80 2.54 4.28
Lactose 4.75 0.21 4.42 4.10 5.15

pH 6.65 0.06 0.90 6.49 6.79
Minerals

Ca

Total, mg/100 mL 122.07 10.29 8.43 92.42 146.68
Diffusible, mg/100 mL 27.95 5.63 20.13 19.00 49.33
Micellar, mg/100 mL 94.12 10.81 11.48 66.96 123.41
Micellar/Diffusible, w/w 3.51 0.84 24.03 1.57 5.93

P

Total, mg/100 mL 99.86 9.03 9.04 73.47 119.20
Diffusible, mg/100 mL 36.51 4.86 13.30 24.28 48.90
Micellar, mg/100 mL 63.35 8.98 14.18 41.85 84.39
Micellar/Diffusible, w/w 1.77 0.40 22.35 1.14 2.67

K

Total, mg/100 mL 147.56 10.63 7.21 125.07 174.25
Diffusible, mg/100 mL 120.94 10.60 8.77 97.43 147.14
Micellar, mg/100 mL 26.62 9.42 35.40 4.72 52.33
Micellar/Diffusible, w/w 0.22 0.09 39.46 0.04 0.49

Mg

Total, mg/100 mL 10.99 1.12 10.23 8.79 14.06
Diffusible, mg/100 mL 6.38 0.82 12.90 4.44 8.51
Micellar, mg/100 mL 4.62 0.94 20.30 2.53 7.01
Micellar/Diffusible, w/w 0.74 0.19 25.70 0.34 1.40

Na Total, mg/100 mL 37.55 7.94 21.15 27.73 65.71

Na was not found in micellar phase and thus it is presented as total Na only. Abbreviations are as follows: SD,
standard deviation; CV, coefficient of variation.

Spectral regions selected through BiPLS analysis are depicted in Figure 1. Spectral regions for
diffusible and micellar minerals are not complementary when compared with total minerals, suggesting
that the overlapped spectral regions are likely correlated with both micellar and diffusible minerals.
All calibrations included at least one interval from the spectral region related to C=O and N–H
absorption of proteins (1700 to 1500 cm−1). Most of the calibrations included also intervals around
1100 cm−1, related to carbohydrates C–O and C–C stretching, and wavenumbers around 1400 cm−1

and between 2770 and 2980 cm−1, related to lipids. This could be related to the effect of minerals on
shifting signals of milk components, e.g., Ca interaction with side chains of casein amino acids, and the
correlations of total, micellar and diffusible minerals with the protein, fat or carbohydrate content of
milk [19,24].
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Figure 1. Spectral regions selected using backward interval partial least squares analysis. (I) Ca, (II) 
P, (III) K, (IV) Mg, (V) Na. (Black) full spectrum (mean); (green) total mineral (mg/100 mL); (blue) 
micellar mineral (mg/100 mL); (red) diffusible mineral (mg/100 mL); (orange) ratio between micellar 
and diffusible fractions (w/w). Absorbance is given in arbitrary units (AU). 

In general, BiPLS enhanced the accuracy of prediction models compared with PLS analysis, 
with a ΔR2CV that ranged from 0.07 (micellar K) to 0.25 (total P; Table 2). Fitting statistics revealed 
moderate to low predictive performance for the analysed traits. Considering the total content of each 
element, R2CV and RPDCV of prediction models developed using BiPLS analysis ranged from 0.55 to 
0.87 and from 1.49 to 2.73 for total K and total P, respectively. Prediction performances of diffusible 
minerals were similar to those of total minerals, with an RPDCV that ranged from 1.52 (diffusible Mg) 
to 2.09 (diffusible Ca). In general, prediction of micellar minerals showed fitness statistics slightly 
poorer than those of total and diffusible minerals, except for micellar K, whose prediction was 
particularly difficult, probably for the small fraction of this mineral present in the micellar phase 
(18%) and the relatively high uncertainty of the quantification method to determine micellar K [12]. 
Considering the strong relationship between the amount of total minerals and the amount of 
minerals in each fraction [25], the predictive ability of MIRS was also tested for mineral partitioning 
in the phases, expressed as w/w. Prediction models effectively predicted mineral partitioning, even if 
with lower accuracy than the absolute amount.

Figure 1. Spectral regions selected using backward interval partial least squares analysis. (I) Ca,
(II) P, (III) K, (IV) Mg, (V) Na. (Black) full spectrum (mean); (green) total mineral (mg/100 mL); (blue)
micellar mineral (mg/100 mL); (red) diffusible mineral (mg/100 mL); (orange) ratio between micellar
and diffusible fractions (w/w). Absorbance is given in arbitrary units (AU).

In general, BiPLS enhanced the accuracy of prediction models compared with PLS analysis,
with a ∆R2

CV that ranged from 0.07 (micellar K) to 0.25 (total P; Table 2). Fitting statistics revealed
moderate to low predictive performance for the analysed traits. Considering the total content of each
element, R2

CV and RPDCV of prediction models developed using BiPLS analysis ranged from 0.55 to
0.87 and from 1.49 to 2.73 for total K and total P, respectively. Prediction performances of diffusible
minerals were similar to those of total minerals, with an RPDCV that ranged from 1.52 (diffusible Mg) to
2.09 (diffusible Ca). In general, prediction of micellar minerals showed fitness statistics slightly poorer
than those of total and diffusible minerals, except for micellar K, whose prediction was particularly
difficult, probably for the small fraction of this mineral present in the micellar phase (18%) and the
relatively high uncertainty of the quantification method to determine micellar K [12]. Considering
the strong relationship between the amount of total minerals and the amount of minerals in each
fraction [25], the predictive ability of MIRS was also tested for mineral partitioning in the phases,
expressed as w/w. Prediction models effectively predicted mineral partitioning, even if with lower
accuracy than the absolute amount.
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Table 2. Fitting statistics of prediction models for milk minerals and ratio between micellar and
diffusible fractions (w/w) in cross-validation obtained using partial least squares (PLS) and backward
interval PLS (BiPLS) analysis (n = 91).

Trait
PLS BiPLS

∆R2
CV

LV RMSECV R2
CV RPDCV NV LV RMSECV R2

CV RPDCV

Ca

Total, mg/100 mL 9 5.86 0.68 1.76 230 10 4.77 0.79 2.16 0.11
Diffusible, mg/100 mL 5 3.15 0.69 1.79 180 9 2.69 0.77 2.09 0.08
Micellar, mg/100 mL 8 6.35 0.66 1.70 160 10 5.30 0.76 2.04 0.10
Micellar/Diffusible, w/w 5 0.58 0.52 1.45 90 6 0.36 0.69 1.78 0.17

P

Total, mg/100 mL 5 5.58 0.62 1.62 100 10 3.30 0.87 2.73 0.25
Diffusible, mg/100 mL 7 2.91 0.64 1.67 230 10 2.56 0.73 1.90 0.09
Micellar, mg/100 mL 5 6.27 0.52 1.43 210 10 4.76 0.73 1.89 0.21
Micellar/Diffusible, w/w 7 0.27 0.56 1.49 220 10 0.22 0.68 1.77 0.12

K

Total, mg/100 mL 10 8.58 0.35 1.24 100 10 7.14 0.55 1.49 0.20
Diffusible, mg/100 mL 6 7.58 0.49 1.40 100 9 6.92 0.58 1.53 0.09
Micellar, mg/100 mL 7 8.69 0.18 1.08 180 7 8.19 0.25 1.15 0.07
Micellar/Diffusible, w/w 3 0.09 0.09 1.04 90 7 0.08 0.29 1.17 0.20

Mg

Total, mg/100 mL 7 0.74 0.57 1.52 140 10 0.64 0.68 1.76 0.11
Diffusible, mg/100 mL 5 0.62 0.43 1.32 190 7 0.54 0.57 1.52 0.14
Micellar, mg/100 mL 5 0.68 0.48 1.38 160 7 0.53 0.68 1.77 0.20
Micellar/Diffusible, w/w 4 0.16 0.33 1.22 140 6 0.13 0.56 1.51 0.23

Na Total, mg/100 mL 8 4.85 0.63 1.64 290 10 4.02 0.75 1.98 0.12

Na was not found in micellar phase and thus it is presented as total Na only. Abbreviations are as follows: LV,
number of latent variables for calibration; RMSECV, root mean square error in cross-validation; R2

CV, coefficient of
determination in cross-validation; RPDCV, ratio of performance to deviation in cross-validation; NV, number of
spectral variables selected in the model; ∆R2

CV, difference between R2
CV of BiPLS and PLS.

Results for mid-infrared predictions of total milk minerals were in agreement with findings
reported in the literature [18,21,26]. Taking into account micellar and diffusible minerals, the results of
the present study indicated better prediction performances compared with Malacarne et al. (2018) [17];
such results may be related to the different origin of collected samples (bulk vs. individual), the different
method for reference data collection and the use of BiPLS instead of simple PLS analysis as the method
to develop prediction models.

4. Conclusions

The present study reported the ability of MIRS models to predict micellar and diffusible major
minerals in milk. Backward interval partial least squares analysis effectively improved prediction
models compared with PLS analysis. Moderate prediction performances were achieved for Ca,
P and Mg, and poor predictive statistics were achieved for K, in particular in the micellar fraction.
Sodium predictions in the two phases were not possible, given that more than 99% of Na is present
in the diffusible phase. Future research will focus on the use of the developed equations to predict
mineral fractions on a large scale and will consider the influence of milk mineral partition on
cheese-making properties.
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